1
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
2
|
Jiang X, Sun L, Hu C, Zheng F, Lyu Z, Shao J. Shark IgNAR: The Next Broad Application Antibody in Clinical Diagnoses and Tumor Therapies? Mar Drugs 2023; 21:496. [PMID: 37755109 PMCID: PMC10532743 DOI: 10.3390/md21090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Antibodies represent a relatively mature detection means and serve as therapeutic drug carriers in the clinical diagnosis and treatment of cancer-among which monoclonal antibodies (mAbs) currently occupy a dominant position. However, the emergence and development of small-molecule monodomain antibodies are inevitable due to the many limitations of mAbs, such as their large size, complex structure, and sensitivity to extreme temperature, and tumor microenvironments. Thus, since first discovered in Chondroid fish in 1995, IgNAR has become an alternative therapeutic strategy through which to replace monoclonal antibodies, thus entailing that this novel type of immunoglobulin has received wide attention with respect to clinical diagnoses and tumor therapies. The variable new antigen receptor (VNAR) of IgNAR provides an advantage for the development of new antitumor drugs due to its small size, high stability, high affinity, as well as other structural and functional characteristics. In that respect, a better understanding of the unique characteristics and therapeutic potential of IgNAR/VNAR in clinical and anti-tumor treatment is needed. This article reviews the advantages of its unique biochemical conditions and molecular structure for clinical diagnoses and novel anti-tumor drugs. At the same time, the main advantages of the existing conjugated drugs, which are based on single-domain antibodies, are introduced here, thereby providing new ideas and methods for the development of clinical diagnoses and anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Ling Sun
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengwu Hu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feijian Zheng
- Jiangsu Baiying Biotech Co., Ltd., Taizhou 225300, China;
| | - Zhengbing Lyu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.S.); (C.H.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Takeda H, Ozawa T, Zenke H, Ohnuki Y, Umeda Y, Zhou W, Tomoda H, Takechi A, Narita K, Shimizu T, Miyakawa T, Ito Y, Sawasaki T. VNAR development through antigen immunization of Japanese topeshark ( Hemitriakis japanica). Front Bioeng Biotechnol 2023; 11:1265582. [PMID: 37771574 PMCID: PMC10522858 DOI: 10.3389/fbioe.2023.1265582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
The VNAR (Variable New Antigen Receptor) is the smallest single-domain antibody derived from the variable domain of IgNAR of cartilaginous fishes. Despite its biomedical and diagnostic potential, research on VNAR has been limited due to the difficulties in obtaining and maintaining immune animals and the lack of research tools. In this study, we investigated the Japanese topeshark as a promising immune animal for the development of VNAR. This shark is an underutilized fishery resource readily available in East Asia coastal waters and can be safely handled without sharp teeth or venomous stingers. The administration of Venus fluorescent protein to Japanese topesharks markedly increased antigen-specific IgM and IgNAR antibodies in the blood. Both the phage-display library and the yeast-display library were constructed using RNA from immunized shark splenocytes. Each library was enriched by biopanning, and multiple antigen-specific VNARs were acquired. The obtained antibodies had affinities of 1 × 10-8 M order and showed high plasticity, retaining their binding activity even after high-temperature or reducing-agent treatment. The dissociation rate of a low-affinity VNAR was significantly improved via dimerization. These results demonstrate the potential utility of the Japanese topeshark for the development of VNAR. Furthermore, we conducted deep sequencing analysis to reveal the quantitative changes in the CDR3-coding sequences, revealing distinct enrichment bias between libraries. VNARs that were primarily enriched in the phage display had CDR3 coding sequences with fewer E. coli rare codons, suggesting translation machinery on the selection and enrichment process during biopanning.
