1
|
Tan X, Chen P, Xiao L, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Extraction, purification, structural characterization, and anti-inflammatory activity of a polysaccharide from Lespedeza formosa. Int J Biol Macromol 2025; 300:140154. [PMID: 39855506 DOI: 10.1016/j.ijbiomac.2025.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
A new acidic polysaccharide was extracted from Lespedeza Formosa (LF) using microwave-assisted extraction. After a progressive purification, Lespedeza Formosa polysaccharide (LFP-1) with 96.14 % purity and moderate molecular weight was obtained. Subsequently, LFP-1's structural analysis and in vitro anti-inflammatory experiments were performed. LFP-1 is composed of nine monosaccharides, mainly including 39.7 % glucose, 29.1 % galactose, and 19.9 % arabinose, with three branched chains of its structure. The diverse monosaccharides and branched chains provided the essential conditions for the anti-inflammatory effects of LFP-1, which diminished the release of nitric oxide (NO) and reactive oxygen species (ROS). And they altered the release of internal inflammatory factors in lipopolysaccharide (LPS)-treated macrophages. LFP-1 exerted intracellularly anti-inflammatory effects through the nuclear factor kappa-B (NF-κB) signal pathway. The discovery of LFP-1 opens up a new possibility for natural anti-inflammatory medicine.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liuyue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China..
| |
Collapse
|
2
|
Cai J, Liao W, Wen J, Ye F, Nie Q, Chen W, Zhao C. Algae-derived polysaccharides and polysaccharide-based nanoparticles: A natural frontier in breast cancer therapy. Int J Biol Macromol 2025; 297:139936. [PMID: 39824414 DOI: 10.1016/j.ijbiomac.2025.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Breast cancer is the second leading cause of cancer-related mortality among women worldwide, with its progression closely tied to the tumor microenvironment. To address the limitations and adverse effects of conventional therapies, algal polysaccharides and their nanoparticle derivatives have emerged as promising and effective anti-breast cancer agents. These bioactive compounds, derived from algae, are distinguished by their natural origin, non-toxicity, and significant medical relevance. Notably, algal polysaccharide-based nanoparticles exhibit advantageous properties such as hydrophilicity, biodegradability, prolonged circulation, and selective accumulation in tumor tissues. This review explores the relationship between the structural attributes of algal polysaccharides and their therapeutic efficacy. It further highlights the advantages of algal polysaccharide-based nanoparticles as drug delivery systems, particularly their potential in tumor targeting and overcoming multidrug resistance, thereby providing a theoretical foundation for their application in breast cancer treatment.
Collapse
Affiliation(s)
- Jiaer Cai
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangting Ye
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Nie
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Xie Z, Li L, Hou W, Fan Z, Zeng L, He L, Ji Y, Zhang J, Wang F, Xing Z, Wang Y, Ye Y. Critical role of Oas1g and STAT1 pathways in neuroinflammation: insights for Alzheimer's disease therapeutics. J Transl Med 2025; 23:182. [PMID: 39953505 PMCID: PMC11829366 DOI: 10.1186/s12967-025-06112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) has a significant impact on an individual's health and places a heavy burden on society. Studies have emphasized the importance of microglia in the progression and development of AD. Interferon responses and Interferon-stimulated genes (ISGs) significantly function in neuroinflammatory and neurodegenerative diseases involving AD. Therefore, further exploration of the relationship among microglia, ISGs, and neuroinflammation in AD is warranted. METHODS Microglia datasets from the GEO database were retrieved, along with additional microglia RNA-seq data from laboratory mice. Weighted Correlation Network Analysis was used on the training dataset to identify gene co-expression networks. Genes from the black module were intersected with interferon-stimulated genes, and differentially expressed genes (DEGs) were identified. Machine learning algorithms were applied to DEGs, and genes selected by both methods were identified as hub genes, with ROC curves used to evaluate their diagnostic accuracy. Gene Set Enrichment Analysis was performed to reveal functional pathways closely relating to hub genes. Microglia cells were transfected with siRNAs targeting Oas1g and STAT1. Total RNA from microglia cells and mouse brain tissues was extracted, reverse-transcribed, and analyzed via qRT-PCR. Proteins were extracted from cells, quantified, separated by SDS-PAGE, transferred to PVDF membranes, and probed with antibodies. Microglia cells were fixed, permeabilized, blocked, and stained with antibodies for STAT1, then visualized and photographed. RESULTS Bioinformatics and machine learning algorithms revealed that Oas1g was identified as a hub gene, with an AUC of 0.812. Enrichment Analysis revealed that Oas1g is closely associated with interferon-related pathways. Expression of Oas1g was validated in AD mouse models, where it was significantly upregulated after microglial activation. Knockdown experiments suggested siOas1g attenuated the effect of siSTAT1, and the expressions of STAT1 and p-STAT1 were elevated. siOas1g could reverse the effect of siSTAT1, indicating that Oas1g potentially regulates the ISGs through the STAT1 pathway. CONCLUSION We demonstrated that Oas1g was identified as a hub ISG in AD and can downregulate the activation of IFN-β and STAT1, reducing the expression of ISGs in neuroinflammation. Oas1g might potentially be a beneficial candidate for both prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhixin Xie
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Linxi Li
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weizhong Hou
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zhongxi Fan
- The Third Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Lifan Zeng
- The Third Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Limin He
- The Sixth Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yunxiang Ji
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingbai Zhang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangran Wang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Xing
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yezhong Wang
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yongyi Ye
- Department of Neurosurgery, Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wang Z, Yang F, Wang Y, Geng X, Zhang J, Wang X, Liu C, Danso B, Chen J, Pozzolini M, Zu X, Xiao L, Zhang J. Baicalein antagonises Rhopilema esculentum toxin-induced oxidative stress and apoptosis by modulating ROS-MAPK-NF-κB and inhibiting PLA 2 activity. Toxicon 2025; 256:108266. [PMID: 39880047 DOI: 10.1016/j.toxicon.2025.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
The toxicity of jellyfish Rhopilema esculentum (R. esculentum), an edible jellyfish that releases venom, has been controversial. The aim of this comprehensive study was to investigate the toxic effects of jellyfish tentacle extract (TE), which was evaluated in vivo and in vitro using ICR mice and RAW264.7 cells respectively. A library of natural compounds was screened for their ability to antagonize phospholipase A2 (PLA2) activity to identify potential protective agents and mechanisms. Of the 20 natural compounds evaluated, baicalein was found to have the strongest PLA2 antagonistic and cytoprotective effects. In vivo, experiments showed that TE at a dose of 7.02 mg/kg only resulted in a 50% survival rate in mice. However, pretreatment with 30 mg/kg baicalein significantly increased the survival rate to 75%, while also attenuating TE-induced cardiac and hepatic injuries, and ameliorating TE-induced elevations in LDH, CK-MB, and AST levels. In vitro studies found that baicalein reduced cellular ROS and MDA levels, increased the expression of CAT, SOD, and GSH/GSSG to enhance cellular antioxidant defenses against TE-induced oxidative stress, and also inhibited TE-induced upregulation of TNF-α, IL-6, IL-1β, and CXCL10. Importantly, baicalein was found to modulate dysregulated MAPK and NF-κB signaling pathways disrupted by TE. Taken together, these findings suggest that baicalein can antagonize R. esculentum toxin-induced oxidative stress and apoptosis by modulating ROS/MAPK/NF-κB, which provides a viable therapeutic strategy to control the deleterious effects of jellyfish stings and associated inflammation.
