1
|
Du J, Zhou T, Peng W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym 2025; 352:123138. [PMID: 39843049 DOI: 10.1016/j.carbpol.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
Collapse
Affiliation(s)
- Jian Du
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
2
|
Badami A, Esmaeili J, Mirtalaie H. Employing Polymer and Gel to Fabricate Scaffold-like Cancellous Orthopedic Screw: Polycaprolactone/Chitosan/Hydroxyapatite. Gels 2025; 11:28. [PMID: 39851999 PMCID: PMC11765406 DOI: 10.3390/gels11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Using metallic/polymeric orthopedic screws causes cavities in bone trauma after the attachment of broken bones, which prolongs the healing. Yet, it remains unknown how to overcome such a challenge. The main aim of this research was to use both polymers and gels to fabricate and study a new PCL/chitosan/hydroxyapatite scaffold-like orthopedic screw for cancellous bone trauma. This screw, because of its low stiffness and its scaffold-based matrix (due to the gel part), can facilitate bone healing. Different concentrations of PCL (60-95% w/v) and chitosan (0-5% w/v) were blended according to the Response Surface Methodology using the Central Composite Design. The screws were fabricated using the freeze-drying technique. The screws were assessed mechanically, physically, and biologically (cell viability, cell attachment, DAPI, ALP staining, and Alizarin Red staining), and in vivo (a rat subcutaneous implantation model). Based on the results, screws depending on the PCL and gel content depicted different but notable mechanical behavior (10-60 MPa of compressive strength and 100-600 N force). The gel part could affect the physical properties of screws including water uptake (120%), degradation (18% after 21 days), porosities (23%), and mechanical strength (elastic modulus = 59.47 Mpa). The results also demonstrated no cytotoxicity towards MC3T3 cells (>80% cell viability) with good cell attachment, cell concentration, and mineralization (>90%) that was justified by the gel content. The results also showed good in vivo biocompatibility. To sum up, fabricated scaffold-like screws with gel content can be a good candidate for cancellous-bone-based orthopedic purposes. However, more in vitro and in vivo studies are required to optimize the PCL:gel ratio.
Collapse
Affiliation(s)
- AmirHossein Badami
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran;
- Department of Applied Science, UQAC University, Quebec, QC G7H 4V8, Canada
| | - Hasan Mirtalaie
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| |
Collapse
|
3
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Wang Q, Sun X, Basem A, Hussam AS, Baghaei S, Rezaei R. Evaluating mechanical and biological responses of bipolymeric drug-chitosan-hydroxyapatite scaffold for wounds: Fabrication, characterization, and finite element analysis. Burns 2024; 50:107207. [PMID: 39317539 DOI: 10.1016/j.burns.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
This study aims to explore the potential of a scaffold composed of drug-chitosan-hydroxyapatite (HA) in improving tissue treatment. The focus of the investigation lies in analyzing the physical and biological properties of the scaffold and evaluating its mechanical characteristics through finite-element analysis. To synthesize microcapsules containing dextran-diclofenac sodium, the electrospraying method was employed. The drug-chitosan-HA scaffold with varying volume fractions (VF) of the synthesized microcapsules (10, 15, and 20) was fabricated using the freeze-drying technique. Microscopic and scanning electron microscopy (SEM) images were utilized to evaluate the morphology, shape, and size of the microcapsules, as well as the porosity of the scaffolds for wound healing purposes. The mechanical properties of the synthesized microcapsules were determined via a nanoindentation test, while the mechanical behavior of the fabricated scaffolds was assessed through compression testing. Additionally, a multiscale finite-element model was developed to predict the mechanical properties of tissue scaffolds containing pharmaceutical microcapsules. The findings indicate that the incorporation of drug-chitosan-hydroxyapatite into the tissue significantly enhances both mechanical and biological responses. The mechanical evaluations demonstrate that the drug-chitosan-hydroxyapatite tissue exhibits excellent resistance to pressure, making it a suitable protective covering for skin wounds. Moreover, biological evaluations reveal that an increase in scaffold porosity leads to higher swelling behavior. The scaffold containing 20 % pharmaceutical microcapsules demonstrated the greatest swelling and desirable antibacterial properties, thereby indicating its potential as an effective wound dressing. Furthermore, a multiscale finite-element model was developed to predict the mechanical properties of tissue containing pharmaceutical microcapsules. The results indicated that the average size of the microcapsules was in the range of 170 to 180 µm, and the porosity of the prepared tissue was between 52 % and 61 %. The experimental compressive properties revealed that an increase in the volume fraction of the embedded microcapsules led to an increase in the maximum compressive stress and compressive modulus of the scaffolds by up to 54.95 % and 53.18 %, respectively, for the scaffold containing 20 % VF of pharmaceutical microcapsules compared to the specimen containing 10 % VF. In conclusion, the developed scaffold has the potential to serve as an effective wound dressing, with the ability to provide structural support, facilitate controlled drug release, and promote wound healing.
