1
|
Dvorak KR, Tepe JJ. Advances in the total synthesis of bis- and tris-indole alkaloids containing N-heterocyclic linker moieties. Nat Prod Rep 2024; 41:1264-1293. [PMID: 38666377 PMCID: PMC11323739 DOI: 10.1039/d4np00012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/15/2024]
Abstract
The past several years have seen an increase in the discovery and isolation of natural products of the indole alkaloid class. Bis- and tris-indole alkaloids are classes of natural products that have been shown to display diverse, potent biological activities. Of particular interest are bis- and tris-indole alkaloids containing N-heterocyclic linker moieties. It has been reported that more than 85% of biologically active compounds contain one or more heterocyclic moieties; of these, N-heterocycles have been identified as the most prevalent. The goal of this review is to provide a detailed overview of the recent advances in isolation and total synthesis of bis- and tris-indole alkaloids that contain N-heterocyclic linker moieties. The known biological activities of these natural products will also be discussed.
Collapse
|
2
|
Huang C, Chu X, Hui W, Xie C, Xu X. Study on extraction and characterization of new antibiotics violacein from engineered Escherichia coli VioABCDE-SD. Biotechnol Appl Biochem 2023; 70:1582-1596. [PMID: 36898961 DOI: 10.1002/bab.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
To better understand the characteristic properties of violacein biosynthesized by engineered Escherichia coli VioABCDE-SD, a convenient and simplified method was designed to extract violacein and its stability, antimicrobial activity, and antioxidant capacity were analyzed. Different from the traditional extraction methods, our new method is easier and less time consuming and can directly obtain violacein dry powder product with a higher extraction rate. Low temperature, dark condition, neutral pH, reducing agents, Ba2+ , Mn2+ , Ni2+ , Co2+ , and some food additives of sucrose, xylose, and glucose were conducive to maintaining its stability. The violacein also exhibited surprisingly high bacteriostatic action against Gram-positive Bacillus subtilis, Deinococcus radiodurans R1, and Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but no effect on E. coli. The violacein of VioABCDE-SD exhibited strong antioxidant activity, with the scavenging rate of 1,1-diphenyl-2-picrylhydrazyl free radicals reaching 60.33%, the scavenging efficiency of hydroxyl radical scavenging reaching 56.34%, and the total antioxidant capacity reaching 0.63 U/mL. Violacein from VioABCDE-SD can be synthesized directionally with better stability, antibacterial, and antioxidant properties compared with that from the original strain Janthinobacterium sp. B9-8. Therefore, our study indicated that violacein from engineered E. coli VioABCDE-SD was a kind of new antibiotic with potential biological activities, which may have potential utility in multiple areas such as pharmacological, cosmetics, and healthy food industries.
Collapse
Affiliation(s)
- Chunyan Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Rahlff J, Wietz M, Giebel HA, Bayfield O, Nilsson E, Bergström K, Kieft K, Anantharaman K, Ribas-Ribas M, Schweitzer HD, Wurl O, Hoetzinger M, Antson A, Holmfeldt K. Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick. ISME COMMUNICATIONS 2023; 3:97. [PMID: 37723220 PMCID: PMC10507051 DOI: 10.1038/s43705-023-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mariana Ribas-Ribas
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | | | - Oliver Wurl
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Ma T, Xue H, Piao C, Jiang N, Li Y. Genome-based analyses of family Oxalobacteraceae reveal the taxonomic classification. Res Microbiol 2023; 174:104076. [PMID: 37137377 DOI: 10.1016/j.resmic.2023.104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Family Oxalobacteraceae is known for the indicator of bacterial diversity in the environment and many of which are important beneficial bacteria. Previous studies on the taxonomic structure of family Oxalobacteraceae mostly relied on 16S rRNA gene analysis, or core-genome phylogeny of a limited number of species and resulted in taxonomic confusion within several genera. Developments in sequencing technologies have allowed more genome sequences to be obtained, enabling the revision of family Oxalobacteraceae. Here, we report a comprehensive analysis of phylogenomic trees, concatenated protein and up-to-date bacterial core gene phylogenetic trees, and genomic metrics for genus demarcation on 135 genomes of Oxalobacteraceae species to elucidate their interrelationships. Following this framework for classification of species in family Oxalobacteraceae, all the proposed genera formed monophyletic lineages in the phylogenomic trees and could also be clearly separated from others in the genomic similarity indexes of average amino acid identity, percentage of conserved proteins and core-proteome average amino acid identity.