Collapse
Affiliation(s)
- Zengfa Wang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Fengling Yang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiaoyu Geng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jinyu Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xinming Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Chang Liu
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jingbo Chen
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jing Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Huang D, Gu J, Liang H, Ren M, Xue C. Effects of Seaweed Polysaccharide on the Growth and Physiological Health of Largemouth Bass, Micropterus salmoides. Antioxidants (Basel) 2025; 14:52. [PMID: 39857386 PMCID: PMC11763202 DOI: 10.3390/antiox14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
A seven-week trial was designed to evaluate the effects of dietary seaweed polysaccharide (SP) supplementation on the growth performance and physiological health of largemouth bass. The results reveal that the 0.05SP group showed the best growth performance. The mRNA expression levels of tor, 4ebp1, and igf1 genes were remarkably down-regulated in the 0.15SP and 0.2SP groups compared to the control group. The CAT activities were significantly increased in the 0.05SP and 0.1SP groups, and the GSH-Px activity was increased in the 0.15SP group. The expression of the immune response-related gene nfκb was significantly down-regulated in the 0.1SP group, and those of tnfα and il-8 were at the maximum in the control group. Moreover, the expression of il-10 in the 0.15SP and 0.2SP groups was significantly down-regulated. Furthermore, endoplasmic reticulum stress (ERS)-related expression of atf6 was the highest in the control group. Furthermore, the chopα and bax expression levels in the 0.15SP and 0.2SP groups were significantly down-regulated compared with other groups. In addition, the highest expression level of bcl-xl was observed in the 0.15SP group. Finally, the quadratic regression analysis of antioxidant, immune, and ERS core parameters (CAT, nf-κb, and bcl-xl) determined 0.06-0.11% to be the optimal SP supplemental level in largemouth bass diets.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
6
|
Eyvari-Brooshghalan S, Haddadi R, Shahidi S, Ghaderi S, Rashno M, Kalantari A, Salehi I, Komaki A, Sarihi A. Acute Treatment with Fucoidan Ameliorates Traumatic Brain Injury-Induced Neurological Damages and Memory Deficits in Rats: Role of BBB Integrity, Microglial Activity, Neuroinflammation, and Oxidative Stress. Mol Neurobiol 2024:10.1007/s12035-024-04668-6. [PMID: 39692820 DOI: 10.1007/s12035-024-04668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
There is no acquiesced remedy for the treatment of traumatic brain injury (TBI)-associated impairment, especially cognitive decline. The first 24 h after TBI is a golden time for preventing the progress of the impairments. The present study aimed to examine the acute effects of fucoidan on neurological outcomes and memory performance and investigate its potential mechanisms in rats with TBI. Fucoidan (25, 50, and 100 mg/kg, i.p.) was injected immediately after TBI induction. Veterinary coma scale (VCS), brain edema, blood-brain barrier (BBB) integrity, passive avoidance memory and spatial memory, neuroplasticity, myeloperoxidase (MPO) activity, oxidative stress, and histological alteration were evaluated after TBI induction and fucoidan treatment. The findings revealed that TBI resulted in an enhancement in brain water content and BBB permeability and diminished the performance of passive avoidance memory and spatial memory. These were accompanied by long-term potentiation (LTP) suppression in the hippocampus and the prevention of activities of SOD, catalase, and GPx and enhancement of MPO activity, TNF-α, IL-6, and lipid peroxidation levels in the hippocampus as well as hippocampal neuronal loss. Fascinatingly, acute treatment of TBI rats with fucoidan especially in the higher doses (50 and 100 mg/kg) significantly ameliorated (p < 0.05) neurological outcomes of VCS, cerebral edema, BBB integrity, passive avoidance memory, spatial memory, LTP impairment, and oxidative-antioxidative balance. Also, fucoidan significantly ameliorated hippocampal neuronal loss, TNF-α and IL-6 levels, and MPO activity as an indicator of microglial activation. These outcomes imply that fucoidan can be a hopeful remedy for TBI-associated neuronal impairments. However, further research is necessary to endorse this issue.
Collapse
Affiliation(s)
- Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Rasool Haddadi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
- Medicinal Plants and Natural Products Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamedan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | | | - Ali Kalantari
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran.
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamedan, Iran.
| |
Collapse
|
7
|
Xue M, Du R, Zhou Y, Liu Y, Tian Y, Xu Y, Yan J, Song P, Wan L, Xu H, Zhang H, Liang H. Fucoidan Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in Hyperuricemia Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27187-27202. [PMID: 39600107 DOI: 10.1021/acs.jafc.4c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hyperuricemia is a metabolic disease characterized by an excessively increased level of uric acid (UA) in the blood, with an increasing prevalence and often associated with kidney damage. Gut microbiota and endotoxins of gut origin are key mediators in the gut-kidney axis that can cause renal impairment. The study was to reveal the protective effects of fucoidan on renal injury caused by hyperuricemia. The hyperuricemia model was established in C57BL/6J mice. After 10 weeks of fucoidan supplementation, we found that the levels of serum UA and creatinine were reduced, and the levels of renal tumor necrosis factor α, interleukin-18 (IL-18), IL-6, and interleukin-1β (IL-1β) were also decreased. Fucoidan inhibited the expressions of phosphorylated NF-κB p65, NLRP3, and activated caspase-1 in the kidneys. Fucoidan also regulated the expressions of Bcl-2 family proteins and decreased the activation of caspase-3, thereby exerting antiapoptotic effect. In addition, fucoidan could reduce the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) proteins, thereby promoting the excretion of UA from the kidneys. Moreover, the protective effect of fucoidan on renal injury may be related to maintaining intestinal homeostasis. Fucoidan reduced serum lipopolysaccharide and improved the intestinal mucosal barrier function. Fucoidan decreased the abundances of Blautia, Muribaculaceae, and Dubosiella, and increased the abundances of Lactobacillus. High-dose fucoidan supplementation increased the content of butyric acid and enhanced the expression of ATP binding box transporter G2 (ABCG2) via the AMPK/AKT/CREB pathway in ileum. Conclusion: Fucoidan could protect against hyperuricemia-induced renal injury by inhibiting renal inflammation and apoptosis and modulating intestinal homeostasis in hyperuricemia mice.