Collapse
Affiliation(s)
- Qihao Wang
- School of Physical Education, Hunan Normal University, Changsha 410081, China
| | - Xiaodong Sun
- Department of Physical Education, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ali Basem
- Faculty of Engineering, Warith Al-Anbiyaa University, Karbala 56001, Iraq
| | - Albę Słabi Hussam
- Department of Dental Technology,Al-Amarah University College, Maysan, lraq
| | - Sh Baghaei
- Department of Mechanical Engineering, Islamic Azad University, Iran
| | - R Rezaei
- Department of Mechanical Engineering, Islamic Azad University, Iran
| |
Collapse
|
5
|
Dobrzyńska-Mizera M, Knitter M, Kamińska M, Szymanowska D, Sobczyk-Guzenda A, Różańska S, Różański J, Mikulski M, Muzalewska M, Wyleżoł M, Smuga-Kogut M, Modrzejewska Z, Di Lorenzo ML. Thermosensitive hydrogel doped with osteoconductive fillers for the treatment of periodontitis periapicalis chronica: from synthesis to clinical trial. Biomater Sci 2024; 12:6063-6081. [PMID: 39422703 DOI: 10.1039/d4bm00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herein, a chitosan-based thermosensitive hydrogel (CH) containing hydroxyapatite (HAp), poly(lactic acid) (PLDLLA) or their mixture is proposed as an innovative, biomimetic composition with antimicrobial and bone-forming properties for guided bone regeneration. The modified hydrogels were synthesized and characterized to verify their suitability for the treatment of periodontitis periapicalis chronica. Compared to the unmodified hydrogel, both CH_HAp and CH_PLDLLA revealed improved mechanical properties, as evidenced by rotational rheology. FTIR analysis proved that no chemical interplay existed between the components. All the tested samples displayed no cytotoxicity against osteoblast-like cell culture and confirmed antimicrobial features, both crucial from an application perspective. Radiation sterilization dosage was tailored for the tested samples to maintain sterility for a minimum of 8 weeks of storage and limit crosslinking of the samples. Finally, the hydrogel was used in a clinical trial to treat a patient with chronic inflammation of periapical tissues in teeth 26 and 27. The medical procedure proved the safety, nontoxicity, non-allergenicity, and, most importantly, bone-forming properties of the hydrogel formulation. The kinetics of new bone formation was analyzed in-depth using graphical cross-sections of anatomical structures obtained from pre- and post-operative CBCT scans.
Collapse
Affiliation(s)
- Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Marta Kamińska
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Anna Sobczyk-Guzenda
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Sylwia Różańska
- Institute of Chemical Technology and Engineering, Division of Chemical Engineering and Equipment, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Jacek Różański
- Institute of Chemical Technology and Engineering, Division of Chemical Engineering and Equipment, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Michał Mikulski
- Artdent Dental Office, Piekarska 11-13, 62-800 Kalisz, Poland
| | - Małgorzata Muzalewska
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Marek Wyleżoł
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Małgorzata Smuga-Kogut
- Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17, 75-620 Koszalin, Poland
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Lodz University of Technology, 93-005 Lodz, Poland
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
6
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Sindhusha VB, Doraiswamy JN. The Role of Chitosan and Gelatin-Based Scaffolds in Bone Regeneration: A Systematic Review. Cureus 2024; 16:e69793. [PMID: 39435228 PMCID: PMC11492353 DOI: 10.7759/cureus.69793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Guided bone regeneration facilitates the growth of new bone in areas where there is a bone defect or insufficiency. This technique involves placing a barrier membrane over the bone graft site, and the membrane prevents the invasion of soft tissue (such as gingival tissue) into the bone graft area. This allows the slower-growing bone cells to populate the area without competition, promoting proper bone regeneration. When combined, chitosan and gelatin create composite scaffolds that leverage the strengths of both materials. Chitosan provides structural integrity and antimicrobial properties, and gelatin enhances cell attachment and proliferation, which improves mechanical properties and makes it more suitable for supporting bone regeneration in load-bearing areas. This systematic review aims to evaluate the effectiveness of chitosan and gelatin-based scaffolds in bone regeneration. Various databases such as PubMed, Cochrane Library, LILAC, and Google Scholar were screened to adhere to the eligibility criteria. The included studies in the review were the in vivo and in vitro assessment of the chitosan and