Collapse
Affiliation(s)
- Tengfei Ma
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Han Xue
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Chungen Piao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Ning Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
5
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Fermentation in Minimal Media and Fungal Elicitation Enhance Violacein and Deoxyviolacein Production in Two Janthinobacterium Strains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Violacein and its biosynthesis by-product deoxyviolacein are valuable natural pigments with different biological activities. Various efforts have been made to enhance violacein and deoxyviolacein production in microbes. However, the effect of different culture media, agitation, and fungal elicitation on biosynthesis in Janthinobacterium has not been evaluated. In this study, the effect of eight different culture media, agitation, and fungal elicitation by Agaricus bisporus on violacein and deoxviolacein production in Janthinobacterium agaricidamnosum DSM 9628 and Janthinobacterium lividum DSM 1552 were examined. The results showed that violacein and deoxviolacein are produced at high-levels when Janthinobacterium is cultivated in minimal media such as Davis minimal broth with glycerol (DMBgly), shipworm basal medium (SBM), and MM9 media. A 50-fold increase was observed in violacein production when Janthinobacterium was cultivated in these media compared to cultivation in Luria–Bertani (LB), nutrient broth (NB), and King’s B (KB). Agitation reduces violacein and deoxyviolacein production, while fungal elicitation decreases violacein but increases deoxyviolacein when Janthinobacterium is cultured in KB media, SBM, and modified SBM (MSBM). An antibacterial assay using various pathogenic bacteria showed that violacein and deoxyviolacein extracted from Janthinobacterium are effective against both Gram-positive and Gram-negative pathogens, confirming their functionality as antibacterial agents. The findings suggest that cultivation in minimal media and fungal elicitation might invoke a stress response, enhancing the production of violacein and deoxviolacein in Janthinobacterium.
Collapse
|
7
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Seo SO, Jin YS. Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annu Rev Food Sci Technol 2022; 13:463-488. [DOI: 10.1146/annurev-food-052720-012228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Nutrition, Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Ahmed A, Ahmad A, Li R, AL-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol 2021; 31:1465-1480. [PMID: 34584039 PMCID: PMC9705886 DOI: 10.4014/jmb.2107.07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Collapse
Affiliation(s)
- Aqsa Ahmed
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Abdullah Ahmad
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Renhan Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Waleed AL-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China,Department of Food Science and Technology, Faculty of Agriculture, Sana’a University, Sana’a, 725, Yemen
| | - Momal Fatima
- Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Samra Basharat
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding authors Y. Li E-mail:
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,
Z. Bai Phone: +86510-85197983 Fax: +86510-85197983 E-mail:
| |
Collapse
|
11
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
12
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
14
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
15
|
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021; 15:10. [PMID: 33706806 PMCID: PMC7948353 DOI: 10.1186/s13036-021-00262-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in the literature, and some of the synthetic biology techniques employed in this pursuit.
Collapse
Affiliation(s)
- Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, Gangwon-do, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
16
|
Lyakhovchenko NS, Abashina TN, Polivtseva VN, Senchenkov VY, Pribylov DA, Chepurina AA, Nikishin IA, Avakova AA, Goyanov MA, Gubina ED, Churikova DA, Sirotin AA, Suzina NE, Solyanikova IP. A Blue-Purple Pigment-Producing Bacterium Isolated from the Vezelka River in the City of Belgorod. Microorganisms 2021; 9:E102. [PMID: 33466248 PMCID: PMC7824796 DOI: 10.3390/microorganisms9010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Violacein is a biotechnologically significant secondary metabolite due to its antibacterial, antifungal, and other properties. Isolation, research, and identification of violacein producing strains are of interest for the development of biotechnological processes, in order to enhance the biosynthesis of this compound. The purpose of the present work was to study the properties of a newly isolated bacterium capable of synthesizing blue-purple pigment. An aboriginal bacterium was isolated from the coastal zone of the Vezelka River in the city of Belgorod. Based on chemical and spectrophotometric studies of the crude ethanol extract, the pigment was identified as violacein, and the isolate was assigned to the group of violacein-forming bacteria, which includes bacteria of the genera Chromobacterium, Iodobacter, Janthinobacterium, Duganella, Collimonas, and Massilia. Based on cultural, morphological, tinctorial, physiological, and biochemical properties, as well as analysis of the 16S rRNA gene sequence, the new isolated strain was assigned to the genus Janthinobacterium. The isolated strain is capable of suppressing the growth of a number of fungal and bacterial phytopathogens. For representatives of the genus Janthinobacterium, their inhibitory influence on cyanobacteria was shown for the first time.
Collapse
Affiliation(s)
- Nikita S. Lyakhovchenko
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Tatiana N. Abashina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Valentina N. Polivtseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Vladislav Yu. Senchenkov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Daniil A. Pribylov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Anna A. Chepurina
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Ilja A. Nikishin
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Alina A. Avakova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Michael A. Goyanov
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Elizaveta D. Gubina
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Daria A. Churikova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Alexander A. Sirotin
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
| | - Nataliya E. Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| | - Inna P. Solyanikova
- Federal State Autonomous Educational Institution of Higher Education, Belgorod National Research University, 308015 Belgorod, Russia; (N.S.L.); (V.Y.S.); (D.A.P.); (A.A.C.); (I.A.N.); (A.A.A.); (M.A.G.); (E.D.G.); (D.A.C.); (A.A.S.)