Collapse
Affiliation(s)
- Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Ronghuan Du
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yuhan Liu
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yingjie Tian
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yan Xu
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jiayi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Pengzhao Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Lu Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Hongsen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Huaqi Zhang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
8
|
Wang Y, Chen Y, Zhang H, Yu S, Yuan G, Hu H. Colon-targeted self-assembled nanoparticles loaded with berberine double salt ameliorate ulcerative colitis by improving intestinal mucosal barrier and gut microbiota. Colloids Surf B Biointerfaces 2024; 245:114353. [PMID: 39509850 DOI: 10.1016/j.colsurfb.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Ulcerative colitis (UC) is a chronic, recurrent inflammatory bowel disease marked by disturbances in intestinal mucosal barriers, persistent inflammation, oxidative stress, and dysbiosis of the intestinal microbiota. Traditional treatments often fail to adequately address these issues, primarily targeting inflammation. To address these limitations, this study developed an innovative approach using self-assembled nanoparticles for oral administration that target colonic inflammation. Berberine hydrochloride and ursodeoxycholic acid were combined to form a double salt (BeU), enhancing solubility and encapsulation. An amphiphilic polymer (FU-PA) was created by esterifying fucoidan with palmitic acid. FU-PA/BeU nanoparticles were prepared using the nanoprecipitation method and further encapsulated in acid-resistant sodium alginate microspheres (FU-PA/BeU NPs@MS) for targeted delivery to colonic lesions. The aggregation rate of nanoparticles with mucus was significantly reduced to 59 % of free berberine, while the apparent permeability coefficient increased by 2.4 times. In vitro, FU-PA/BeU NPs effectively targeted inflammatory macrophages, reducing IL-6 and NO levels while increasing IL-10 level (to 42.5 %, 26.8 %, and 539 % of the LPS-treated group, respectively). Additionally, the ABTS and DPPH radical scavenging capabilities of FU-PA/BeU NPs were 177.8 % and 151.7 % of BeU, respectively. In dextran sulphate sodium-induced UC mice, oral FU-PA/BeU NPs@MS significantly improved epithelial and mucosal barriers, restored gut microbiota diversity, reduced inflammation and oxidative stress. Remarkably, the mean colon length in the FU-PA/BeU NPs@MS group was 1.2 times longer than that in the sulfasalazine group. These dual-targeted FU-PA/BeU NPs@MS show great potential for UC treatment.
Collapse
Affiliation(s)
- Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongjuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Zhang Y, Wang L, Qiu Z, Yang Y, Wang T, Inam M, Ma H, Zhang H, He C, Guan L. Comprehensive evaluation of Flammulina velutipes residues polysaccharide based on in vitro digestion and human fecal fermentation. Int J Biol Macromol 2024; 281:136487. [PMID: 39414219 DOI: 10.1016/j.ijbiomac.2024.136487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flammulina velutipes residues (FVR) are the waste culture medium derived from the collection of Flammulina velutipes fruiting bodies, with an annual output that remains largely unexplored. The characteristics of digestion and fermentation of Flammulina velutipes residues polysaccharide (FVRP) are still relatively unknown. This study investigated the structure of the gut microbiota through 16 s rDNA gene sequencing and analyzed changes in short-chain fatty acid (SCFA) content via targeted metabolome analysis. The aim was to explore the prebiotic activity of FVRP based on a simulated digestion model combined with an in vitro anaerobic fermentation model. The results demonstrated that FVRP did not exhibit significant changes during in vitro digestion and fermentation but did enhance antioxidant activity. Furthermore, FVRP was found to rapidly reduce the pH value and increase SCFA production in the fermentation broth from lactic acid bacteria and human feces. Notably, FVRP altered the gut microbiota structure, significantly increasing the relative abundance of Firmicutes and Bacteroidota. Thus, FVRP could be considered a promising prebiotic food and feed additive that promotes the generation of short-chain fatty acids by modulating gut microbiota.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Zihan Qiu
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Tiezhu Wang
- Changchun Gaorong Biotechnological Co., Ltd., Changchun 130102, PR China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
10
|
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024; 29:4695. [PMID: 39407623 PMCID: PMC11477577 DOI: 10.3390/molecules29194695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae's therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules.
Collapse
Affiliation(s)
- Maima Matin
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Magdalena Koszarska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Król-Szmajda
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| | - Adrian Stelmasiak
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, University of Life Sciences of Warsaw, 02-787 Warsaw, Poland;
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (M.M.); (M.K.); (A.G.A.); (K.K.-S.); (A.J.)
| |
Collapse
|
11
|
Zhang Z, Yan H, Hussain H, Chen X, Park JH, Kwon SW, Xie L, Zheng B, Xu X, Wang D, Duan J. Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry. J Ginseng Res 2024; 48:454-463. [PMID: 39263308 PMCID: PMC11385391 DOI: 10.1016/j.jgr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 09/13/2024] Open
Abstract
Background Panax quinquefolius L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of P. quinquefolius, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the P. quinquefolius berry. Materials and methods P. quinquefolius berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking. Results The main chain comprised of α-L-Rhap, α-D-GalAp and β-D-Galp, while the branch consisted mainly of α-L-Araf, β-D-Glcp, α-D-GalAp, β-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1β secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay. Conclusion The present study demonstrated the structure of acidic polysaccharides of P. quinquefolius berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhihao Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Huijiao Yan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Lei Xie
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bowen Zheng
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong, China
| | - Daijie Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Li R, Liu X. FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway. Cell Biochem Biophys 2024; 82:909-918. [PMID: 38459267 DOI: 10.1007/s12013-024-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
As a predominant trigger of acute kidney injury, renal ischemia-reperfusion injury can cause permanent renal impairment, and the effective therapies are lacking. Fibroblast growth factor 21 (FGF21) plays a critical regulatory role in a variety of biological activities. This study was conducted to explore the functional of FGF21 in renal ischemia-reperfusion injury and to discuss the hidden reaction mechanism. To simulate renal ischemia-reperfusion injury in vitro, HK2 cells were induced by hypoxia/reoxygenation (H/R). The effects of FGF21 on H/R-induced HK2 cell viability were evaluated utilizing cell counting kit-8 (CCK-8). The levels of lactate dehydrogenase (LDH) and inflammatory cytokines in H/R-induced HK2 cells were assessed by means of LDH assay and enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were appraised with corresponding assay kits and western blot was applied to estimate the expressions of oxidative stress-related proteins. The apoptosis of H/R-induced HK2 cells was assessed by virtue of flow cytometry. The expressions of apoptosis- and PPARγ/NF-κB signaling pathway-related proteins were evaluated with western blot. To discuss the reaction mechanism of PPARγ/NF-κB pathway in H/R-induced HK2 cells, PPARγ inhibitor GW9662 was employed to treat cells and the above experiments were then conducted again. This study found that FGF21 treatment inhibited the inflammatory response, oxidative stress and apoptosis in H/R-induced HK2 cells. Moreover, FGF21 regulated PPARγ/NF-κB signaling pathway and GW9662 partially reversed the impacts of FGF21 on the inflammatory response, oxidative stress and apoptosis in H/R-exposed HK2 cells. Collectively, FGF21 protected against H/R-induced renal tubular epithelial cell injury by regulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China.
| | - Xi Liu
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China
| |
Collapse
|
13
|
Mildenberger J, Rebours C. Green ( Ulva fenestrata) and Brown ( Saccharina latissima) Macroalgae Similarly Modulate Inflammatory Signaling by Activating NF- κB and Dampening IRF in Human Macrophage-Like Cells. J Immunol Res 2024; 2024:8121284. [PMID: 38799117 PMCID: PMC11126347 DOI: 10.1155/2024/8121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-β and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.