Collapse
Affiliation(s)
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
- Center for Advanced Antibody Drug Development, University of Toyama, Toyama, Japan
| | - Hiroki Zenke
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yoh Ohnuki
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuri Umeda
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wei Zhou
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Honoka Tomoda
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Akihiko Takechi
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Kimiyoshi Narita
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takaaki Shimizu
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Iyo, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | | |
Collapse
|
4
|
Cabanillas-Bernal O, Valdovinos-Navarro BJ, Cervantes-Luevano KE, Sanchez-Campos N, Licea-Navarro AF. Unleashing the power of shark variable single domains (VNARs): broadly neutralizing tools for combating SARS-CoV-2. Front Immunol 2023; 14:1257042. [PMID: 37753081 PMCID: PMC10518403 DOI: 10.3389/fimmu.2023.1257042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a joint global effort to develop vaccines and other treatments that could mitigate the negative effects and the rapid spread of the virus. Single-domain antibodies derived from various sources, including cartilaginous fish, camelids, and humans, have gained attention as promising therapeutic tools against coronavirus disease 2019. Shark-derived variable new antigen receptors (VNARs) have emerged as the smallest naturally occurring antigen-binding molecules. Here, we compile and review recent published studies on VNARs with the capacity to recognize and/or neutralize SARS-CoV-2. We found a close balance between the use of natural immune libraries and synthetic VNAR libraries for the screening against SARS-CoV-2, with phage display being the preferred display technology for the selection of VNARs against this virus. In addition, we discuss potential modifications and engineering strategies employed to improve the neutralization potential of VNARs, such as exploring fusion with the Fc domain of human Immunoglobulin G (IgG) to increase avidity and therapeutic potential. This research highlights the potential of VNARs as powerful molecular tools in the fight against infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | - Alexei F. Licea-Navarro
- Biomedical Innovation Department, Centro de Investigación Científica y Educación Superior de Ensenada, (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Chen YL, Xie XX, Zheng P, Zhu C, Ma H, Khalid Z, Xie YJ, Dang YZ, Ye Y, Sheng N, Zhong N, Lei WH, Zhang C, Zhang LJ, Jin T, Cao MJ. Selection, identification and crystal structure of shark-derived single-domain antibodies against a green fluorescent protein. Int J Biol Macromol 2023; 247:125852. [PMID: 37460076 DOI: 10.1016/j.ijbiomac.2023.125852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Shark variable domain of new antigen receptors (VNARs) are the smallest naturally occurring binding domains with properties of low complexity, small size, cytoplasmic expression, and ease of engineering. Green fluorescent protein (GFP) molecules have been analyzed in conventional microscopy, but their spectral characteristics preclude their use in techniques offering substantially higher resolution. Besides, the GFP molecules can be quenched in acidic environment, which makes it necessary to develop anti-GFP antibody to solve these problems. In view of the diverse applications of GFP and unique physicochemical features of VNAR, the present study aims to generate VNARs against GFP. Here, we identified 36 VNARs targeting eCGP123, an extremely stable GFP, by phage display from three immunized sharks. These VNARs bound to eCGP123 with affinity constant KD values ranging from 6.76 to 605 nM. Among them, two lead VNARs named aGFP-14 and aGFP-15 with nanomolar eCGP123-binding affinity were selected for in-depth characterization. aGFP-14 and aGFP-15 recognized similar epitopes on eCGP123. X-ray crystallography studies clarified the mechanism by which aGFP14 interacts with eCGP123. aGFP-14 also showed cross-reaction with EGFP, with KD values of 47.2 nM. Finally, immunostaining analyses demonstrated that aGFP-14 was able to bind effectively to the EGFP expressed in both cultured cells and mouse brain tissues, and can be used as a fluorescence amplifier for EGFP. Our research demonstrates a feasible idea for the screening and production of shark-derived VNARs. The two high-affinity VNARs developed in the study contribute to the diversity of GFP sdAbs and may enhance the applications of GFP.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Peiyi Zheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Chenchen Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Huan Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Zunera Khalid
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Yang-Jie Xie
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yi-Zhao Dang
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wen-Hui Lei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | | | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China.
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
6
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|
7
|
Dueñas S, Escalante T, Gasperin-Bulbarela J, Bernáldez-Sarabia J, Cervantes-Luévano K, Jiménez S, Sánchez-Campos N, Cabanillas-Bernal O, Valdovinos-Navarro BJ, Álvarez-Lee A, De León-Nava MA, Licea-Navarro AF. Chimeric Peptides from Californiconus californicus and Heterodontus francisci with Antigen-Binding Capacity: A Conotoxin Scaffold to Create Non-Natural Antibodies (NoNaBodies). Toxins (Basel) 2023; 15:toxins15040269. [PMID: 37104207 PMCID: PMC10141372 DOI: 10.3390/toxins15040269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Research into various proteins capable of blocking metabolic pathways has improved the detection and treatment of multiple pathologies associated with the malfunction and overexpression of different metabolites. However, antigen-binding proteins have limitations. To overcome the disadvantages of the available antigen-binding proteins, the present investigation aims to provide chimeric antigen-binding peptides by binding a complementarity-determining region 3 (CDR3) of variable domains of new antigen receptors (VNARs) with a conotoxin. Six non-natural antibodies (NoNaBodies) were obtained from the complexes of conotoxin cal14.1a with six CDR3s from the VNARs of Heterodontus francisci and two NoNaBodies from the VNARs of other shark species. The peptides cal_P98Y vs. vascular endothelial growth factor 165 (VEGF165), cal_T10 vs. transforming growth factor beta (TGF-β), and cal_CV043 vs. carcinoembryonic antigen (CEA) showed in-silico and in vitro recognition capacity. Likewise, cal_P98Y and cal_CV043 demonstrated the capacity to neutralize the antigens for which they were designed.