gelatin efficiency as a scaffold. Six studies were investigated for the involvement of chitosan and gelatin-based scaffolds in bone regeneration. Of these, two in vivo studies examined bone regeneration by measuring alkaline phosphatase activity (ALP) using different staining techniques, while the remaining four in vitro studies used histologic and histometric analysis where stem cells, chemicals, and other biopolymers were compared. Chitosan and gelatin scaffolds consistently showed better results in terms of bone repair throughout all six experiments. Gelatin's capacity for regeneration can be increased by mixing it with chitosan. For additional advancement, future researchers need to focus on incorporating biopolymers. The potential of scaffolds composed of gelatin and chitosan to replace tissue lost due to periodontitis shows great clinical significance.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jayakumar N Doraiswamy
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
10
|
Devi LC, Putra HSD, Kencana NBW, Olatunji A, Setiawati A. Turning Portunus pelagicus Shells into Biocompatible Scaffolds for Bone Regeneration. Biomedicines 2024; 12:1796. [PMID: 39200260 PMCID: PMC11351815 DOI: 10.3390/biomedicines12081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab (Portunus pelagicus) shell waste as a composite scaffold combined with HAP and COL I to improve biocompatibility, porosity, swelling, and mechanical properties. The composite scaffold demonstrated nearly 60% porosity with diameters ranging from 100-200 μm with an interconnected network that structurally mimics the extracellular matrix. The swelling ratio of the scaffold was measured at 208.43 ± 14.05%, 248.93 ± 4.32%, 280.01 ± 1.26%, 305.44 ± 20.71%, and 310.03 ± 17.94% at 1, 3, 6, 12, and 24 h, respectively. Thus, the Portunus pelagicus scaffold showed significantly lower degradation ratios of 5.64 ± 1.89%, 14.34 ± 8.59%, 19.57 ± 14.23%, and 29.13 ± 9.87% for 1 to 4 weeks, respectively. The scaffold supports osteoblast attachment and proliferation for 7 days. Waste from Portunus pelagicus shells has emerged as a prospective source of chitosan with potential application in tissue engineering.
Collapse
Affiliation(s)
- Louisa Candra Devi
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Hendrik Satria Dwi Putra
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Nyoman Bayu Wisnu Kencana
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| | - Ajiteru Olatunji
- CURE 3D, Department of Cardiac Surgery, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Agustina Setiawati
- Faculty of Pharmacy, Sanata Dharma University, Sleman, Yogyakarta 55281, Indonesia; (L.C.D.); (H.S.D.P.); (N.B.W.K.)
| |
Collapse
|
11
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
12
|
Kudiyarasu S, Karuppan Perumal MK, Rajan Renuka R, Manickam Natrajan P. Chitosan composite with mesenchymal stem cells: Properties, mechanism, and its application in bone regeneration. Int J Biol Macromol 2024; 275:133502. [PMID: 38960259 DOI: 10.1016/j.ijbiomac.2024.133502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Bone defects resulting from trauma, illness or congenital abnormalities represent a significant challenge to global health. Conventional treatments such as autographs and allografts have limitations, leading to the exploration of bone tissue engineering (BTE) as an alternative approach. This review aims to provide a comprehensive analysis of bone regeneration mechanisms with a focus on the role of chitosan-based biomaterials and mesenchymal stem cells (MSCs) in BTE. In addition, the physiochemical and biological properties of chitosan, its potential for bone regeneration when combined with other materials and the mechanisms through which MSCs facilitate bone regeneration were investigated. In addition, different methods of scaffold development and the incorporation of MSCs into chitosan-based scaffolds were examined. Chitosan has remarkable biocompatibility, biodegradability and osteoconductivity, making it an attractive choice for BTE. Interactions between transcription factors such as Runx2 and Osterix and signaling pathways such as the BMP and Wnt pathways regulate the differentiation of MSCs and bone regeneration. Various forms of scaffolding, including porous and fibrous injections, have shown promise in BTE. The synergistic combination of chitosan and MSCs in BTE has significant potential for addressing bone defects and promoting bone regeneration, highlighting the promising future of clinical challenges posed by bone defects.
Collapse
Affiliation(s)
- Sushmitha Kudiyarasu
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Selaiyur, Chennai 600073, Tamil Nadu, India
| | - Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Prabhu Manickam Natrajan
- Department of Clinical Sciences, College of Dentistry, Centre of Medical and Bio-allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates..