Collapse
|
14
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
15
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
16
|
Li W, Wu P, Jin T, Jia J, Chen B, Liu T, Liu Y, Mei J, Luo B, Zhang Z. L-fucose and fucoidan alleviate high-salt diet-promoted acute inflammation. Front Immunol 2024; 15:1333848. [PMID: 38596683 PMCID: PMC11002173 DOI: 10.3389/fimmu.2024.1333848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.
Collapse
Affiliation(s)
- Wenhua Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Wu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tianrong Jin
- Medical College of Chongqing University, Chongqing, China
| | - Jialin Jia
- Medical College of Chongqing University, Chongqing, China
| | - Bo Chen
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Tingting Liu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yu Liu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jie Mei
- College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bangwei Luo
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Wang Z, Zheng Y, Lai Z, Hu X, Wang L, Wang X, Li Z, Gao M, Yang Y, Wang Q, Li N. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int J Biol Macromol 2024; 254:127955. [PMID: 37944714 DOI: 10.1016/j.ijbiomac.2023.127955] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Polysaccharides have been widely used in pharmaceutical and food industries due to their diverse bioactivity, high safety, and few or no side effects. However, inability to quickly produce, screen, and synthesize bioactive polysaccharides is the limiting factor for their development and application. Structural features determine and influence the bioactivity of polysaccharides. Among them, monosaccharide is the basic unit of polysaccharide, which not only affects electrification, functional group, and bioactivity of polysaccharide but also is one of the simplest polysaccharide indexes to be detected. At present, effects of monosaccharide composition and proportion on anti-inflammatory, antioxidant, antitumor, immunomodulatory, antibacterial, and prebiotic activities of polysaccharides are reviewed. Further problems need to be considered during regulation and analysis of monosaccharide composition and proportion of polysaccharides. Overall, present work will provide help and reference for production, development, and structure-function investigation of polysaccharides based on their monosaccharide.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
19
|
Dubey A, Dasgupta T, Devaraji V, Ramasamy T, Sivaraman J. Investigating anti-inflammatory and apoptotic actions of fucoidan concentrating on computational and therapeutic applications. 3 Biotech 2023; 13:355. [PMID: 37810192 PMCID: PMC10558419 DOI: 10.1007/s13205-023-03771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fucoidan is linked to a variety of biological processes. Differences in algae species, extraction, seasons, and locations generate structural variability in fucoidan, affecting its bioactivities. Nothing is known about fucoidan from the brown alga Dictyota bartayresiana, its anti-inflammatory properties, or its inherent mechanism. This study aimed to investigate the anti-inflammatory properties of fucoidan isolated from D. bartayresiana against LPS-induced RAW 264.7 macrophages and to explore potential molecular pathways associated with this anti-inflammatory effects. Fucoidan was first isolated and purified from D. bartayresiana, and then, MTT assay was used to determine the effect of fucoidan on cell viability. Its effects on reactive oxygen species (ROS) formation and apoptosis were also studied using the ROS assay and acridine orange/ethidium bromide fluorescence labelling, respectively. Molecular docking and molecular dynamics simulation studies were performed on target proteins NF-κB and TNF-α to identify the route implicated in these inflammatory events. It was observed that fucoidan reduced LPS-induced inflammation in RAW 264.7 cells. Fucoidan also decreased the LPS-stimulated ROS surge and was found to induce apoptosis in the cells. Molecular docking and molecular dynamics simulation studies revealed that fucoidan's potent anti-inflammatory action was achieved by obstructing the NF-κB signalling pathway. These findings were particularly noteworthy and novel because fucoidan isolated from D. bartayresiana had not previously been shown to have anti-inflammatory properties in RAW 264.7 cells or to exert its activity by obstructing the NF-κB signalling pathway. Conclusively, these findings proposed fucoidan as a potential pharmaceutical drug for inflammation-related diseases.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Tiasha Dasgupta
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Vinod Devaraji
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Tamizhselvi Ramasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| | - Jayanthi Sivaraman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| |
Collapse
|
20
|
Silva AKA, Souza CRDM, Silva HMD, Jales JT, Gomez LADS, da Silveira EJD, Rocha HAO, Souto JT. Anti-Inflammatory Activity of Fucan from Spatoglossum schröederi in a Murine Model of Generalized Inflammation Induced by Zymosan. Mar Drugs 2023; 21:557. [PMID: 37999381 PMCID: PMC10672204 DOI: 10.3390/md21110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
Fucans from marine algae have been the object of many studies that demonstrated a broad spectrum of biological activities, including anti-inflammatory effects. The aim of this study was to verify the protective effects of a fucan extracted from the brown algae Spatoglossum schröederi in animals submitted to a generalized inflammation model induced by zymosan (ZIGI). BALB/c mice were first submitted to zymosan-induced peritonitis to evaluate the treatment dose capable of inhibiting the induced cellular migration in a simple model of inflammation. Mice were treated by the intravenous route with three doses (20, 10, and 5 mg/kg) of our fucan and, 1 h later, were inoculated with an intraperitoneal dose of zymosan (40 mg/kg). Peritoneal exudate was collected 24 h later for the evaluation of leukocyte migration. Doses of the fucan of Spatoglossum schröederi at 20 and 10 mg/kg reduced peritoneal cellular migration and were selected to perform ZIGI experiments. In the ZIGI model, treatment was administered 1 h before and 6 h after the zymosan inoculation (500 mg/kg). Treatments and challenges were administered via intravenous and intraperitoneal routes, respectively. Systemic toxicity was assessed 6 h after inoculation, based on three clinical signs (bristly hair, prostration, and diarrhea). The peritoneal exudate was collected to assess cellular migration and IL-6 levels, while blood samples were collected to determine IL-6, ALT, and AST levels. Liver tissue was collected for histopathological analysis. In another experimental series, weight loss was evaluated for 15 days after zymosan inoculation and fucan treatment. The fucan treatment did not present any effect on ZIGI systemic toxicity; however, a fucan dose of 20 mg/kg was capable of reducing the weight loss in treated mice. The treatment with both doses also reduced the cellular migration and reduced IL-6 levels in peritoneal exudate and serum in doses of 20 and 10 mg/kg, respectively. They also presented a protective effect in the liver, with a reduction in hepatic transaminase levels in both doses of treatment and attenuated histological damage in the liver at a dose of 10 mg/kg. Fucan from S. schröederi presented a promising pharmacological activity upon the murine model of ZIGI, with potential anti-inflammatory and hepatic protective effects, and should be the target of profound and elucidative studies.