Collapse
Affiliation(s)
- Salvador Dueñas
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | | | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Karla Cervantes-Luévano
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Noemí Sánchez-Campos
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Olivia Cabanillas-Bernal
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | | | - Angélica Álvarez-Lee
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Marco A. De León-Nava
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| | - Alexei F. Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada C.P. 22860, Mexico
| |
Collapse
|
8
|
Burciaga-Flores M, Márquez-Aguirre AL, Dueñas S, Gasperin-Bulbarela J, Licea-Navarro AF, Camacho-Villegas TA. First pan-specific vNAR against human TGF-β as a potential therapeutic application: in silico modeling assessment. Sci Rep 2023; 13:3596. [PMID: 36869086 PMCID: PMC9982792 DOI: 10.1038/s41598-023-30623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-β isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-β isoforms (-β1, -β2, -β3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-β1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-β1, which are essential for interaction with type I and II TGF-β receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-β isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-β levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.
Collapse
Affiliation(s)
- Mirna Burciaga-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Salvador Dueñas
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Jahaziel Gasperin-Bulbarela
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Alexei F Licea-Navarro
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México.
| | - Tanya A Camacho-Villegas
- CONACYT - Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México.
| |
Collapse
|
9
|
Xi X, Xiao G, An G, Liu L, Liu X, Hao P, Wang JY, Song D, Yu W, Gu Y. A novel shark single-domain antibody targeting OGT as a tool for detection and intracellular localization. Front Immunol 2023; 14:1062656. [PMID: 36855630 PMCID: PMC9968394 DOI: 10.3389/fimmu.2023.1062656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
Introduction O-GlcNAcylation is a type of reversible post-translational modification on Ser/Thr residues of intracellular proteins in eukaryotic cells, which is generated by the sole O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Thousands of proteins, that are involved in various physiological and pathological processes, have been found to be O-GlcNAcylated. However, due to the lack of favorable tools, studies of the O-GlcNAcylation and OGT were impeded. Immunoglobulin new antigen receptor (IgNAR) derived from shark is attractive to research tools, diagnosis and therapeutics. The variable domain of IgNARs (VNARs) have several advantages, such as small size, good stability, low-cost manufacture, and peculiar paratope structure. Methods We obtained shark single domain antibodies targeting OGT by shark immunization, phage display library construction and panning. ELISA and BIACORE were used to assess the affinity of the antibodies to the antigen and three shark single-domain antibodies with high affinity were successfully screened. The three antibodies were assessed for intracellular function by flow cytometry and immunofluorescence co-localization. Results In this study, three anti-OGT VNARs (2D9, 3F7 and 4G2) were obtained by phage display panning. The affinity values were measured using surface plasmon resonance (SPR) that 2D9, 3F7 and 4G2 bound to OGT with KD values of 35.5 nM, 53.4 nM and 89.7 nM, respectively. Then, the VNARs were biotinylated and used for the detection and localization of OGT by ELISA, flow cytometry and immunofluorescence. 2D9, 3F7 and 4G2 were exhibited the EC50 values of 102.1 nM, 40.75 nM and 120.7 nM respectively. VNAR 3F7 was predicted to bind the amino acid residues of Ser375, Phe377, Cys379 and Tyr 380 on OGT. Discussion Our results show that shark single-domain antibodies targeting OGT can be used for in vitro detection and intracellular co-localization of OGT, providing a powerful tool for the study of OGT and O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guiqi An
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peiyu Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Jennifer Yiyang Wang
- College of Letters and Science Dept. of Microbiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dandan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Kolmar H, Grzeschik J, Könning D, Krah S, Zielonka S. Construction of Semisynthetic Shark vNAR Yeast Surface Display Antibody Libraries. Methods Mol Biol 2023; 2702:227-243. [PMID: 37679622 DOI: 10.1007/978-1-0716-3381-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.