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (T.N.A.); (V.N.P.); (N.E.S.)
| |
Collapse
|
17
|
Nawaz A, Chaudhary R, Shah Z, Dufossé L, Fouillaud M, Mukhtar H, ul Haq I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020; 9:microorganisms9010011. [PMID: 33375136 PMCID: PMC7822155 DOI: 10.3390/microorganisms9010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Zinnia Shah
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Laurent Dufossé
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
- Correspondence: ; Tel.: +33-668-731-906
| | - Mireille Fouillaud
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| |
Collapse
|
18
|
Koronatov AN, Rostovskii NV, Khlebnikov AF, Novikov MS. Synthesis of 3-Alkoxy-4-Pyrrolin-2-ones via Rhodium(II)-Catalyzed Denitrogenative Transannulation of 1H-1,2,3-Triazoles with Diazo Esters. Org Lett 2020; 22:7958-7963. [DOI: 10.1021/acs.orglett.0c02893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander N. Koronatov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V. Rostovskii
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
19
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
20
|
Applications of Prodigiosin Extracted from Marine Red Pigmented Bacteria Zooshikella sp. and Actinomycete Streptomyces sp. Microorganisms 2020; 8:microorganisms8040556. [PMID: 32295096 PMCID: PMC7232315 DOI: 10.3390/microorganisms8040556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023] Open
Abstract
This study is aimed to determine the distribution, diversity and bioprospecting aspects of marine pigmented bacteria (MPB) isolated from pristine Andaman Islands, India. A total of 180 samples including seawater, sediment, marine plants, invertebrates, and vertebrates were collected and investigated for isolating pigmented bacteria. Results revealed that sediment, invertebrates, and seawater samples were colonized with a greater number of pigmented bacteria pertains to 27.9 × 103 CFU/mL, 24.1 × 103 CFU/mL and 6.7 × 103 CFU/mL respectively. Orange (21.6 × 103 CFU/mL) and red (8.0 × 103 CFU/mL) MPB were predominant than other pigmented bacteria. Fourteen potential MPB were selected based on their intense pigmentation and tested for bioactive nature and food colorant applications. Out of 14, two red pigmented strains BSE6.1 & S2.1 displayed potential multifaceted applications, such as antibacterial, antioxidant, food colorant, and staining properties. Brown pigmented strains CO8 and yellow pigmented strain SQ2.3 have displayed staining properties. Chemical characterization of red pigment using TLC, HP-LC, GC-MS, FT-IR and 1H-NMR analysis revealed prodigiosin as a main chemical constituent. Pure form of prodigiosin compound fractions obtained from both the strains displayed effective antibacterial activity against different human pathogens. MIC and MBC assays revealed that S2.1 requires 300 µg and 150 µg, respectively, and BSE6.1 require 400 µg concentrations of pigment compound for complete inhibition of S. aureus subsp. aureus. On the basis of 16S rRNA sequence analysis, strains S2.1 and BSE6.1 were identified as Zooshikella sp. and Streptomyces sp. and assigned under the GenBank accession numbers: MK680108 and MK951781 respectively.
Collapse
|
21
|
Choi SY, Lim S, Cho G, Kwon J, Mun W, Im H, Mitchell RJ. Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles. Environ Microbiol 2020; 22:705-713. [PMID: 31814287 DOI: 10.1111/1462-2920.14888] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
This study describes Chromobacterium violaceum's use of extracellular membrane vesicles (MVs) to both solubilize and transport violacein to other microorganisms. Violacein is a hydrophobic bisindole with known antibiotic activities against other microorganisms. Characterization of the MVs found they carried more violacein than protein (1.37 ± 0.19-fold), suggesting they may act as a reservoir for this compound. However, MVs are not produced in response to violacein - a ΔvioA isogenic mutant, which is incapable of making violacein, actually produced significantly more MVs (3.2-fold) than the wild-type strain. Although violacein is insoluble in water (Log Poctanol:water = 3.34), 79.5% remained in the aqueous phase when it was present within the C. violaceum MVs, an increase in solubility of 1740-fold. Moreover, tests with a strain of Staphylococcus aureus showed MV-associated violacein is bactericidal, with 3.1 mg/l killing 90% of S. aureus in 6 h. Tests with the ΔvioA MVs found no loss in the S. aureus viability, even when its MVs were added at much higher concentrations, demonstrating violacein is the active component within the wild-type MVs. In conclusion, our study clearly demonstrates C. violaceum produces MVs and uses them as vehicles to solubilize violacein and transport this hydrophobic antibiotic to other microbes.