Collapse
Affiliation(s)
- Ana Katarina Andrade Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Cássio Ricardo de Medeiros Souza
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Biochemistry and Molecular Biology Post-Graduation Program, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil
| | - Hylarina Montenegro Diniz Silva
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, EBSERH, Natal 59078-900, Brazil
| | - Jéssica Teixeira Jales
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Lucas Alves de Souza Gomez
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Ericka Janine Dantas da Silveira
- Department of Dentistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, 1787, Lagoa Nova, Natal 59056-000, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| | - Janeusa Trindade Souto
- Department of Microbiology and Parasitology, Department of Biochemistry, Federal University of Rio Grande do Norte, Avenida Salgado Filho, BR 101, Campus Universitario, Lagoa Nova, Natal 59078-900, Brazil; (A.K.A.S.); (C.R.d.M.S.); (H.M.D.S.); (J.T.J.); (L.A.d.S.G.); (H.A.O.R.)
| |
Collapse
|
21
|
Li Y, Tian X, He W, Jin C, Yang C, Pan Z, Xu Y, Yang H, Liu H, Liu T, He F. Fucoidan-functionalized gelatin methacryloyl microspheres ameliorate intervertebral disc degeneration by restoring redox and matrix homeostasis of nucleus pulposus. Int J Biol Macromol 2023; 250:126166. [PMID: 37553034 DOI: 10.1016/j.ijbiomac.2023.126166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Loss of extracellular matrix (ECM) and dehydration of the nucleus pulposus (NP) are major pathological characteristics of intervertebral disc degeneration (IVDD), the leading cause of low back pain. Excessive reactive oxygen species (ROS) induced by proinflammatory cytokines substantially contribute to IVDD pathogenesis. This study aimed to examine the potential of fucoidan in protecting the matrix metabolism of NP cells and its therapeutic efficacy in the prevention of IVDD. In an inflammatory environment induced by interleukin (IL)-1β, fucoidan treatments demonstrated a dose-dependent enhancement of ECM production in NP cells, while concurrently reducing the expression of matrix degradation enzymes. The protective effect of fucoidan was mediated through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequent induction of antioxidant enzymes, whereas silencing Nrf2 abrogated the protection of fucoidan on NP cells against IL-1β-induced oxidative stress. Moreover, a novel fucoidan-functionalized gelatin methacryloyl microsphere (Fu@GelMA-MS) was synthesized. The in vivo application of Fu@GelMA-MS via in situ injection in a rat caudal IVD model effectively conserved the ECM components and maintained the hydration of the NP tissue, thereby preventing IVDD caused by puncture. Collectively, fucoidan-functionalized hydrogel microspheres represent a promising strategy for the regeneration of NP and the treatment of IVDD.
Collapse
Affiliation(s)
- Yangfeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chunju Yang
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
22
|
Lukova P, Apostolova E, Baldzhieva A, Murdjeva M, Kokova V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023; 11:2511. [PMID: 37760952 PMCID: PMC10526391 DOI: 10.3390/biomedicines11092511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 μM Trolox equivalent/g, respectively.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
23
|
Sun L, Liu Q, Zhang Y, Xue M, Yan H, Qiu X, Tian Y, Zhang H, Liang H. Fucoidan from Saccharina japonica Alleviates Hyperuricemia-Induced Renal Fibrosis through Inhibiting the JAK2/STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11454-11465. [PMID: 37481747 DOI: 10.1021/acs.jafc.3c01349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fucoidan is a native sulfated polysaccharide mainly isolated from brown seaweed, with diverse pharmacological activities, such as anti-inflammatory and antifibrosis. Hyperuricemia (HUA) is a common metabolic disease worldwide and mainly causes hyperuricemic nephropathy, including chronic kidney disease and end-stage renal fibrosis. The present study investigated the protective function of fucoidan in renal fibrosis and its pharmacological mechanism. The renal fibrotic model was established with the administration of potassium oxonate for 10 weeks. The protein levels of related factors were assessed in HUA mice by an enzyme-linked immunosorbent assay (ELISA) and western blotting. The results showed that fucoidan significantly reduced the levels of serum uric acid, blood urea nitrogen (BUN), α-smooth muscle actin (α-SMA), and collagen I, and improved kidney pathological changes. Furthermore, renal fibrosis had been remarkably elevated through the inhibition of the epithelial-to-mesenchymal transition (EMT) progression after fucoidan intervention, suppressing the Janus kinase 2 (JAK2) signal transducer and activator of transcription protein 3 (STAT3) signaling pathway activation. Together, this study provides experimental evidence that fucoidan may protect against hyperuricemia-induced renal fibrosis via downregulation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Qing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Yabin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Meilan Xue
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hongxue Yan
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Xia Qiu
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Mingyue Seaweed Group Company, Limited, Qingdao, Shandong 266499, People's Republic of China
| | - Yingjie Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
24
|
Dörschmann P, Thalenhorst T, Seeba C, Tischhöfer MT, Neupane S, Roider J, Alban S, Klettner A. Comparison of Fucoidans from Saccharina latissima Regarding Age-Related Macular Degeneration Relevant Pathomechanisms in Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:7939. [PMID: 37175646 PMCID: PMC10178501 DOI: 10.3390/ijms24097939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Fucoidans from brown algae are described as anti-inflammatory, antioxidative, and antiangiogenic. We tested two Saccharina latissima fucoidans (SL-FRO and SL-NOR) regarding their potential biological effects against age-related macular degeneration (AMD). Primary porcine retinal pigment epithelium (RPE), human RPE cell line ARPE-19, and human uveal melanoma cell line OMM-1 were used. Cell survival was assessed in tetrazolium assay (MTT). Oxidative stress assays were induced with erastin or H2O2. Supernatants were harvested to assess secreted vascular endothelial growth factor A (VEGF-A) in ELISA. Barrier function was assessed by measurement of trans-epithelial electrical resistance (TEER). Protectin (CD59) and retinal pigment epithelium-specific 65 kDa protein (RPE65) were evaluated in western blot. Polymorphonuclear elastase and complement inhibition assays were performed. Phagocytosis of photoreceptor outer segments was tested in a fluorescence assay. Secretion and expression of proinflammatory cytokines were assessed with ELISA and real-time PCR. Fucoidans were chemically analyzed. Neither toxic nor antioxidative effects were detected in ARPE-19 or OMM-1. Interleukin 8 gene expression was slightly reduced by SL-NOR but induced by SL-FRO in RPE. VEGF secretion was reduced in ARPE-19 by SL-FRO and in RPE by both fucoidans. Polyinosinic:polycytidylic acid induced interleukin 6 and interleukin 8 secretion was reduced by both fucoidans in RPE. CD59 expression was positively influenced by fucoidans, and they exhibited a complement and elastase inhibitory effect in cell-free assay. RPE65 expression was reduced by SL-NOR in RPE. Barrier function of RPE was transiently reduced. Phagocytosis ability was slightly reduced by both fucoidans in primary RPE but not in ARPE-19. Fucoidans from Saccharina latissima, especially SL-FRO, are promising agents against AMD, as they reduce angiogenic cytokines and show anti-inflammatory and complement inhibiting properties; however, potential effects on gene expression and RPE functions need to be considered for further research.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Tabea Thalenhorst
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Charlotte Seeba
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | | | - Sandesh Neupane
- Wyatt Technology Europe GmbH, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany (A.K.)
| |
Collapse
|
25
|
He X, Chen F, Lu C, Wang S, Mao G, Jin W, Zhong W. Comparison of anti-tumor activities and underlying mechanisms of glucuronomannan oligosaccharides and its sulfated derivatives on the hepatocarcinoma Huh7.5 cells. Biochem Biophys Res Commun 2023; 652:103-111. [PMID: 36841097 DOI: 10.1016/j.bbrc.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.