| |
Collapse
|
13
|
Iqbal N, Ganguly P, Yildizbakan L, Raif EM, Jones E, Giannoudis PV, Jha A. Chitosan Scaffolds from Crustacean and Fungal Sources: A Comparative Study for Bone-Tissue-Engineering Applications. Bioengineering (Basel) 2024; 11:720. [PMID: 39061802 PMCID: PMC11273506 DOI: 10.3390/bioengineering11070720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chitosan (CS), a biopolymer, holds significant potential in bone regeneration due to its biocompatibility and biodegradability attributes. While crustacean-derived CS is conventionally used in research, there is growing interest in fungal-derived CS for its equally potent properties in bone regenerative applications. Here, we investigated the physicochemical and biological characteristics of fungal (MDC) and crustacean (ADC)-derived CS scaffolds embedded with different concentrations of tricalcium phosphate minerals (TCP), i.e., 0(wt)%: ADC/MDC-1, 10(wt)%: ADC/MDC-2, 20(wt)%: ADC/MDC-3 and 30(wt)%: ADC/MDC-4. ADC-1 and MDC-1 lyophilised scaffolds lacking TCP minerals presented the highest zeta potentials of 47.3 ± 1.2 mV and 55.1 ± 1.6 mV, respectively. Scanning electron microscopy revealed prominent distinctions whereby MDC scaffolds exhibited striation-like structural microarchitecture in contrast to the porous morphology exhibited by ADC scaffold types. With regard to the 4-week scaffold mass reductions, MDC-1, MDC-2, MDC-3, and MDC-4 indicated declines of 55.98 ± 4.2%, 40.16 ± 3.6%, 27.05 ± 4.7%, and 19.16 ± 5.3%, respectively. Conversely, ADC-1, ADC-2, ADC-3, and ADC-4 presented mass reductions of 35.78 ± 5.1%, 25.19 ± 4.2%, 20.23 ± 6.3%, and 13.68 ± 5.4%, respectively. The biological performance of the scaffolds was assessed through in vitro bone marrow mesenchymal stromal cell (BMMSCs) attachment via indirect and direct cytotoxicity studies, where all scaffold types presented no cytotoxic behaviours. MDC scaffolds indicated results comparable to ADC, where both CS types exhibited similar physiochemical properties. Our data suggest that MDC scaffolds could be a potent alternative to ADC-derived scaffolds for bone regeneration applications, particularly for 10(wt)% TCP concentrations.
Collapse
Affiliation(s)
- Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK;
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| | - Lemiha Yildizbakan
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - El Mostafa Raif
- Faculty of Medicine and Health, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK;
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedic Surgery, University of Leeds, Leeds LS2 9JT, UK
| | - Animesh Jha
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Zarif ME, Bita B, Yehia-Alexe SA, Negut I, Gradisteanu Pircalabioru G, Andronescu E, Groza A. Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers. Polymers (Basel) 2024; 16:1922. [PMID: 39000777 PMCID: PMC11244040 DOI: 10.3390/polym16131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
In this work results are presented on the evaluation of HAp, HApSr, HAp_CS, and HApSr_CS layers deposited on Ti substrates regarding L929 cell viability and cytotoxicity as well as antimicrobial activity against Staphylococcus aureus, in connection with their physicochemical properties. The HAp and HApSr layers generated by radio-frequency magnetron sputtering technique were further covered with chitosan by a matrix-assisted pulsed laser evaporation technique. During the plasma depositions, the Ti substrates were heated externally by a home-made oven above 100 °C. The HApSr_CS layers generated on the unpolished Ti substrates at 100 °C and 400 °C showed the highest biocompatibility properties and antimicrobial activity against Staphylococcus aureus. The morphology of the layer surfaces, revealed by scanning electron microscopy, is dependent on substrate temperature and substrate surface roughness. The optically polished surfaces of Ti substrates revealed grain-like and microchannel structure morphologies of the layers deposited at 25 °C substrate temperature and 400 °C, respectively. Chitosan has no major influence on HAp and HApSr layer surface morphologies. X-ray photoelectron spectroscopy indicated the presence of Ca 2p3/2 peak characteristic of the HAp structure even in the case of the HApSr_CS samples generated at a 400 °C substrate temperature. Fourier transform infrared spectroscopy investigations showed shifts in the wavenumber positions of the P-O absorption bands as a function of Sr or chitosan presence in the HAp layers generated at 25, 100, and 400 °C substrate temperatures.
Collapse
Affiliation(s)
- Maria Elena Zarif
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Bita
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Sasa Alexandra Yehia-Alexe
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Groza
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| |
Collapse
|
15
|
Anaya-Sampayo LM, García-Robayo DA, Roa NS, Rodriguez-Lorenzo LM, Martínez-Cardozo C. Platelet-rich fibrin (PRF) modified nano-hydroxyapatite/chitosan/gelatin/alginate scaffolds increase adhesion and viability of human dental pulp stem cells (DPSC) and osteoblasts derived from DPSC. Int J Biol Macromol 2024; 273:133064. [PMID: 38866288 DOI: 10.1016/j.ijbiomac.2024.133064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 μm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.