Collapse
Affiliation(s)
- Seong Yeol Choi
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gayoung Cho
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Wonsik Mun
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hansol Im
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Applied and Environmental Microbiology Lab, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
22
|
Nappi J, Soldi E, Egan S. Diversity and Distribution of Bacteria Producing Known Secondary Metabolites. MICROBIAL ECOLOGY 2019; 78:885-894. [PMID: 31016338 DOI: 10.1007/s00248-019-01380-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
There is an increasing interest in the utilisation of marine bioactive compounds as novel biopharmaceuticals and agrichemicals; however, little is known about the environmental distribution for many of these molecules. Here, we aimed to elucidate the environmental distribution and to detect the biosynthetic gene clusters in environmental samples of four bioactive compounds, namely violacein, tropodithietic acid (TDA), tambjamine and the antibacterial protein AlpP. Our database analyses revealed high bacterial diversity for AlpP and violacein producers, while TDA-producing bacteria were mostly associated with marine surfaces and all belonged to the roseobacter group. In contrast, the tambjamine cluster was only found in the genomes of two Pseudoalteromonas species and in one terrestrial species belonging to the Cupriavidus genus. Using a PCR-based screen of different marine samples, we detected TDA and violacein genes associated with the microbiome of Ulva and Protohyale niger and tambjamine genes associated with Nodilittorina unifasciata; however, alpP was not detected. These results highlight the variable distribution of the genes encoding these four bioactive compounds, including their detection from the surface of multiple marine eukaryotic hosts. Determining the natural distribution of these gene clusters will help to understand the ecological importance of these metabolites and the bacteria that produce them.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Erika Soldi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Canuto J, Lima D, Menezes R, Batista A, Nogueira P, Silveira E, Grangeiro T, Nogueira N, Martins A. Antichagasic effect of violacein from
Chromobacterium violaceum. J Appl Microbiol 2019; 127:1373-1380. [DOI: 10.1111/jam.14391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
- J.A. Canuto
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - D.B. Lima
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - R.R.P.P.B. Menezes
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - A.H.M. Batista
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - P.C.D.N. Nogueira
- Departamento de Química Universidade Federal do Ceará Fortaleza CE Brazil
| | - E.R. Silveira
- Departamento de Química Universidade Federal do Ceará Fortaleza CE Brazil
| | - T.B. Grangeiro
- Departamento de Biologia Universidade Federal do Ceará Fortaleza CE Brazil
| | - N.A.P. Nogueira
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - A.M.C. Martins
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| |
Collapse
|
24
|
Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 2019; 24:43-52. [DOI: 10.1007/s00792-019-01111-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
25
|
Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ. Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infect Dis 2019; 5:539-549. [PMID: 30693760 DOI: 10.1021/acsinfecdis.8b00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Violacein is a tryptophan-derived purple pigment produced by environmental bacteria, which displays multiple biological activities, including strong inhibition of Gram-positive pathogens. Here, we applied a combination of experimental approaches to identify the mechanism by which violacein kills Gram-positive bacteria. Fluorescence microscopy showed that violacein quickly and dramatically permeabilizes B. subtilis and S. aureus cells. Cell permeabilization was accompanied by the appearance of visible discontinuities or rips in the cytoplasmic membrane, but it did not affect the cell wall. Using in vitro experiments, we showed that violacein binds directly to liposomes made with commercial and bacterial phospholipids and perturbs their structure and permeability. Furthermore, molecular dynamics simulations were employed to reveal how violacein inserts itself into lipid bilayers. Thus, our combined results demonstrate that the cytoplasmic membrane is the primary target of violacein in bacteria. The implications of this finding for the development of violacein as a therapeutic agent are discussed.