Collapse
Affiliation(s)
- Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fen Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenghui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
26
|
Dörschmann P, Seeba C, Thalenhorst T, Roider J, Klettner A. Anti-inflammatory properties of antiangiogenic fucoidan in retinal pigment epithelium cells. Heliyon 2023; 9:e15202. [PMID: 37123974 PMCID: PMC10130777 DOI: 10.1016/j.heliyon.2023.e15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease in which angiogenesis, oxidative stress and inflammation are important contributing factors. In this study, we investigated the anti-inflammatory effects of a fucoidan from the brown algae Fucus vesiculosus (FV) in primary porcine RPE cells. Inflammation was induced by lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C), Pam2CSK4 (Pam), or tumor necrosis factor alpha (TNF-α). Cell viability was tested with thiazolyl blue tetrazolium bromide (MTT) test, barrier function by measuring transepithelial electric resistance (TEER), interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion in ELISA, retinal pigment epithelium-specific 65 kDa protein (RPE65) and protectin (CD59) expression in Western blot, gene expression with quantitative polymerase chain reaction (qPCR) (IL6, IL8, MERTK, PIK3CA), and phagocytotic activity in a microscopic assay. FV fucoidan did not influence RPE cell viability. FV fucoidan reduced the Poly I:C proinflammatory cytokine secretion of IL-6 and IL-8. In addition, it decreased the expression of IL-6 and IL-8 in RT-PCR. LPS and TNF-α reduced the expression of CD59 in Western blot, this reduction was lost under FV fucoidan treatment. Also, LPS and TNF-α reduced the expression of visual cycle protein RPE65, this reduction was again lost under FV fucoidan treatment. Furthermore, the significant reduction of barrier function after Poly I:C stimulation is ameliorated by FV fucoidan. Concerning phagocytosis, however, the inflammation-induced reduction was not improved by FV fucoidan. FV and proinflammatory milieu did not relevantly influence phagocytosis relevant gene expression either. In conclusion, we show that fucoidan from FV can reduce proinflammatory stimulation in RPE induced by toll-like receptor 3 (TLR-3) activation and is of high interest as a potential compound for early AMD treatment.
Collapse
|
27
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
28
|
Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network. Mar Drugs 2023; 21:md21020132. [PMID: 36827173 PMCID: PMC9963441 DOI: 10.3390/md21020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Epstein-Barr virus (EBV) infects 95% of the world's population and persists latently in the body. It immortalizes B-cells and is associated with lymphomas. LCLs (lymphoblastoid cell lines, EBV latency III B-cells) inhibit anti-tumoral T-cell response following PD-L1 overexpression (programmed death-ligand 1 immune checkpoint). Many cancer cells, including some DLBCLs (diffuse large B-cell lymphomas), also overexpress PD-L1. Immunotherapies are based on inhibition of PD-L1/PD-1 interactions but present some dose-dependent toxicities. We aim to find new strategies to improve their efficiency by decreasing PD-L1 expression. Fucoidan, a polysaccharide extracted from brown seaweed, exhibits immunomodulatory and anti-tumor activities depending on its polymerization degree, but data are scarce on lymphoma cells or immune checkpoints. LCLs and DLBCLs cells were treated with native fucoidan (Fucus vesiculosus) or original very-low-molecular-weight fucoidan formulas (vLMW-F). We observed cell proliferation decrease and apoptosis induction increase with vLMW-F and no toxicity on normal B- and T-cells. We highlighted a decrease in transcriptional and PD-L1 surface expression, even more efficient for vLMW than native fucoidan. This can be explained by actin network alteration, suggesting lower fusion of secretory vesicles carrying PD-L1 with the plasma membrane. We propose vLMW-F as potential adjuvants to immunotherapy due to their anti-proliferative and proapoptotic effects and ability to decrease PD-L1 membrane expression.
Collapse
|
29
|
Wang L, Cui YR, Wang K, Fu X, Xu J, Gao X, Jeon YJ. Anti-inflammatory effect of fucoidan isolated from fermented Sargassum fusiforme in in vitro and in vivo models. Int J Biol Macromol 2022; 222:2065-2071. [PMID: 36208806 DOI: 10.1016/j.ijbiomac.2022.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
Fucoidans possess potent anti-inflammatory effects. In the present study, the anti-inflammatory effect of the fucoidan (SFF-PS-F5) isolated from fermented Sargassum fusiforme was evaluated in vitro in RAW 264.7 macrophages and in vivo in zebrafish. The in vitro test results demonstrate that SFF-PS-F5 effectively inhibited nitric oxide (NO) production induced by lipopolysaccharides (LPS) in RAW 264.7 cells. SFF-PS-F5 effectively and concentration-dependently improved the viability of LPS-stimulated RAW 264.7 cells, and reduced the level of prostaglandin E2, interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6. Further results display that these effects were actioned by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2 via regulating the nuclear factor kappa-B signaling pathway. The in vivo test results indicate that SFF-PS-F5 remarkably reduced reactive oxygen species, cell death, and NO levels in LPS-treated zebrafish. These results indicate that SFF-PS-F5 could inhibit both in vitro and in vivo inflammatory responses and suggest it is a functional ingredient in the functional food and cosmetic industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yong Ri Cui
- Kangmaichen Biotechnology Co., Ltd., Qingdao 266114, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
30
|
Jayawardena TU, Nagahawatta DP, Fernando IPS, Kim YT, Kim JS, Kim WS, Lee JS, Jeon YJ. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar Drugs 2022; 20:755. [PMID: 36547902 PMCID: PMC9782291 DOI: 10.3390/md20120755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Functional ingredients for human health have recently become the focus of research. One such potentially versatile therapeutic component is fucose-containing sulfated polysaccharides (FCSPs), referred to as fucoidans. The exploitation of marine brown algae provides a rich source of FCSPs because of their role as a structural component of the cell wall. Fucoidans are characterized by a sulfated fucose backbone. However, the structural characterization of FCSPs is impeded by their structural diversity, molecular weight, and complexity. The extraction and purification conditions significantly influence the yield and structural alterations. Inflammation is the preliminary response to potentially injurious inducements, and it is of the utmost importance for modulation in the proper direction. Improper manipulation and/or continuous stimuli could have detrimental effects in the long run. The web of immune responses mediated through multiple modulatory/cell signaling components can be addressed through functional ingredients, benefiting patients with no side effects. In this review, we attempted to address the involvement of FCSPs in the stimulation/downregulation of immune response cell signaling. The structural complexity and its foremost influential factor, extraction techniques, have also attracted attention, with concise details on the structural implications of bioactivity.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - I. P. S. Fernando
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, AB T6G 2PG, Canada
| | - Yong-Tae Kim
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Won-Suk Kim
- Pharmaceutical Engineering, Silla University, Busan 46958, Republic of Korea
| | - Jung Suck Lee
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
31
|
Cui M, Li X, Geng L, Wu N, Wang J, Deng Z, Li Z, Zhang Q. Comparative study of the immunomodulatory effects of different fucoidans from Saccharina japonica mediated by scavenger receptors on RAW 264.7 macrophages. Int J Biol Macromol 2022; 215:253-261. [PMID: 35718151 DOI: 10.1016/j.ijbiomac.2022.06.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
Scavenger receptors (SRs) have been shown to participate in regulating the immune response of macrophages, and fucoidan from Fucus vesiculosus has been verified as a ligand of class A SRs (SR-A). However, the roles of SRs in the immunomodulatory activity of fucoidan from Saccharina japonica are not clear. Thus, we performed a comparative study of the immunomodulatory activities of six different fucoidans from S. japonica on RAW 264.7 macrophages, and the roles of SRs in the processes were studied. Six fucoidans (0.5 M FPS, 1 M FPS, 2 M FPS, 0.5 M DFPS, 1 M DFPS and 2 M FPS) had different molecular weights and chemical compositions. Griess reagent system, ELISA and RT-qPCR results showed that different fucoidans displayed different stimulation of macrophages to secrete NO, IL-6, IL-1β and TNF-α, as well as differences in the upregulation of their gene expressiones. Flow cytometric analysis of the protein expression level indicated the upregulation of TLR4 after treatment with all the fucoidans but different expressions of SRs. Furthermore, only 0.5 M DFPS and 1 M DFPS were confirmed to be ligands of SR-A through the competitive binding assay with Ac-LDL bound to the fluorescent probe DiI by flow cytometry. Our results revealed that fucoidans with low molecular weight and heterogeneity more easily bound to SRs and contributed to their immunomodulatory effects. This comparative study might promote the biological study of targeted SRs and the discovery of new pharmacological mechanisms of different fucoidans.