Collapse
Affiliation(s)
| | | | - Nelly S Roa
- Dental Research Center, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Maria Rodriguez-Lorenzo
- Department of Polymeric Nanomaterials and Biomaterials, Institute Science and Technology of Polymers (ICTP-CSIC), Madrid, Spain
| | | |
Collapse
|
16
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
17
|
Zhang S, Yang W, Gong W, Lu Y, Yu DG, Liu P. Recent progress of electrospun nanofibers as burning dressings. RSC Adv 2024; 14:14374-14391. [PMID: 38694552 PMCID: PMC11061782 DOI: 10.1039/d4ra01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Burns are a global public health problem, which brings great challenges to public health and the economy. Severe burns often lead to systemic infection, shock, multiple organ failure, and even death. With the increasing demand for the therapeutic effect of burn wounds, traditional dressings have been unable to meet people's needs due to their single function and many side effects. In this context, electrospinning shows a great prospect on the way to open up advanced wound dressings that promote wound repairing and prevent infection. With its large specific surface area, high porosity, and similar to natural extracellular matrix (ECM), electrospun nanofibers can load drugs and accelerate wound healing. It provides a promising solution for the treatment and management of burn wounds. This review article introduces the concept of burn and the types of electrospun nanofibers, then summarizes the polymers used in electrospun nanofiber dressings. Finally, the drugs (plant extracts, small molecule drugs and nanoparticles) loaded with electrospun burn dressings are summarized. Some promising aspects for developing commercial electrospun burn dressings are proposed.
Collapse
Affiliation(s)
- Shengwei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Wei Yang
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhang Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology Shanghai 200443 China
| |
Collapse
|
18
|
Jiu J, Liu H, Li D, Li J, Liu L, Yang W, Yan L, Li S, Zhang J, Li X, Li JJ, Wang B. 3D bioprinting approaches for spinal cord injury repair. Biofabrication 2024; 16:032003. [PMID: 38569491 DOI: 10.1088/1758-5090/ad3a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Dijun Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenjie Yang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Liu L, Hou S, Xu G, Gao J, Mu J, Gao M, He J, Su X, Yang Z, Liu Y, Chen T, Dong Z, Cheng L, Shi Z. Evaluation of osteogenic properties of a novel injectable bone-repair material containing strontium in vitro and in vivo. Front Bioeng Biotechnol 2024; 12:1390337. [PMID: 38707496 PMCID: PMC11069309 DOI: 10.3389/fbioe.2024.1390337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lijia Cheng
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| | - Zheng Shi
- Clinical Medical College, Affiliated Hospital, School of Basic Medical Sciences of Chengdu University, Chengdu, China
| |
Collapse
|
20
|
Wang H, Hsu YC, Wang C, Xiao X, Yuan Z, Zhu Y, Yang D. Conductive and Enhanced Mechanical Strength of Mo 2Ti 2C 3 MXene-Based Hydrogel Promotes Neurogenesis and Bone Regeneration in Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17208-17218. [PMID: 38530974 DOI: 10.1021/acsami.3c19410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bone defects are common with increasing high-energy fractures, tumor bone invasion, and implantation revision surgery. Bone is an electroactive tissue that has electromechanical interaction with collogen, osteoblasts, and osteoclasts. Hydrogel provides morphological plasticity and extracellular matrix (ECM) 3D structures for cell survival, and is widely used as a bone engineering material. However, the hydrogels have poor mechanical intensity and lack of cell adhesion, slow gelation time, and limited conductivity. MXenes are novel nanomaterials with hydrophilic groups that sense cell electrophysiology and improve hydrogel electric conductivity. Herein, gelatin had multiple active groups (NH2, OH, and COOH) and an accelerated gelation time. Acrylamide has Schiff base bonds to cross-link with gelatin and absorb metal ions. Deacetylated chitosan improved cell adhesion and active groups to connect MXene and acrylamide. We constructed Mo2Ti2C3 MXene hydrogel with improved elastic modulus and viscosity, chemical cross-linking structure, electric conductivity, and good compatibility. Mo2Ti2C3 MXene hydrogel exhibits outstanding osteogenesis in vitro. Mo2Ti2C3 MXene hydrogel promotes osteogenesis via alkaline phosphatase (ALP) and alizarin red S (ARS) staining, improving osteogenic marker genes and protein expressions in vitro. Mo2Ti2C3 MXene hydrogel aids new bone formation in the in vivo calvarial bone defect model via micro-CT and histology. Mo2Ti2C3 MXene hydrogel facilitates neurogenesis factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression, and aids newly born neuron marker Tuj-1 and sensory neuron marker serotonin (5-HT) and osteogenesis pathway proteins, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), SMAD family member 4 (SMAD4), and bone morphogenetic protein-2 (BMP2) in the bone defect repair process. Mo2Ti2C3 MXene hydrogel promotes osteogenesis and neurogenesis, which extends its biomedical application in bone defect reconstruction.