Collapse
Affiliation(s)
- Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
11
|
Hutton ARJ, Ubah O, Barelle C, Donnelly RF. Enhancing the Transdermal Delivery of 'Next Generation' Variable New Antigen Receptors Using Microarray Patch Technology: a Proof-of-Concept Study. J Pharm Sci 2022; 111:3362-3376. [PMID: 36037879 DOI: 10.1016/j.xphs.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023]
Abstract
Heavy chain only binding proteins, such as variable new antigen receptors (VNARs), have emerged as an alternative to the highly successful therapeutic monoclonal antibodies (mAb). Owing to their small size (∼ 11 kDa) and single chain only architecture, they are amenable to modular reformatting and can be produced using inexpensive expression systems. Furthermore, due to their low molecular weight (MW) and high stability, they may be suitable for alternative delivery strategies, such as microarray array patches (MAPs). In this study, the transdermal delivery of ELN22-104, a multivalent anti-hTNF-α VNAR, was examined using both dissolving and hydrogel-forming MAPs. For dissolving MAPs, the cumulative in vitro permeation of ELN22-104 reached a plateau after 2 h (12.24 ± 0.17 µg). This could be important for bolus dosing. Assessing two hydrogel-forming MAPs in vitro, PVP/PVA hydrogel-forming MAPs delivered significantly higher drug doses when compared to 'super swelling' MAPs, equivalent to 43.13 ± 10.36 µg and 23.13 ± 5.66 µg, respectively (p < 0.05). Consequently, this study has proven that by modifying the MAP system, the transdermal delivery of a VNAR across the skin can be enhanced. Furthermore, this proof-of-concept study has shown that transdermal delivery of 'next generation' biotherapeutics is achievable using MAP technology.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Obinna Ubah
- Elasmogen Ltd., Liberty Building, Foresterhill Road, Aberdeen AB25 2ZP, United Kingdom
| | - Caroline Barelle
- Elasmogen Ltd., Liberty Building, Foresterhill Road, Aberdeen AB25 2ZP, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
12
|
Li D, English H, Hong J, Liang T, Merlino G, Day CP, Ho M. A novel PD-L1-targeted shark V NAR single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics 2022; 24:849-863. [PMID: 35317524 PMCID: PMC8917269 DOI: 10.1016/j.omto.2022.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy shows excellent potency against hematological malignancies, but it remains challenging to treat solid tumors, mainly because of a lack of appropriate antigenic targets and an immunosuppressive tumor microenvironment (TME). The checkpoint molecule programmed death-ligand 1 (PD-L1) is widely overexpressed in multiple tumor types, and the programmed death-ligand 1 (PD-1)/PD-L1 interaction is a crucial mediator of immunosuppression in the TME. Here we constructed a semi-synthetic shark VNAR phage library and isolated anti-PD-L1 single-domain antibodies. Among these VNARs, B2 showed cross-reactivity to human, mouse, and canine PD-L1, and it partially blocked the interaction of human PD-1 with PD-L1. CAR (B2) T cells specifically lysed human breast cancer and liver cancer cells by targeting constitutive and inducible expression of PD-L1 and hindered tumor metastasis. Combination of PD-L1 CAR (B2) T cells with CAR T cells targeted by GPC3 (a liver cancer-specific antigen) regresses liver tumors in mice. We concluded that PD-L1-targeted shark VNAR single-domain-based CAR-T therapy is a novel strategy to treat breast and liver cancer. This study provides a rationale for potential use of PD-L1 CAR-T cells as a monotherapy or in combination with a tumor-specific therapy in clinical studies.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hejiao English
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tianyuzhou Liang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Khalid Z, Chen Y, Yu D, Abbas M, Huan M, Naz Z, Mengist HM, Cao MJ, Jin T. IgNAR antibody: Structural features, diversity and applications. FISH & SHELLFISH IMMUNOLOGY 2022; 121:467-477. [PMID: 35077867 DOI: 10.1016/j.fsi.2022.