Collapse
Affiliation(s)
- Meiyu Cui
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- Department of endocrinology, Qingdao Municipal Hospital, Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Wang L, Wang L, Yan C, Ai C, Wen C, Guo X, Song S. Two Ascophyllum nodosum Fucoidans with Different Molecular Weights Inhibit Inflammation via Blocking of TLR/NF-κB Signaling Pathway Discriminately. Foods 2022; 11:foods11152381. [PMID: 35954147 PMCID: PMC9368091 DOI: 10.3390/foods11152381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to clarify the potential mechanism of fucoidans found in Ascophyllum nodosum on anti-inflammation and to further explore the relationship between their structures and anti-inflammation. Two novel fucoidans named ANP-6 and ANP-7 and found in A. nodosum, were separated and purified and their structures were elucidated by HPGPC, HPLC, GC-MS, FT-IR, NMR, and by the Congo red test. They both possessed a backbone constructed of →2)-α-L-Fucp4S-(1→, →3)-α-L-Fucp2S4S-(1→, →6)-β-D-Galp-(1→, and →3,6)-β-D-Galp4S-(1→ with branches of →2)-α-L-Fucp4S-(1→ and →3)-β-D-Galp-(1→. Moreover, ANP-6 and ANP-7 could prevent the inflammation of the LPS-stimulated macrophages by suppressing the NO production and by regulating the expressions of iNOS, COX-2, TNF-α, IL-1β, IL-6, and IL-10. Their inhibitory effects on the TLR-2 and TLR-4 levels suggest that they inhibit the inflammation process via the blocking of the TLR/NF-κB signal transduction. In addition, ANP-6, with a molecular weight (63.2 kDa), exhibited stronger anti-inflammatory capabilities than ANP-7 (124.5 kDa), thereby indicating that the molecular weight has an influence on the anti-inflammatory effects of fucoidans.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
33
|
Magnoliae flos Downregulated Lipopolysaccharide-Induced Inflammatory Responses via NF-κB/ERK-JNK MAPK/STAT3 Pathways. Mediators Inflamm 2022; 2022:6281892. [PMID: 35795403 PMCID: PMC9251077 DOI: 10.1155/2022/6281892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Magnoliae flos is the dried flower bud of Magnolia biondii and related plants. It has been used as a medicinal herb for the treatment of rhinitis, sinusitis, and sinus headaches. Nevertheless, the effects of Magnoliae flos in microbial infection or sepsis remain unclear. In this study, we investigated the anti-inflammatory effects of Magnoliae flos water extract (MF) in lipopolysaccharide- (LPS-) induced septic mice and LPS-stimulated RAW264.7 macrophages. Results. We found that MF reduced the mortality of LPS-challenged mice. Enzyme immunoassays and reverse transcription polymerase chain reaction analysis revealed that MF administration attenuated mRNA expression and protein production of proinflammatory mediators, including cyclooxygenase 2, inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-6. In parallel to these results in mice, pretreatment with MF suppressed the LPS-induced production of proinflammatory mediators in RAW264.7 macrophages. In addition, we found that MF exerted its suppressive effects by inhibiting the activation of the mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription pathways at the protein level. Conclusion. MF could be a potential therapeutic agent for regulating excessive inflammatory responses in sepsis.
Collapse
|
34
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
35
|
Isolation, Characterization, and Biological Activities of Fucoidan Derived from Ceratophyllum Submersum L. Macromol Res 2022. [DOI: 10.1007/s13233-022-0010-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sun S, Yang H, Wang F, Zhao S. Oct4 downregulation-induced inflammation increases the migration and invasion rate of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1440-1449. [PMID: 34553218 DOI: 10.1093/abbs/gmab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Inflammatory changes are involved in tumor cell proliferation, migration, and invasion. Tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) play important roles in inflammatory regulation during tumor development. Oct4 acts as a transcription factor that modulates inflammatory changes in mesenchymal stem cells. In this study, we explored the role of Oct4 in the invasion and migration of oral squamous cell carcinoma (OSCC) cells. LPS and TNF-α were used to treat the OSCC cell lines HN4 and CAL27 to induce inflammation. The generation of inflammatory cytokines, including TNF-α, interleukin (IL)-1β, and IL-6, was evaluated by enzyme-linked immunosorbent assay and real-time quantitative PCR. Western blot analysis was employed to detect the expression and phosphorylation of JNK1, p65, and STAT3, which are key modulators of inflammation. Wound scratch healing and transwell invasion assays were further used to determine the role of inflammation in the invasion and migration of OSCC cells. Robust inflammation was observed in HN4 and CAL27 cells treated with LPS and TNF-α. A marked increase in JNK1, p65, and STAT3 phosphorylation levels in OSCC cells was also detected after LPS and TNF-α treatment. The migration and invasion of HN4 and CAL27 cells were significantly boosted by stimulation with LPS and TNF-α. Furthermore, Oct4 mRNA and protein levels were significantly upregulated by stimulation with LPS and TNF-α. Silencing of Oct4 led to reduced inflammation and decreased levels of phosphorylated JNK1, p65, and STAT3 and impaired invasion and migration in LPS- and TNF-α-stimulated OSCC cells. Overall, LPS- and TNF-α-induced inflammation suppressed the migration and invasion of OSCC cells by upregulating Oct4 expression.