Collapse
Affiliation(s)
- Hongyu Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ching Hsu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
| | - Chune Wang
- Department of Ophthalmology, Jiyang People's Hospital of Jinan, Jinan 250000, China
| | - Xiao Xiao
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengbin Yuan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Zhu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
22
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
23
|
Lopresti F, Campora S, Rigogliuso S, Nicosia A, Lo Cicero A, Di Marco C, Tornabene S, Ghersi G, La Carrubba V. Improvement of Osteogenic Differentiation of Mouse Pre-Osteoblastic MC3T3-E1 Cells on Core-Shell Polylactic Acid/Chitosan Electrospun Scaffolds for Bone Defect Repair. Int J Mol Sci 2024; 25:2507. [PMID: 38473755 DOI: 10.3390/ijms25052507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Francesco Lopresti
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation, Italian National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Chiara Di Marco
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Salvatore Tornabene
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l, via Enzo ed Elvira Sellerio, 50, 90141 Palermo, Italy
| | - Vincenzo La Carrubba
- Department of Engineering, University of Palermo, RU INSTM, Viale delle Scienze, 90128 Palermo, Italy
- ATeN Center, University of Palermo, Viale delle Scienze, Ed. 18A, 90128 Palermo, Italy
| |
Collapse
|
24
|
Tavakoli M, Salehi H, Emadi R, Varshosaz J, Labbaf S, Seifalian AM, Sharifianjazi F, Mirhaj M. 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction. Int J Biol Macromol 2024; 258:128917. [PMID: 38134992 DOI: 10.1016/j.ijbiomac.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
25
|
Duta L, Grumezescu V. The Effect of Doping on the Electrical and Dielectric Properties of Hydroxyapatite for Medical Applications: From Powders to Thin Films. MATERIALS (BASEL, SWITZERLAND) 2024; 17:640. [PMID: 38591446 PMCID: PMC10856152 DOI: 10.3390/ma17030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
Recently, the favorable electrical properties of biomaterials have been acknowledged as crucial for various medical applications, including both bone healing and growth processes. This review will specifically concentrate on calcium phosphate (CaP)-based bioceramics, with a notable emphasis on hydroxyapatite (HA), among the diverse range of synthetic biomaterials. HA is currently the subject of extensive research in the medical field, particularly in dentistry and orthopedics. The existing literature encompasses numerous studies exploring the physical-chemical, mechanical, and biological properties of HA-based materials produced in various forms (i.e., powders, pellets, and/or thin films) using various physical and chemical vapor deposition techniques. In comparison, there is a relative scarcity of research on the electrical and dielectric properties of HA, which have been demonstrated to be essential for understanding dipole polarization and surface charge. It is noteworthy that these electrical and dielectric properties also offer valuable insights into the structure and functioning of biological tissues and cells. In this respect, electrical impedance studies on living tissues have been performed to assess the condition of cell membranes and estimate cell shape and size. The need to fill the gap and correlate the physical-chemical, mechanical, and biological characteristics with the electrical and dielectric properties could represent a step forward in providing new avenues for the development of the next-generation of high-performance HA-doped biomaterials for future top medical applications. Therefore, this review focuses on the electrical and dielectric properties of HA-based biomaterials, covering a range from powders and pellets to thin films, with a particular emphasis on the impact of the various dopants used. Therefore, it will be revealed that each dopant possesses unique properties capable of enhancing the overall characteristics of the produced structures. Considering that the electrical and dielectric properties of HA-based biomaterials have not been extensively explored thus far, the aim of this review is to compile and thoroughly discuss the latest research findings in the field, with special attention given to biomedical applications.
Collapse
Affiliation(s)
- Liviu Duta
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
26
|
Couvrette LJ, Walker KLA, Bui TV, Pelling AE. Plant Cellulose as a Substrate for 3D Neural Stem Cell Culture. Bioengineering (Basel) 2023; 10:1309. [PMID: 38002433 PMCID: PMC10669287 DOI: 10.3390/bioengineering10111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Neural stem cell (NSC)-based therapies are at the forefront of regenerative medicine strategies for various neural defects and injuries such as stroke, traumatic brain injury, and spinal cord injury. For several clinical applications, NSC therapies require biocompatible scaffolds to support cell survival and to direct differentiation. Here, we investigate decellularized plant tissue as a novel scaffold for three-dimensional (3D), in vitro culture of NSCs. Plant cellulose scaffolds were shown to support the attachment and proliferation of adult rat hippocampal neural stem cells (NSCs). Further, NSCs differentiated on the cellulose scaffold had significant increases in their expression of neuron-specific beta-III tubulin and glial fibrillary acidic protein compared to 2D culture on a polystyrene plate, indicating that the scaffold may enhance the differentiation of NSCs towards astrocytic and neuronal lineages. Our findings suggest that plant-derived cellulose scaffolds have the potential to be used in neural tissue engineering and can be harnessed to direct the differentiation of NSCs.
