1
|
Çol S, Başçeken S, Baran A. Synthesis of biscarbazole derivative, detection of the "on-off" sensor property of Cu 2+ by fluorimetry, and anti-cancer evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124624. [PMID: 38878725 DOI: 10.1016/j.saa.2024.124624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Biscarbazole derivative probe (6) (Z)-2-(3-(((9-heptyl-9H-carbazol-3-yl)methylene)amino)-9H-carbazol-9-yl)ethan-1-ol containing an imine group, which is a sensitive and selective fluorescence chemosensor, was designed and synthesized for the effective evaluation of Cu2+ metal ion levels. The synthesized compounds were characterized using 1H NMR, 13C NMR, FT-IR, and MALDI-TOF MS (for compound 6) spectroscopic data. The interaction model between probe 6 and Cu2+ was determined by combining fluorescence methods, 1H NMR titration, Job's plot, and theoretical calculations. For probe 6, the fluorogenic recognition of Cu2+ was investigated by fluorescence spectroscopy, and the optical changes caused by Cu2+ ions were carried out in ACN/H2O (50:50) solution at pH 7.0. Fluorescence probe 6 was found to "turn-off" its fluorescence in the presence of paramagnetic Cu2+ ions. Probe 6 was determined to have a rapid response within 40s and showed a fluorescence response to Cu2+ with a low detection limit of 0.16 μM. Additionally, in vitro anticancer activity and cell imaging studies of probe 6 against the prostate cell line (PC-3) were performed.
Collapse
Affiliation(s)
- Sümeyye Çol
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Sakarya, Turkey
| | - Sinan Başçeken
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum, Turkey
| | - Arif Baran
- Department of Chemistry, Faculty of Sciences, Sakarya University, 54187 Sakarya, Turkey.
| |
Collapse
|
2
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
3
|
Xia K, Shang J, Sun J, Zhu W, Fu P. Expanding the Chemical Diversity of Secondary Metabolites Produced by Two Marine-Derived Enterocin- and Wailupemycin-Producing Streptomyces Strains. ACS OMEGA 2023; 8:28886-28897. [PMID: 37576654 PMCID: PMC10413459 DOI: 10.1021/acsomega.3c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
To expand the chemical diversity of secondary metabolites produced by two marine-derived enterocin- and wailupemycin-producing Streptomyces strains, OUCMDZ-3434 and OUCMDZ-2599, precursor feeding and solid fermentation strategies were used. Two new compounds, wailupemycins Q (1) and R (2), were isolated from the extracts of liquid and solid fermentation of OUCMDZ-3434. Furthermore, during the fermentation of OUCMDZ-3434, p-fluorobenzoic acid was added as the key biosynthetic precursor, which resulted in the isolation of eight new fluorinated enterocin and wailupemycin derivatives (3-10) and 10 previously reported analogues (11-20). From the solid fermentation extract of OUCMDZ-2599, a new sulfur-containing compound thiotetromycin B (21) and its known analogue thiotetromycin (22) were identified. Moreover, the solid fermentation strategy effectively activated the biosynthesis of siderophores (23-25) of strain OUCMDZ-2599. Compound 3 showed moderate antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus subsp. aureus with MIC values of 4 μg/mL. Compounds 23-25 were significantly capable of binding Fe(III).