Collapse
Affiliation(s)
- Ana C. G. Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, São Paulo 13083-862, Brazil
| | - Gustavo P. B. Carretero
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Greice K. V. Saraiva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Peter Park
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Laura Mortara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Iolanda M. Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, São Paulo 13083-862, Brazil
| | - Frederico J. Gueiros-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
26
|
Xu X, Tian L, Zhang S, Jiang L, Zhang Z, Huang H. Complete genome sequence of Janthinobacterium sp. B9-8, a violacein-producing bacterium isolated from low-temperature sewage. Microb Pathog 2019; 128:178-183. [DOI: 10.1016/j.micpath.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
27
|
Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic pigments have been widely used in various applications since the 1980s. However, the hyperallergenicity or carcinogenicity effects of synthetic dyes have led to the increased research on natural pigments. Among the natural resources, bacterial pigments are a good alternative to synthetic pigments because of their significant properties. Bacterial pigments are also one of the emerging fields of research since it offers promising opportunities for different applications. Besides its use as safe coloring agents in the cosmetic and food industry, bacterial pigments also possess biological properties such as antimicrobial, antiviral, antioxidant and anticancer activities. This review article highlights the various types of bacterial pigments, the latest studies on the discovery of bacterial pigments and the therapeutic insights of these bacterial pigments which hopefully provides useful information, guidance and improvement in future study.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christina-Injan Mawang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci Rep 2018; 8:15272. [PMID: 30323184 PMCID: PMC6189184 DOI: 10.1038/s41598-018-33691-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this paper is to describe a new variant of Janthinobacterium lividum - ROICE173, isolated from Antarctic snow, and to investigate the antimicrobial effect of the crude bacterial extract against 200 multi-drug resistant (MDR) bacteria of both clinical and environmental origin, displaying various antibiotic resistance patterns. ROICE173 is extremotolerant, grows at high pH (5.5–9.5), in high salinity (3%) and in the presence of different xenobiotic compounds and various antibiotics. The best violacein yield (4.59 ± 0.78 mg·g−1 wet biomass) was obtained at 22 °C, on R2 broth supplemented with 1% glycerol. When the crude extract was tested for antimicrobial activity, a clear bactericidal effect was observed on 79 strains (40%), a bacteriostatic effect on 25 strains (12%) and no effect in the case of 96 strains (48%). A very good inhibitory effect was noticed against numerous MRSA, MSSA, Enterococci, and Enterobacteriaceae isolates. For several environmental E. coli strains, the bactericidal effect was encountered at a violacein concentration below of what was previously reported. A different effect (bacteriostatic vs. bactericidal) was observed in the case of Enterobacteriaceae isolated from raw vs. treated wastewater, suggesting that the wastewater treatment process may influence the susceptibility of MDR bacteria to violacein containing bacterial extracts.
Collapse
|
29
|
Huang H, Hu B, Lai Y, Zou Z, Lin H, Xiao Y, You Q, Shen J. Base-Promoted Oxidative Dearomatization of Pyrroles to 4-Pyrrolin-2-ones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Huabin Huang
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Bing Hu
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Yuanfa Lai
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Zhongai Zou
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Huixia Lin
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Yujuan Xiao
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Qihua You
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| | - Jinhai Shen
- Department of Science and Technology for Inspection; Xiamen Huaxia University; Xiamen 361024 China
| |
Collapse
|
30
|
Mart’yanov SV, Letarov AV, Ivanov PA, Plakunov VK. Stimulation of Violacein Biosynthesis in Chromobacterium violaceum Biofilms in the Presence of Dimethyl Sulfoxide. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Cyanide Production by Chromobacterium piscinae Shields It from Bdellovibrio bacteriovorus HD100 Predation. mBio 2017; 8:mBio.01370-17. [PMID: 29259082 PMCID: PMC5736907 DOI: 10.1128/mbio.01370-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Predation of Chromobacterium piscinae by Bdellovibrio bacteriovorus HD100 was inhibited in dilute nutrient broth (DNB) but not in HEPES. Experiments showed that the effector responsible was present in the medium, as cell-free supernatants retained the ability to inhibit predation, and that the effector was not toxic to B. bacteriovorus. Violacein, a bisindole secondary metabolite produced by C. piscinae, was not responsible. Further characterization of C. piscinae found that this species produces sufficient concentrations of cyanide (202 µM) when grown in DNB to inhibit the predatory activity of B. bacteriovorus, but that in HEPES, the cyanide concentrations were negligible (19 µM). The antagonistic role of cyanide was further confirmed, as the addition of hydroxocobalamin, which chelates cyanide, allowed predation to proceed. The activity of cyanide against B. bacteriovorus was found to be twofold, depending on the life cycle stage of this predator. For the attack-phase predatory cells, cyanide caused the cells to lose motility and tumble, while for intraperiplasmic predators, development and lysis of the prey cell were halted. These findings suggest that cyanogenesis in nature may be employed by the bacterial strains that produce this compound to prevent and reduce their predation by B. bacteriovorus. Bacterial predators actively attack, kill, and enter the periplasm of susceptible Gram-negative bacteria, where they consume the prey cell components. To date, the activity of B. bacteriovorus HD100 has been demonstrated against more than 100 human pathogens. As such, this strain and others are being considered as potential alternatives or supplements to conventional antibiotics. However, the production of secondary metabolites by prey bacteria is known to mitigate, and even abolish, predation by bacterivorous nematodes and protists. With the exception of indole, which was shown to inhibit predation, the effects of bacterial secondary metabolites on B. bacteriovorus and its activities have not been considered. Consequently, we undertook this study to better understand the mechanisms that bacterial strains employ to inhibit predation by B. bacteriovorus HD100. We report here that cyanogenic bacterial strains can inhibit predation and show that cyanide affects both attack-phase predators and those within prey, i.e., in the bdelloplast.