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In response to the invasion of exogenous microorganisms, one of the defence strategies of the immune system is to produce antibodies. Cartilaginous fish is among those who evolved the earliest humoral immune system that utilizes immunoglobulin-type antibodies. The cartilaginous fish antibodies fall into three categories: IgW, IgM, and IgNAR. The shark Immunoglobulin Novel Antigen Receptor (IgNAR) constitutes disulfide-bonded dimers of two protein chains, similar to the heavy chain of mammalian IgGs. Shark IgNAR is the primary antibody of a shark's adaptive immune system with a serum concentration of 0.1-1.0 mg/mL. Its structure comprises of one variable (V) domain (VNAR) and five constant (C1 -C5) domains in the secretory form. VNARs are classified into several subclasses based on specific properties such as the quantity and position of additional non-canonical cysteine (Cys) residues in the VNAR. The VDJ recombination in IgNAR comprises various fragments; one variable component, three diverse sections, one joining portion, and a solitary arrangement of constant fragments framed in each IgNAR gene cluster. The re-arrangement happens just inside this gene cluster bringing about a VD1D2D3J segment. Therefore, four re-arrangement procedures create the entire VNAR space. IgNAR antibody can serve as an excellent diagnostic, therapeutic, and research tool because it has a smaller size, high specificity for antigen-binding, and perfect stability. The domain characterization, structural features, types, diversity and therapeutic applications of IgNAR molecules are highlighted in this review. It would be helpful for further research on IgNAR antibodies acting as an essential constituent of the adaptive immune system and a potential therapeutic agent.
Collapse
Affiliation(s)
- Zunera Khalid
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yulei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China
| | - Du Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Misbah Abbas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ma Huan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zara Naz
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hylemariam Mihiretie Mengist
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
14
|
Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Int J Mol Sci 2022; 23:938. [PMID: 35055121 PMCID: PMC8779196 DOI: 10.3390/ijms23020938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.
Collapse
Affiliation(s)
- Olubodun Michael Lateef
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | | | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil;
| | - Sunday Ocholi Samson
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | - Malgorzata Adamczyk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| |
Collapse
|
15
|
Pandey SS, Kovaleva M, Barelle CJ, Ubah OC. Overview, Generation, and Significance of Variable New Antigen Receptors (VNARs) as a Platform for Drug and Diagnostic Development. Methods Mol Biol 2022; 2446:19-33. [PMID: 35157267 DOI: 10.1007/978-1-0716-2075-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of the first VHH-based drug caplacizumab (anti-von Willebrand factor) has validated a two-decade long commitment in time and research effort to realize the clinical potential of single-domain antibodies. The variable domain (VNAR) of the immunoglobulin new antigen receptor (IgNAR) found in sharks provides an alternative small binding domain to conventional monoclonal antibodies and their fragments and heavy-chain antibody-derived VHHs. Evolutionarily distinct from mammalian antibody variable domains, VNARs have enhanced thermostability and unusual convex paratopes. This predisposition to bind cryptic and recessed epitopes has facilitated both the targeting of new antigens and new (neutralizing) epitopes on existing antigens. Together these unique properties position the VNAR platform as an alternative non-antibody binding domain for therapeutic drug, diagnostic and reagent development. In this introductory chapter, we highlight recent VNAR advancements that further underline the exciting potential of this discovery platform.
Collapse
|
16
|
Gasperin-Bulbarela J, Cabanillas-Bernal O, Dueñas S, Licea-Navarro AF. Preparation of Immune and Synthetic VNAR Libraries as Sources of High-Affinity Binders. Methods Mol Biol 2022; 2446:71-93. [PMID: 35157269 DOI: 10.1007/978-1-0716-2075-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The shark-derived autonomous variable antibody domains known as VNARs are attractive tools for therapeutic and diagnostic applications due to their favorable properties like small size (approximately 12 kDa), high thermal and chemical stability, and good tissue penetration. Currently, different techniques have been reported to generate VNAR domains against targets of therapeutic interest. Here, we describe methods for the preparation of an immune VNAR library based on bacteriophage display, and for the preparation of a synthetic library of VNAR domains using a modified protocol based on Kunkel mutagenesis. Finally, we describe procedures for in silico maturation of a VNAR using a bioinformatic approach to obtain higher affinity binders.