Collapse
Affiliation(s)
- Lauren J. Couvrette
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Krystal L. A. Walker
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| | - Tuan V. Bui
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Andrew E. Pelling
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| |
Collapse
|
27
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
28
|
Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int J Biol Macromol 2023; 251:126238. [PMID: 37567529 DOI: 10.1016/j.ijbiomac.2023.126238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In designing and fabricating scaffolds to fill the bone defects and stimulate new bone formation, the biomimetics of the construct is a crucial factor in invoking the bone microenvironment to promote osteogenic differentiation. Regarding structural traits, changes in porous characteristics of the scaffolds, such as pore size, pore morphology, and percentage porosity, may patronize or jeopardize their other physicochemical and biological properties. Chitosan (CS), a biodegradable naturally occurring polymer, has recently drawn considerable attention as a scaffolding material in tissue engineering and regenerative medicine. CS-based microporous scaffolds have been reported to aid osteogenesis under both in vitro and in vivo conditions by supporting cellular attachment and proliferation of osteoblast cells and the formation of mineralized bone matrix. This related notion may be found in numerous earlier research, even though the precise mechanism of action that encourages the development of new bone still needs to be understood completely. This article presents the potential correlations and the significance of the porous properties of the CS-based scaffolds to influence osteogenesis and angiogenesis during bone regeneration. This review also goes over resolving the mechanical limitations of CS by blending it with other polymers and ceramics.
Collapse
Affiliation(s)
- Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
29
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
30
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
31
|
Chen X, Sun L, Wang H, Cao S, Shang T, Yan H, Lin Q. Nano-SiO 2 reinforced alginate-chitosan-gelatin nanocomposite hydrogels with improved physicochemical properties and biological activity. Colloids Surf B Biointerfaces 2023; 228:113413. [PMID: 37343505 DOI: 10.1016/j.colsurfb.2023.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Alginate (Alg) hydrogels possess desirable advantages for application in tissue engineering; however, they are limited by their weak mechanical properties, poor chronical stability in phosphate buffered saline, and absence of mammalian cell recognition sites, severely restricting their biomedical applications. To overcome these limitations, we integrated Alg hydrogels with nano-silica (SiO2) to produce nano-SiO2 reinforced Alg-chitosan-gelatin nanocomposite hydrogels (Alg/SiO2-CHI-GA NCH) for biomedical purposes, utilizing Chitosan (CHI) and gelatin (GA) in an alternate electrostatic adsorption. Specifically, we investigated the regulatory and promotional effects of the nano-SiO2 on the morphological structure, mechanical properties, thermal stability, rheological properties, swelling, biodegradability, biomineralization and cytocompatibility of the resultant Alg/SiO2-CHI-GA NCH. The experimental findings demonstrate that the constructed Alg/SiO2-CHI-GA NCH exhibited uniform morphology and a regular structure. Upon freeze-drying, the internal cross-sections of the NCH exhibited a honeycomb porous structure. Furthermore, the physicochemical properties and biological activities of the prepared Alg/SiO2-CHI-GA NCH were regulated to some extent by nano-SiO2 content. Notably, nano-SiO2 inclusion enhanced the attachment and viability of MG63 and MC3T3-E1 cells and induced three-dimensional cell growth in ALG/SiO2-CHI-GA NCH. Among the fabricated NCH, Alg/SiO2-CHI-GA NCH with 0.5% and 1.0% (w/v) nano-SiO2 exhibited significant proliferative activity, which is attributable to their high porosity and uniform cell adhesion. Furthermore, the alkaline phosphatase activity in the cells gradually increased with increasing of nano-SiO2 amount, indicating the favorable effect of nano-SiO2 on the osteogenic differentiation of MG63 and MC3T3-E1 cells. Our study findings provide a comprehensive foundation for the structural- and property-related limitations of Alg hydrogels in biomedicine, thereby expanding their potential applications in tissue engineering.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Lili Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Shanshan Cao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Shang
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
32
|
Najafabadi FM, Karbasi S, Benisi SZ, Shojaei S. Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering. Int J Biol Macromol 2023; 243:125218. [PMID: 37285889 DOI: 10.1016/j.ijbiomac.2023.125218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Recently, coating on composite scaffolds has attracted many researchers' attention to improve scaffolds' properties. In this research, a 3D printed scaffold was fabricated from polycaprolactone (PCL)/magnetic mesoporous bioactive glass (MMBG)/alumina nanowire (Al2O3, Optimal percentage 5 %) (PMA) and then coated with chitosan (Cs)/multi-walled carbon nanotubes (MWCNTs) by an immersion coating method. Structural analyses such as XRD and ATR-FTIR confirmed the presence of Cs and MWCNTs in the coated scaffolds. The SEM results of the coated scaffolds showed homogeneous three-dimensional structures with interconnected pores compared to the uncoated scaffolds. The coated scaffolds exhibited an increase in compression strength (up to 16.1 MPa) and compressive modulus (up to 40.83 MPa), improved surface hydrophilicity (up to 32.69°), and decrease in degradation rate (68 % remaining weight) compared to the uncoated scaffolds. The increase in apatite formation in the scaffold coated with Cs/MWCNTs was confirmed by SEM, EDAX, and XRD tests. Coating the PMA scaffold with Cs/MWCNTs leads to the viability and proliferation of MG-63 cells and more secretion of alkaline phosphatase and Ca activity, which can be introduced as a suitable candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
34
|
Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, Salomón-Carlos J, Cheng N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers (Basel) 2023; 15:2762. [PMID: 37447408 DOI: 10.3390/polym15132762] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved. Moreover, essential clinical and osteoblastic fate-controlling advances have been achieved with the use of synthetic polymers in the production of hydrogels. However, current trends look towards fabricating hydrogels from biological precursors, such as biopolymers, due to the high biocompatibility, degradability, and mechanical control that can be regulated. Therefore, this review analyzes the concept of hydrogels and the characteristics of chitosan, collagen, and gelatin as excellent candidates for fabricating BTE scaffolds. The changes and opportunities brought on by these biopolymers in bone regeneration are discussed, considering the integration, synergy, and biocompatibility features.