Collapse
|
32
|
Im H, Choi SY, Son S, Mitchell RJ. Combined Application of Bacterial Predation and Violacein to Kill Polymicrobial Pathogenic Communities. Sci Rep 2017; 7:14415. [PMID: 29089523 PMCID: PMC5663959 DOI: 10.1038/s41598-017-14567-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 12/02/2022] Open
Abstract
Violacein is a bisindole antibiotic that is effective against Gram-positive bacteria while the bacterial predator, Bdellovibrio bacteriovorus HD100, predates on Gram-negative strains. In this study, we evaluated the use of both together against multidrug resistant pathogens. The two antibacterial agents did not antagonize the activity of the other. For example, treatment of Staphylococcus aureus with violacein reduced its viability by more than 2,000-fold with or without B. bacteriovorus addition. Likewise, predation of Acinetobacter baumannii reduced the viability of this pathogen by more than 13,000-fold, regardless if violacein was present or not. When used individually against mixed bacterial cultures containing both Gram-positive and Gram-negative strains, violacein and B. bacteriovorus HD100 were effective against only their respective strains. The combined application of both violacein and B. bacteriovorus HD100, however, reduced the total pathogen numbers by as much as 84,500-fold. Their combined effectiveness was also demonstrated using a 4-species culture containing S. aureus, A. baumannii, Bacillus cereus and Klebsiella pneumoniae. When used alone, violacein and bacterial predation reduced the total population by only 19% and 68%, respectively. In conjunction with each other, the pathogen viability was reduced by 2,965-fold (99.98%), illustrating the prospective use of these two antimicrobials together against mixed species populations.
Collapse
Affiliation(s)
- Hansol Im
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangmo Son
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
33
|
Terashima M, Umezawa K, Mori S, Kojima H, Fukui M. Microbial Community Analysis of Colored Snow from an Alpine Snowfield in Northern Japan Reveals the Prevalence of Betaproteobacteria with Snow Algae. Front Microbiol 2017; 8:1481. [PMID: 28824603 PMCID: PMC5545588 DOI: 10.3389/fmicb.2017.01481] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.
Collapse
Affiliation(s)
- Mia Terashima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Shoichi Mori
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
34
|
Narsing Rao MP, Xiao M, Li WJ. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front Microbiol 2017; 8:1113. [PMID: 28690593 PMCID: PMC5479939 DOI: 10.3389/fmicb.2017.01113] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÛrúmqi, China
| |
Collapse
|
35
|
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 2016; 6:29284. [PMID: 27384057 PMCID: PMC4935850 DOI: 10.1038/srep29284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Jadranka Nappi
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Paolo Bazzicalupo
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| |
Collapse
|
36
|
Ballhausen MB, Vandamme P, de Boer W. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas. PLoS One 2016; 11:e0157552. [PMID: 27309848 PMCID: PMC4911057 DOI: 10.1371/journal.pone.0157552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Peter Vandamme
- Laboratory for Microbiology, Gent University, Gent, Belgium
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
37
|
Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol Adv 2016; 34:1030-1045. [PMID: 27288924 DOI: 10.1016/j.biotechadv.2016.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022]
Abstract
Chromobacterium violaceum is important in the production of violacein, like other bacteria, such as Alteromonas, Janthinobacterium, Pseudoalteromonas, Duganella, Collimonas and Escherichia. Violacein is a versatile pigment, where it exhibits several biological activities, and every year, it shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics. This review on violacein focuses mainly on the last five years of research regarding this target compound and describes production and importance of quorum sensing in C. violaceum, mechanistic aspects of its biosynthesis, monitoring processes, genetic perspectives, pathogenic effects, antiparasitic and antimicrobial activities, immunomodulatory potential and uses, antitumor potential and industrial applications.
Collapse
Affiliation(s)
- Nelson Durán
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; LNNano (CNPEM) Campinas, SP, Brazil.
| | - Giselle Z Justo
- Department of Cell Biology and Department of Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), SP, Brazil
| | - Marcela Durán
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Urogenital, Carcinogenesis and Immunotherapy Laboratory, University of Campinas, SP, Brazil
| | - Marcelo Brocchi
- Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Livia Cordi
- NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil; Institute of Biology, Department Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, CP 6154, CEP 13083-970 Campinas, SP, Brazil; NanoBioss, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, Londrina State University (UEL), Londrina, Brazil
| |
Collapse
|
38
|
|
39
|
Navarro RR, Hori T, Inaba T, Matsuo K, Habe H, Ogata A. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning. WATER RESEARCH 2016; 94:166-175. [PMID: 26945453 DOI: 10.1016/j.watres.2016.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn affected their re-fouling potential.