Collapse
Affiliation(s)
| | | | - Salvador Dueñas
- Biomedical Innovation Department, CICESE, Zona Playitas, Ensenada, Mexico
| | | |
Collapse
|
17
|
Shark New Antigen Receptor (IgNAR): Structure, Characteristics and Potential Biomedical Applications. Cells 2021; 10:cells10051140. [PMID: 34066890 PMCID: PMC8151367 DOI: 10.3390/cells10051140] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Shark is a cartilaginous fish that produces new antigen receptor (IgNAR) antibodies. This antibody is identified with a similar human heavy chain but dissimilar sequences. The variable domain (VNAR) of IgNAR is stable and small in size, these features are desirable for drug discovery. Previous study results revealed the effectiveness of VNAR as a single molecule or a combination molecule to treat diseases both in vivo and in vitro with promising clinical applications. We showed the first evidence of IgNAR alternative splicing from spotted bamboo shark (Chiloscyllium plagiosum), broadening our understanding of the IgNARs characteristics. In this review, we summarize the discoveries on IgNAR with a focus on its advantages for therapeutic development based on its peculiar biochemistry and molecular structure. Proper applications of IgNAR will provide a novel avenue to understand its special presence in cartilaginous fishes as well as designing a number of drugs for undefeated diseases.
Collapse
|
18
|
Zhang W, Qin L, Cai X, Juma SN, Xu R, Wei L, Wu Y, Cui X, Chen G, Liu L, Lv Z, Jiang X. Sequence structure character of IgNAR Sec in whitespotted bamboo shark (Chiloscyllium plagiosum). FISH & SHELLFISH IMMUNOLOGY 2020; 102:140-144. [PMID: 32311460 DOI: 10.1016/j.fsi.2020.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Whitespotted bamboo shark (Chiloscyllium plagiosum) is a demersal cartilaginous fish with an adaptive immune system founded upon immunoglobulins. In this manuscript, we characterize the IgNAR of the whitespotted bamboo shark. A newly discovered alternative splicing form of IgNAR Sec (IgNARshort (ΔC2-C3) Sec) was identified, in which the C1 domain was spliced directly to the C4 domain, the process resulted in a molecule containing three constant domains. However, a single unpaired cysteine remains in the highly flexible hinge region, contributing in the formation of an interchain disulfide bond. Two types of C1 domain were found, and the one lacking a short α-helix showed lower proportion. This finding suggests that short α-helices might be important to the stability of IgNAR. High-throughput sequencing revealed that the percentage of VNAR types significantly vary between the diverse species of sharks. The variable region of IgNAR (the VNAR) with small size and stabilization is a potential candidate for immunotherapeutic agents. The structure and stability analysis in this manuscript may be useful in future biomedical applications.
Collapse
Affiliation(s)
- Wenjie Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lanyi Qin
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xinyi Cai
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Salma Nassor Juma
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Rong Xu
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ling Wei
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yixin Wu
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xuan Cui
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Guiqian Chen
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lili Liu
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xiaofeng Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
English H, Hong J, Ho M. Ancient species offers contemporary therapeutics: an update on shark V NAR single domain antibody sequences, phage libraries and potential clinical applications. Antib Ther 2020; 3:1-9. [PMID: 32118195 PMCID: PMC7034638 DOI: 10.1093/abt/tbaa001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
The antigen binding variable domain (VNAR) of the shark immunoglobulin new antigen receptor (IgNAR) evolved approximately 500 million years ago and it is one of the smallest antibody fragments in the animal kingdom with sizes of 12-15 kDa. This review discusses the current knowledge of the shark VNAR single domain sequences and ongoing development of shark VNARs as research tools as well as potential therapeutics, in particular highlighting the recent next-generation sequencing analysis of 1.2 million shark VNAR sequences and construction of a large phage displayed shark VNAR library from six naïve adult nurse sharks (Ginglymostoma cirratum). The large phage-displayed VNAR single domain library covers all the four known VNAR types (Types I-IV) and many previously unknown types. Ongoing preclinical development will help define the utility of shark VNAR single domains as a potentially new family of drug candidates for treating cancer and other human diseases.
