1
|
Liu C, Li J, Wang D, Liu J, Liu K, Li P, Zhang Y. Recent Advances of the Zebrafish Model in the Discovery of Marine Bioactive Molecules. Mar Drugs 2024; 22:540. [PMID: 39728115 PMCID: PMC11678508 DOI: 10.3390/md22120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Marine natural products are increasingly utilized in nutrition, cosmetics, and medicine, garnering significant attention from researchers globally. With the expansion of marine resource exploration in recent years, the demand for marine natural products has risen, necessitating rapid and cost-effective activity evaluations using model organisms. Zebrafish, a valuable vertebrate model, has become an efficient tool for screening and identifying safe, active molecules from marine natural products. This review, based on nearly 10 years of literature, summarizes the current status and progress of zebrafish models in evaluating marine natural product bioactivity. It also highlights their potential in exploring marine resources with health benefits, offering a reference for the future development and utilization of marine biological resources.
Collapse
Affiliation(s)
- Changyu Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jiaxun Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Dexu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jibin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| |
Collapse
|
2
|
Eiamart W, Wittayalertpanya S, Tadtong S, Samee W. Efficient Simultaneous Isolation of Pinostrobin and Panduratin A from Boesenbergia rotunda Using Centrifugal Partition Chromatography. Molecules 2024; 29:5186. [PMID: 39519827 PMCID: PMC11547732 DOI: 10.3390/molecules29215186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The bioactive flavonoids pinostrobin (PN) and panduratin A (PA) from Boesenbergia rotunda are essential for research and therapeutic applications. This study introduces an innovative method utilizing ultrasound-assisted extraction with n-hexane pre-treatment, followed by one-step centrifugal partition chromatography (CPC) purification. Extraction efficiency was evaluated using ultra high-performance liquid chromatography (UHPLC), and the isolated compounds were characterized through 1H-NMR and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), adhering to AOAC validation guidelines. Optimal extraction conditions comprised a particle size of 125 μm, a solid-to-liquid ratio of 1:30 g/mL, and a 10 min extraction time, yielding a crude extract of 6.96 ± 0.07%. Using an n-hexane/MeOH/water (5/3.4/1.6, v/v) solvent system in ascending mode, PN (2.16 mg, 98.78% purity) and PA (0.4 mg, 99.69% purity) were isolated from 67 mg of crude extract within 30 min. This streamlined approach enhances purification efficiency, allowing for faster extraction and higher purity, making it a suitable method for commercial applications.
Collapse
Affiliation(s)
- Wanna Eiamart
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supeecha Wittayalertpanya
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| |
Collapse
|
3
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Xie XX, Chen ZJ, Zhu QG, Yu Q, Lian TY, Xu XL, Chen Y, Song WH. Large-scale separation of alkaloids from Corydalis decumbens by pH-zone-refining centrifugal partition chromatography and their anticomplement activity. J Sep Sci 2024; 47:e2300577. [PMID: 38109069 DOI: 10.1002/jssc.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids from the crude extract of Corydalis decumbens. The experiment was performed with a two-phase solvent system composed of petroleum ether-ethyl acetate-ethanol-water (5:5:3:7, v/v/v/v) where triethylamine (10 mM) was added to the stationary phase and hydrochloric acid (10 mM) to the mobile phase. From 1.6 g of the crude extract, 43 mg protopine, 189 mg (+)-egenine, and 158 mg tetrahydropalmatine were obtained with a purity of 98.2%, 94.6%, and 96.7%, respectively. Tetrahydropalmatine showed an interesting anticomplement effect with CH50 0.11 and AP50 0.25 mg/mL, respectively. In a mechanistic study, tetrahydropalmatine interacted with C1, C3, C4, and C5 components in the complement activation cascade.