Collapse
Affiliation(s)
- Ronald R Navarro
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kazuyuki Matsuo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
40
|
Song C, Schmidt R, de Jager V, Krzyzanowska D, Jongedijk E, Cankar K, Beekwilder J, van Veen A, de Boer W, van Veen JA, Garbeva P. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics 2015; 16:1103. [PMID: 26704531 PMCID: PMC4690342 DOI: 10.1186/s12864-015-2289-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities. RESULTS In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7% of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities. CONCLUSIONS Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.
Collapse
Affiliation(s)
- Chunxu Song
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Ruth Schmidt
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Victor de Jager
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Dorota Krzyzanowska
- Laboratory of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG&MUG, Kladki 24, Gdansk, 80-822, Poland.
| | - Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Katarina Cankar
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Jules Beekwilder
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Anouk van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Wietse de Boer
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Johannes A van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
41
|
High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 2015; 5:15598. [PMID: 26489441 PMCID: PMC4614999 DOI: 10.1038/srep15598] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/23/2015] [Indexed: 11/24/2022] Open
Abstract
A violacein-producing bacterial strain was isolated and identified as a relative of Duganella violaceinigra YIM 31327 based upon phylogenetic analyses using the 16S rRNA, gyrB and vioA gene sequences and a fatty acid methyl ester (FAME) analysis. This new strain was designated D. violaceinigra str. NI28. Although these two strains appear related based upon these analyses, the new isolate was phenotypically different from the type strain as it grew 25% faster on nutrient media and produced 45-fold more violacein. When compared with several other violacein producing strains, including Janthinobacterium lividum, D. violaceinigra str. NI28 was the best violacein producer. For instance, the crude violacein yield with D. violaceinigra str. NI28 was 6.0 mg/OD at 24 hours, a value that was more than two-fold higher than all the other strains. Finally, the antibacterial activity of D. violaceinigra str. NI28 crude violacein was assayed using several multidrug resistant Staphylococcus aureus. Addition of 30 μM crude violacein led to a 96% loss in the initial S. aureus population while the minimum inhibitory concentration was 1.8 μM. Consequently, this novel isolate represents a phenotypic variant of D. violaceinigra capable of producing much greater quantities of crude violacein, an antibiotic effective against multidrug resistant S. aureus.
Collapse
|
42
|
Violacein: Properties and Production of a Versatile Bacterial Pigment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:465056. [PMID: 26339614 PMCID: PMC4538413 DOI: 10.1155/2015/465056] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/18/2014] [Indexed: 01/01/2023]
Abstract
Violacein-producing bacteria, with their striking purple hues, have undoubtedly piqued the curiosity of scientists since their first discovery. The bisindole violacein is formed by the condensation of two tryptophan molecules through the action of five proteins. The genes required for its production, vioABCDE, and the regulatory mechanisms employed have been studied within a small number of violacein-producing strains. As a compound, violacein is known to have diverse biological activities, including being an anticancer agent and being an antibiotic against Staphylococcus aureus and other Gram-positive pathogens. Identifying the biological roles of this pigmented molecule is of particular interest, and understanding violacein's function and mechanism of action has relevance to those unmasking any of its commercial or therapeutic benefits. Unfortunately, the production of violacein and its related derivatives is not easy and so various groups are also seeking to improve the fermentative yields of violacein through genetic engineering and synthetic biology. This review discusses the recent trends in the research and production of violacein by both natural and genetically modified bacterial strains.
Collapse
|
43
|
Bresciano JC, Salvador CA, Paz-Y-Miño C, Parody-Merino AM, Bosch J, Woodhams DC. Variation in the Presence of Anti-Batrachochytrium dendrobatidis Bacteria of Amphibians Across Life Stages and Elevations in Ecuador. ECOHEALTH 2015; 12:310-319. [PMID: 25669915 DOI: 10.1007/s10393-015-1010-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/18/2014] [Accepted: 12/29/2014] [Indexed: 05/28/2023]
Abstract
Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance.