Collapse
Affiliation(s)
- Hejiao English
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jessica Hong
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Könning D, Zielonka S, Kaempffe A, Jäger S, Kolmar H, Schröter C. Selection and Characterization of Anti-idiotypic Shark Antibody Domains. Methods Mol Biol 2020; 2070:191-209. [PMID: 31625097 DOI: 10.1007/978-1-4939-9853-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antibody repertoire of cartilaginous fish comprises an additional heavy-chain-only antibody isotype that is referred to as IgNAR (immunoglobulin novel antigen receptor). Its antigen-binding site consists of one single domain (vNAR) that is reportedly able to engage a respective antigen with affinities similar to those achieved by conventional antibodies. While vNAR domains offer a reduced size, which is often favorable for applications in a therapeutic as well as a biotechnological setup, they also exhibit a high physicochemical stability. Together with their ability to target difficult-to-address antigens such as virus particles or toxins, these shark-derived antibody domains seem to be predestined as tools for biotechnological and diagnostic applications. In the following chapter, we will describe the isolation of anti-idiotypic vNAR domains targeting monoclonal antibody paratopes from semi-synthetic, yeast-displayed libraries. Anti-idiotypic vNAR variants could be employed for the characterization of antibody-based therapeutics (such as antibody-drug conjugates) or as positive controls in immunogenicity assays. Peculiarly, when using semi-synthetic vNAR libraries, we found that it is not necessary to deplete the libraries using unrelated antibody targets, which enables a fast and facile screening procedure that exclusively delivers anti-idiotypic binders.
Collapse
Affiliation(s)
- Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Anna Kaempffe
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sebastian Jäger
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Schröter
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
21
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
22
|
Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One 2019; 14:e0213394. [PMID: 31206542 PMCID: PMC6576789 DOI: 10.1371/journal.pone.0213394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
The variable domain of New Antigen Receptors (vNAR) from sharks, present special characteristics in comparison to the conventional antibody molecules such as: small size (12–15 kDa), thermal and chemical stability and great tissue penetration, that makes them a good alternative source as therapeutic or diagnostic agents. Therefore, it is essential to improve techniques used for the development and selection of vNAR antibodies that recognize distinct antigens. The development of synthetic antibody libraries offers a fast option for the generation of antibodies with the desired characteristics. In this work three synthetic antibody libraries were constructed; without cysteines (Cys), with one Cys and with two Cys residues within its CDR3, with the objective of determining whether the presence or absence of Cys in the CDR3 favors the isolation of vNAR clones from a synthetic library. The libraries were validated selecting against six mammalian proteins. At least one vNAR was found for each of the antigens, and a clone coming from the library without Cys in the CDR3 was selected with all the antigens. In vitro angiogenesis assay with the isolated anti-VEGF antibodies, suggest that these vNARs are capable of inhibiting in vitro angiogenesis. In silico analysis of anti-VEGF antibodies showed that vNARs from synthetic libraries could rival antibodies with affinity maturation by in silico modeling.
Collapse
|
23
|
Bates A, Power CA. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies (Basel) 2019; 8:E28. [PMID: 31544834 PMCID: PMC6640713 DOI: 10.3390/antib8020028] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Since the licensing of the first monoclonal antibody therapy in 1986, monoclonal antibodies have become the largest class of biopharmaceuticals with over 80 antibodies currently approved for a variety of disease indications. The development of smaller, antigen binding antibody fragments, derived from conventional antibodies or produced recombinantly, has been growing at a fast pace. Antibody fragments can be used on their own or linked to other molecules to generate numerous possibilities for bispecific, multi-specific, multimeric, or multifunctional molecules, and to achieve a variety of biological effects. They offer several advantages over full-length monoclonal antibodies, particularly a lower cost of goods, and because of their small size they can penetrate tissues, access challenging epitopes, and have potentially reduced immunogenicity. In this review, we will discuss the structure, production, and mechanism of action of EMA/FDA-approved fragments and of those in clinical and pre-clinical development. We will also discuss current topics of interest surrounding the potential use of antibody fragments for intracellular targeting and blood-brain barrier (BBB) penetration.
Collapse
Affiliation(s)
- Adam Bates
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| | - Christine A Power
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| |
Collapse
|
24
|
Matz H, Dooley H. Shark IgNAR-derived binding domains as potential diagnostic and therapeutic agents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:100-107. [PMID: 30236879 DOI: 10.1016/j.dci.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Many of the most successful drugs generated in recent years are based upon monoclonal antibodies (mAbs). However, for some therapeutic and diagnostic applications mAbs are far from ideal; for example, while their relatively large size and inherent receptor binding aids their longevity in vivo it can also limit their tissue penetration. Further, their structural complexity makes them expensive to produce and prone to denaturation in non-physiological environments. Thus, researchers have been searching for alternative antigen-binding molecules that can be utilized in situations where mAbs are suboptimal tools. One potential source currently being explored are the shark-derived binding domains known as VNARs. Despite their small size VNARs can bind antigens with high specificity and high affinity. Combined with their propensity to bind epitopes that are inaccessible to conventional mAbs, and their ability to resist denaturation, VNARs are an emerging prospect for use in therapeutic, diagnostic, and biotechnological applications.