Collapse
Affiliation(s)
- Shuntao Sun
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Hongyu Yang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Feng Wang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Shanshan Zhao
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
37
|
Chen X, Ni L, Fu X, Wang L, Duan D, Huang L, Xu J, Gao X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Mar Drugs 2021; 19:md19080430. [PMID: 34436269 PMCID: PMC8398701 DOI: 10.3390/md19080430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-β-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKβ) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
- Correspondence: ; Tel.: +86-532-8203-2182; Fax: +86-532-8203-2389
| | - Lei Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., 1th Daxueyuan Road, Qingdao 266400, China;
- CAS and Shandong Province Key Lab of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Luqiang Huang
- Key Laboratory of Special Marine Bio-Resources Sustainable Utilization of Fujian Province, College of Life Science, Fujian Normal University, Fuzhou 350108, China;
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| |
Collapse
|
38
|
Lee CY, Park SH, Lim HY, Jang SG, Park KJ, Kim DS, Kim JH, Cho JY. In vivo anti-inflammatory effects of Prasiola japonica ethanol extract. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
39
|
Gan DL, Yao Y, Su HW, Huang YY, Shi JF, Liu XB, Xiang MX. Volatile Oil of Platycladus Orientalis (L.) Franco Leaves Exerts Strong Anti-inflammatory Effects via Inhibiting the IκB/NF-κB Pathway. Curr Med Sci 2021; 41:180-186. [PMID: 33582924 DOI: 10.1007/s11596-020-2301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis (L.) Franco leaves (VOPF) and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models. Ear swelling and intraperitoneal capillary permeability in mice, and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF. Moreover, the lipopolysaccharide (LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF. The results showed that VOPF could significantly inhibit auricular swelling, intraperitoneal capillary permeability in mice, and reduce granuloma swelling and paw swelling in rats. Furthermore, it significantly alleviated the pathological damage of the lung tissue. In addition, VOPF could reduce the contents of IL-1β and TNF-α and increase the content of IL-10 in the serum. It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway. In conclusion, VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Da-Li Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Han-Wen Su
- Department of Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Ying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiong-Biao Liu
- Department of Dermatology, Tianmen First People's Hospital, Tianmen, 431700, China.
| | - Mei-Xian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
40
|
Present Status, Limitations and Future Directions of Treatment Strategies Using Fucoidan-Based Therapies in Bladder Cancer. Cancers (Basel) 2020; 12:cancers12123776. [PMID: 33333858 PMCID: PMC7765304 DOI: 10.3390/cancers12123776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a common urological cancer, with poor prognosis for advanced/metastatic stages. Various intensive treatments, including radical cystectomy, chemotherapy, immune therapy, and radiotherapy are commonly used for these patients. However, these treatments often cause complications and adverse events. Therefore, researchers are exploring the efficacy of natural product-based treatment strategies in BC patients. Fucoidan, derived from marine brown algae, is recognized as a multi-functional and safe substrate, and has been reported to have anti-cancer effects in various types of malignancies. Additionally, in vivo and in vitro studies have reported the protective effects of fucoidan against cancer-related cachexia and chemotherapeutic agent-induced adverse events. In this review, we have introduced the anti-cancer effects of fucoidan extracts in BC and highlighted its molecular mechanisms. We have also shown the anti-cancer effects of fucoidan therapy with conventional chemotherapeutic agents and new treatment strategies using fucoidan-based nanoparticles in various malignancies. Moreover, apart from the improvement of anti-cancer effects by fucoidan, its protective effects against cancer-related disorders and cisplatin-induced toxicities have been introduced. However, the available information is insufficient to conclude the clinical usefulness of fucoidan-based treatments in BC patients. Therefore, we have indicated the aspects that need to be considered regarding fucoidan-based treatments and future directions for the treatment of BC.
Collapse
|
41
|
Dörschmann P, Klettner A. Fucoidans as Potential Therapeutics for Age-Related Macular Degeneration-Current Evidence from In Vitro Research. Int J Mol Sci 2020; 21:E9272. [PMID: 33291752 PMCID: PMC7729934 DOI: 10.3390/ijms21239272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the major reason for blindness in the industrialized world with limited treatment options. Important pathogenic pathways in AMD include oxidative stress and vascular endothelial growth factor (VEGF) secretion. Due to their bioactivities, fucoidans have recently been suggested as potential therapeutics. This review gives an overview of the recent developments in this field. Recent studies have characterized several fucoidans from different species, with different molecular characteristics and different extraction methods, in regard to their ability to reduce oxidative stress and inhibit VEGF in AMD-relevant in vitro systems. As shown in these studies, fucoidans exhibit a species dependency in their bioactivity. Additionally, molecular properties such as molecular weight and fucose content are important issues. Fucoidans from Saccharina latissima and Laminaria hyperborea were identified as the most promising candidates for further development. Further research is warranted to establish fucoidans as potential therapeutics for AMD.
Collapse
Affiliation(s)
| | - Alexa Klettner
- Department of Ophthalmology, Campus Kiel, University Medical Center Schleswig-Holstein UKSH, 24105 Kiel, Germany;
| |
Collapse
|
42
|
Wang S, Ni L, Fu X, Duan D, Xu J, Gao X. A Sulfated Polysaccharide from Saccharina japonica Suppresses LPS-Induced Inflammation Both in a Macrophage Cell Model via Blocking MAPK/NF-κB Signal Pathways In Vitro and a Zebrafish Model of Embryos and Larvae In Vivo. Mar Drugs 2020; 18:E593. [PMID: 33255947 PMCID: PMC7760670 DOI: 10.3390/md18120593] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complicated host-protective response to stimuli and toxic conditions, and is considered as a double-edged sword. A sulfated Saccharinajaponica polysaccharide (LJPS) with a sulfate content of 9.07% showed significant inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells and zebrafish. Its chemical and structural properties were investigated via HPLC, GC, FTIR, and NMR spectroscopy. In vitro experiments demonstrated that LJPS significantly inhibited the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and suppressed pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production via the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways in LPS-induced RAW 264.7 cells. Moreover, LJPS showed strong protective effects against LPS-induced inflammatory responses in zebrafish, increasing the survival rate, reducing the heart rate and yolk sac edema size, and inhibiting cell death and the production of intracellular reactive oxygen species (ROS) and NO. Its convenience for large-scale production and significant anti-inflammatory activity indicated the potential application of LJPS in functional foods, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, 1th Daxueyuan Road, Qingdao 266400, China;
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (S.W.); (L.N.); (J.X.); (X.G.)
| |
Collapse
|
43
|
Production, Characterization and Immunomodulatory Activity of an Extracellular Polysaccharide from Rhodotorula mucilaginosa YL-1 Isolated from Sea Salt Field. Mar Drugs 2020; 18:md18120595. [PMID: 33256151 PMCID: PMC7760879 DOI: 10.3390/md18120595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
A novel exopolysaccharide from marine-derived red yeast Rhodotorula mucilaginosa strain YL-1 was produced and characterized. The highest yield of polysaccharide reached 15.1 g/L after medium and culture parameter optimization. This exopolysaccharide, composed of four neural monosaccharides including glucose, mannose, galactose and fucose, had an average molecular weight of 1200 KDa. It had good immunomodulatory activity on RAW256.7 cell lines. ELISA (enzyme linked immunosorbent assay) and Q-PCR (quantitative real-time PCR) results showed that the cell was stimulated to express more IL-6, IL-18, IL-1β and TNFα cytokines than the control group. This is the first report of an exopolysaccharide with immunomodulatory activity from marine-derived Rhodotorula mucilaginosa.
Collapse
|