Collapse
Affiliation(s)
- J C Bresciano
- Universidad Internacional Menendez Pelayo - Spain, Calle Arjona número 10 escalera 6 piso 4 puerta 4, Seville, Spain.
| | - C A Salvador
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
- Centro Universitario de Investigación Científica y Tecnológica, Universidad Técnica del Norte (UTN), Ibarra, Ecuador
| | - C Paz-Y-Miño
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito, Ecuador
| | - A M Parody-Merino
- Universidad Internacional Menendez Pelayo - Spain, Calle Arjona número 10 escalera 6 piso 4 puerta 4, Seville, Spain
| | - J Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - D C Woodhams
- Department of Biology, University of Massachussets, Boston, Boston, MA, 02125, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama, Republic of Panama
| |
Collapse
|
44
|
Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, Di Schiavi E, Egan S. Antinematode activity of Violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS One 2014; 9:e109201. [PMID: 25295516 PMCID: PMC4189955 DOI: 10.1371/journal.pone.0109201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/10/2014] [Indexed: 01/23/2023] Open
Abstract
The purple pigment violacein is well known for its numerous biological activities including antibacterial, antiviral, antiprotozoan, and antitumor effects. In the current study we identify violacein as the antinematode agent produced by the marine bacterium Microbulbifer sp. D250, thereby extending the target range of this small molecule. Heterologous expression of the violacein biosynthetic pathway in E. coli and experiments using pure violacein demonstrated that this secondary metabolite facilitates bacterial accumulation in the nematode intestine, which is accompanied by tissue damage and apoptosis. Nematodes such as Caenorhabditis elegans utilise a well-defined innate immune system to defend against pathogens. Using C. elegans as a model we demonstrate the DAF-2/DAF-16 insulin/IGF-1 signalling (IIS) component of the innate immune pathway modulates sensitivity to violacein-mediated killing. Further analysis shows that resistance to violacein can occur due to a loss of DAF-2 function and/or an increased function of DAF-16 controlled genes involved in antimicrobial production (spp-1) and detoxification (sod-3). These data suggest that violacein is a novel candidate antinematode agent and that the IIS pathway is also involved in the defence against metabolites from non-pathogenic bacteria.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Malak Daim
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jadranka Nappi
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| | - David Schleheck
- Biology Department, University of Konstanz, Konstanz, Germany
| | - Paolo Bazzicalupo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Pyorubin Producing Pseudomonas Scalp Infection. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2014. [DOI: 10.1097/ipc.0000000000000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Massiliasp. BS-1, a Novel Violacein-Producing Bacterium Isolated from Soil. Biosci Biotechnol Biochem 2014; 75:2008-10. [DOI: 10.1271/bbb.100729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Fritsche K, van den Berg M, de Boer W, van Beek TA, Raaijmakers JM, van Veen JA, Leveau JHJ. Biosynthetic genes and activity spectrum of antifungal polyynes fromCollimonas fungivorans Ter331. Environ Microbiol 2014; 16:1334-45. [DOI: 10.1111/1462-2920.12440] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Kathrin Fritsche
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- BioDetection Systems b.v.; Amsterdam The Netherlands
| | - Marlies van den Berg
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Teris A. van Beek
- Laboratory of Organic Chemistry; Wageningen University; Wageningen The Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Laboratory of Phytopathology; Wageningen University; Wageningen The Netherlands
| | - Johannes A. van Veen
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Institute of Biology; Leiden University; Leiden The Netherlands
| | - Johan H. J. Leveau
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Department of Plant Pathology; University of California; Davis CA USA
| |
Collapse
|
48
|
Asencio G, Lavin P, Alegría K, Domínguez M, Bello H, González-Rocha G, González-Aravena M. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
49
|
Genome Sequence of the Pigment-Producing Bacterium Pseudogulbenkiania ferrooxidans, Isolated from Loktak Lake. GENOME ANNOUNCEMENTS 2013; 1:1/6/e01115-13. [PMID: 24371207 PMCID: PMC3873617 DOI: 10.1128/genomea.01115-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The whole genome of a pigment-producing isolate from a lake in northern India, Pseudogulbenkiania ferrooxidans strain EGD-HP2, has been sequenced to study the spectrum of biosynthesis of secondary metabolites. The genome annotation data revealed an operon for violacein, which showed homology with the reported operon of a Chromobacterium sp., and also a quinone cofactor.
Collapse
|
50
|
Hornung C, Poehlein A, Haack FS, Schmidt M, Dierking K, Pohlen A, Schulenburg H, Blokesch M, Plener L, Jung K, Bonge A, Krohn-Molt I, Utpatel C, Timmermann G, Spieck E, Pommerening-Röser A, Bode E, Bode HB, Daniel R, Schmeisser C, Streit WR. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 2013; 8:e55045. [PMID: 23405110 PMCID: PMC3566124 DOI: 10.1371/journal.pone.0055045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/18/2012] [Indexed: 01/13/2023] Open
Abstract
Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes.
Collapse
Affiliation(s)
- Claudia Hornung
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Anja Poehlein
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Frederike S. Haack
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Martina Schmidt
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Andrea Pohlen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Plener
- Center for integrated Protein Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for integrated Protein Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Andreas Bonge
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Ines Krohn-Molt
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Christian Utpatel
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Gabriele Timmermann
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Eva Spieck
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Andreas Pommerening-Röser
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Edna Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Rolf Daniel
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christel Schmeisser
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|