Collapse
Affiliation(s)
- Xin-Xin Xie
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Zhong-Jian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Quan-Gang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Qin Yu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Tian-Yan Lian
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Xue-Lian Xu
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Ya Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, P. R. China
| | - Wei-Hua Song
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
5
|
Ki DW, Kim CW, Choi DC, Oh GW, Doan TP, Kim JY, Oh WK, Lee IK, Yun BS. Chemical constituents of the culture broth of Dentipellis fragilis and their anti-inflammatory activities. PHYTOCHEMISTRY 2023; 214:113828. [PMID: 37595773 DOI: 10.1016/j.phytochem.2023.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Seven undescribed compounds, dentipellinones A‒D (1, 2, 5, and 6), dentipellinol (3), methoxyerinaceolactone B (4), and erinaceolactomer A (7), were isolated from the culture broth of Dentipellis fragilis. Chemical structures of these isolated compounds were determined by analyses of 1D and 2D-NMR and MS data in comparison with data reported in the literature. Absolute configurations of 1‒7 were also determined by Electronic Circular Dichroism calculations. The isolated compounds were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokines levels in LPS-stimulated RAW264.7 cells. Compounds 5 and 7 were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokine levels in LPS-stimulated RAW264.7 cells. They exhibited inhibitory effects on LPS-induced NO production in a dose-dependent manner, and significantly reduced the levels of inflammatory-related cytokines such as IL-1β and IL-6. TNF-α was not involved in the anti-inflammatory effects of these compounds. Finally, compounds 5 and 7 showed significant anti-inflammatory effects.
Collapse
Affiliation(s)
- Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| | - Chae-Won Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Thi-Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| |
Collapse
|
6
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
7
|
Nagahawatta DP, Liyanage NM, Jayawardhana HHACK, Jayawardena TU, Lee HG, Heo MS, Jeon YJ. Eckmaxol Isolated from Ecklonia maxima Attenuates Particulate-Matter-Induced Inflammation in MH-S Lung Macrophage. Mar Drugs 2022; 20:766. [PMID: 36547913 PMCID: PMC9785775 DOI: 10.3390/md20120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Airborne particulate matter (PM) originating from industrial processes is a major threat to the environment and health in East Asia. PM can cause asthma, collateral lung tissue damage, oxidative stress, allergic reactions, and inflammation. The present study was conducted to evaluate the protective effect of eckmaxol, a phlorotannin isolated from Ecklonia maxima, against PM-induced inflammation in MH-S macrophage cells. It was found that PM induced inflammation in MH-S lung macrophages, which was inhibited by eckmaxol treatment in a dose-dependent manner (21.0−84.12 µM). Eckmaxol attenuated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in PM-induced lung macrophages. Subsequently, nitric oxide (NO), prostaglandin E-2 (PGE-2), and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were downregulated. PM stimulated inflammation in MH-S lung macrophages by activating Toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. Eckmaxol exhibited anti-inflammatory properties by suppressing the activation of TLRs, downstream signaling of NF-κB (p50 and p65), and MAPK pathways, including c-Jun N-terminal kinase (JNK) and p38. These findings suggest that eckmaxol may offer substantial therapeutic potential in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - H. H. A. C. K. Jayawardhana
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - Moon-Soo Heo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
8
|
Wang L, Je JG, Kim HS, Wang K, Fu X, Xu J, Gao X, Jeon YJ. Anti-Melanogenesis and Photoprotective Effects of Ecklonia maxima Extract Containing Dieckol and Eckmaxol. Mar Drugs 2022; 20:557. [PMID: 36135746 PMCID: PMC9506176 DOI: 10.3390/md20090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Seaweeds are potential ingredients in the cosmeceutical industry. Our previous study demonstrates that the phlorotannin-enriched extract of Ecklonia maxima (EME-EA) containing dieckol and eckmaxol possesses strong anti-inflammatory activity and suggests the cosmeceutical potential of EME-EA. In order to evaluate the cosmeceutical potential of EME-EA, the anti-melanogenesis and photoprotective effects of EME-EA were investigated in this study. EME-EA remarkably inhibited mushroom tyrosinase and melanogenesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 cells. In addition, EME-EA significantly suppressed UVB-induced HaCaT cell death that was consistent with inhibition of apoptosis and reduction in scavenging intracellular reactive oxygen species. Furthermore, EME-EA significantly inhibited collagen degradation and matrix metalloproteinases expression in UVB-irradiated HDF cells in a concentration-dependent manner. These results indicate that EME-EA possesses strong anti-melanogenesis and photoprotective activities and suggest EME-EA is an ideal ingredient in the pharmaceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jun-Geon Je
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33677, Korea
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|