Collapse
Affiliation(s)
- Kunyu Xia
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiaxu Shang
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiwen Sun
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| | - Peng Fu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| |
Collapse
|
4
|
Li G, Wu D, Xu Y, He W, Wang D, Zhu W, Wang L. Synthesis and Antitumor Activity of Staurosporine Derivatives. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Twenty-four derivatives of staurosporine were synthesized by modification at the 3′- N, 3- and 7-positions. Of these compounds, 16 were synthesized for the first time and their structures were determined by NMR spectroscopy, ECD, and HRESIMS. Their inhibitory activities against seven tumor cell lines, MV4-11 (leukemia), MCF-7 (breast carcinoma), HCT-116 (colon cancer), TE-1 (esophageal carcinoma), PATU8988 T (pancreatic cancer), HOS (osteosarcoma) and GBC-SD (gallbladder cancer), and human normal liver cell L-02 were evaluated using a Cell Counting Kit-8. The IC50 values for 7-oxo-3′- N-benzoylstaurosporin (4) on MV4-11 and PATU8988 T cells were 0.078 and 0.666 μmol/L, and the selection indexes were 1254 and 147, respectively. The IC50 values of 7-oxo-3-chloro-3′- N-benzoylstaurosporine (5) and (7 R)-7-hydroxy-3-bromo-3′- N-acetylstaurosporine (24) on MCF-7 cells were 0.029 and 0.021 μmol/L, and the selection indexes were 102 and 221, respectively. The above compounds have the potential to be developed further into antitumor drugs due to the advantages of high efficiency and low toxicity.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, PR China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, PR China
| | - Dongyang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, PR China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
5
|
Wang L, Zhang Y, Xu Z, Li J, Zhu W. Total synthesis of the indolocarbazole alkaloid ZHD-0501 and its seven isomers. Org Chem Front 2022. [DOI: 10.1039/d2qo00844k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indolocarbazole alkaloid, ZHD-0501 (1), and its 7 stereoisomers (2–8) were totally synthesized from d/l-glucose and 2,3-dibromomaleimide in 22 step reactions, and the absolute configuration of ZHD-0501 was confirmed for the first time.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yapeng Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhihong Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
6
|
De Rop AS, Rombaut J, Willems T, De Graeve M, Vanhaecke L, Hulpiau P, De Maeseneire SL, De Mol ML, Soetaert WK. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Mar Drugs 2021; 20:md20010006. [PMID: 35049861 PMCID: PMC8777666 DOI: 10.3390/md20010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Collapse
Affiliation(s)
- Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Paco Hulpiau
- BioInformatics Knowledge Center (BiKC), Campus Station Brugge, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium;
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
- Correspondence:
| | - Maarten L. De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| |
Collapse
|
7
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
8
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
9
|
Song F, Liu D, Huo X, Qiu D. The anticancer activity of carbazole alkaloids. Arch Pharm (Weinheim) 2021; 355:e2100277. [PMID: 34486161 DOI: 10.1002/ardp.202100277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Chemotherapy is the first choice for the majority of cancers, but severe side effects and drug resistance restrict the actual clinical efficacy. Carbazole alkaloids, mainly from the Rutaceae family, possess favorable donor ability, good planarity, rich photophysical properties, and excellent biocompatibility. Carbazole alkaloids could not only intercalate in DNA but could also inhibit telomerase and topoisomerase and regulate protein phosphorylation. Hence, carbazole alkaloids are useful in providing lead hits/candidates for the development of novel anticancer agents. This review summarizes the research progress made regarding the anticancer properties of carbazole alkaloids, covering articles published from January 2010 to June 2021.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Dan Liu
- Dezhou Number One Middle School, Dezhou, Shandong, China
| | - Xiankai Huo
- Department of Medical Imaging, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Di Qiu
- Department of Hematology, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
10
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
11
|
Tao H, Zuo L, Xu H, Li C, Qiao G, Guo M, Lin X. Alkaloids as Anticancer Agents: A Review of Chinese Patents in Recent 5 Years. Recent Pat Anticancer Drug Discov 2021; 15:2-13. [PMID: 32003702 DOI: 10.2174/1574892815666200131120618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. OBJECTIVE This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. METHODS Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. RESULTS More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.
Collapse
Affiliation(s)
- Hongyu Tao
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Ling Zuo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Mingyue Guo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| |
Collapse
|
12
|
Moschny J, Lorenzen W, Hilfer A, Eckenstaler R, Jahns S, Enke H, Enke D, Schneider P, Benndorf RA, Niedermeyer THJ. Precursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins. JOURNAL OF NATURAL PRODUCTS 2020; 83:1960-1970. [PMID: 32464061 DOI: 10.1021/acs.jnatprod.0c00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters.
Collapse
Affiliation(s)
- Julia Moschny
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | | | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | - Heike Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Dan Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Philipp Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Fan Y, Wang C, Wang L, Chairoungdua A, Piyachaturawat P, Fu P, Zhu W. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164. Mar Drugs 2018; 16:md16080282. [PMID: 30111735 PMCID: PMC6117703 DOI: 10.3390/md16080282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/19/2023] Open
Abstract
Two new ansamycins, trienomycins H (1) and I (2), together with the known trienomycinol (3), were isolated from the fermentation broth of the deep-sea-derived bacterium Ochrobactrum sp. OUCMDZ-2164. Their structures, including their absolute configurations, were elucidated based on spectroscopic analyses, ECD spectra, and Marfey’s method. Compound 1 exhibited cytotoxic effects on A549 and K562 cell lines with IC50 values of 15 and 23 μM, respectively.
Collapse
Affiliation(s)
- Yaqin Fan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Cong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|