Collapse
Affiliation(s)
- Hanover Matz
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA
| | - Helen Dooley
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA.
| |
Collapse
|
25
|
Next-generation flexible formats of VNAR domains expand the drug platform's utility and developability. Biochem Soc Trans 2018; 46:1559-1565. [PMID: 30381336 DOI: 10.1042/bst20180177] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic mAbs have delivered several blockbuster drugs in oncology and autoimmune inflammatory disease. Revenue for mAbs continues to rise, even in the face of competition from a growing portfolio of biosimilars. Despite this success, there are still limitations associated with the use of mAbs as therapeutic molecules. With a molecular mass of 150 kDa, a two-chain structure and complex glycosylation these challenges include a high cost of goods, limited delivery options, and poor solid tumour penetration. There remains an urgency to create alternatives to antibody scaffolds in a bid to circumvent these limitations, while maintaining or improving the therapeutic success of conventional mAb formats. Smaller, less complex binders, with increased domain valency, multi-specific/paratopic targeting, tuneable serum half-life and low inherent immunogenicity are a few of the characteristics being explored by the next generation of biologic molecules. One novel 'antibody-like' binder that has naturally evolved over 450 million years is the variable new antigen receptor (VNAR) identified as a key component of the adaptive immune system of sharks. At only 11 kDa, these single-domain structures are the smallest IgG-like proteins in the animal kingdom and provide an excellent platform for molecular engineering and biologics drug discovery. VNAR attributes include high affinity for target, ease of expression, stability, solubility, multi-specificity, and increased potential for solid tissue penetration. This review article documents the recent drug developmental milestones achieved for therapeutic VNARs and highlights the first reported evidence of the efficacy of these domains in clinically relevant models of disease.
Collapse
|
26
|
Millán-Gómez D, Dueñas S, Muñoz PLA, Camacho-Villegas T, Elosua C, Cabanillas-Bernal O, Escalante T, Perona A, Abia D, Drescher F, Fournier PGJ, Ramos MA, Mares RE, Paniagua-Solis J, Mata-Gonzalez T, Gonzalez-Canudas J, Hoffman RM, Licea-Navarro A, Sánchez-Campos N. In silico-designed mutations increase variable new-antigen receptor single-domain antibodies for VEGF 165 neutralization. Oncotarget 2018; 9:28016-28029. [PMID: 29963259 PMCID: PMC6021326 DOI: 10.18632/oncotarget.25549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
The stability, binding, and tissue penetration of variable new-antigen receptor (VNAR) single-domain antibodies have been tested as part of an investigation into their ability to serve as novel therapeutics. V13 is a VNAR that recognizes vascular endothelial growth factor 165 (VEGF165). In the present study V13 was used as a parental molecule into which we introduced mutations designed in silico. Two of the designed VNAR mutants were expressed, and their ability to recognize VEGF165 was assessed in vitro and in vivo. One mutation (Pro98Tyr) was designed to increase VEGF165 recognition, while the other (Arg97Ala) was designed to inhibit VEGF165 binding. Compared to parental V13, the Pro98Tyr mutant showed enhanced VEGF165 recognition and neutralization, as indicated by inhibition of angiogenesis and tumor growth. This molecule thus appears to have therapeutic potential for neutralizing VEGF165 in cancer treatment.
Collapse
Affiliation(s)
- Dalia Millán-Gómez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Salvador Dueñas
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Patricia L A Muñoz
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Tanya Camacho-Villegas
- CONACYT- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Carolina Elosua
- Teraclon IDF, Parque Científico de Madrid, Tres Cantos, Madrid, Spain
| | - Olivia Cabanillas-Bernal
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Almudena Perona
- Grupo de Biotecnología Aplicada, Universidad Europea de Madrid, Madrid, Spain
| | - David Abia
- Grupo de Biotecnología Aplicada, Universidad Europea de Madrid, Madrid, Spain
| | - Florian Drescher
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Pierrick G J Fournier
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Marco A Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Rosa E Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | | | | | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Noemí Sánchez-Campos
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| |
Collapse
|