Collapse
Affiliation(s)
- Karen Guillén-Carvajal
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Ernesto Beltrán-Partida
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Jorge Salomón-Carlos
- Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore
| |
Collapse
|
35
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
36
|
Dahiya M, Awasthi R, Yadav JP, Sharma S, Dua K, Dureja H. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization. Int J Biol Macromol 2023; 242:124919. [PMID: 37196717 DOI: 10.1016/j.ijbiomac.2023.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Biocompatible magnetic nanoparticles are used for various biomedical applications. This study reported the development of nanoparticles with magnetic properties by embedding magnetite particles in the drug-loaded, crosslinked matrix of chitosan. Sorafenib tosylate-loaded magnetic nanoparticles were prepared by a modified ionic-gelation method. Particle size, zeta potential, polydispersity index, and entrapment efficiency of nanoparticles were in the range of 95.6 ± 3.4 nm to 440.9 ± 7.3 nm, 12.8 ± 0.8 mV to 27.3 ± 1.1 mV, 0.289 ± 0.011 to 0.571 ± 0.011, and 54.36 ± 1.26 % to 79.67 ± 1.40 %, respectively. The XRD spectrum of formulation CMP-5 confirmed the amorphous nature of the loaded drug in nanoparticles. TEM image confirmed the spherical shape of nanoparticles. Atomic force microscopic image of formulation CMP-5 indicated a mean surface roughness of 10.3597 nm. The magnetization saturation of formulation CMP-5 was 24.74 emu/g. Electron paramagnetic resonance spectroscopy revealed that formulation CMP-5's g-Lande's factor was 4.27, which was extremely near to the 4.30 (usual for Fe3+ ions). Residual paramagnetic Fe3+ ions may be responsible for paramagnetic origin. The data suggests superparamagnetic nature of particles. Formulations released 28.66 ± 1.22 % to 53.24 ± 1.95 % and 70.13 ± 1.72 % to 92.48 ± 1.32 % of the loaded drug after 24 h in pH 6.8 and pH 1.2, respectively. The IC50 value of formulation CMP-5 was 54.75 μg/mL in HepG2 (human hepatocellular carcinoma cell lines).
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Jaya Parkash Yadav
- Indira Gandhi University, Meerpur, Rewari 123401, Haryana, India; Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Shammi Sharma
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
37
|
Adhikari HS, Garai A, Yadav PN. Synthesis, characterization, and anticancer activity of chitosan functionalized isatin based thiosemicarbazones, and their copper(II) complexes. Carbohydr Res 2023; 526:108796. [PMID: 36944301 DOI: 10.1016/j.carres.2023.108796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The one-pot synthetic method of condensation of isatin and 5-chloroisatin on to amino group at C2 position of the pyranose ring chitosan in chitosan thiosemicarbazide was employed to get these chitosan thiosemicarbazones (TSCs). The partial incorporation of thiosemicarbazone moiety in chitosan was shown by FT-IR and 13C NMR spectroscopic studies, powder X ray diffraction, and CHNS microanalysis. The NOS tridentate coordination behavior of TSCs with copper(II) chloride to give the square planar complexes was established by FT-IR spectroscopic data, magnetic susceptibility measurement, and EPR spectral analysis. The thermal stability of these biomaterial chitosan derivatives till the commencement of chain disruption at 200C was shown by thermal studies. As revealed by colorimetric MTT assays, the in vitro anticancer activity enhancement accorded with the functionalization of chitosan as isatin based chitosan TSCs, and NOS tridentate coordination of TSCs plus a monodentate coordination of chloride ion with copper(II) ion. Only a marginal activity difference of these compounds was observed against the tumorigenic MDCK and MCF-7 cancer cell lines, irrespective of unit molecular weight (Mw) and degree of deacetylation (DDA) of ring chitosan. The 5-chloroisatin chitosan TSCs showed better activity than isatin chitosan TSCs against both the cell lines.
Collapse
Affiliation(s)
- Hari Sharan Adhikari
- Institute of Engineering, Pashchimanchal Campus, Department of Applied Sciences, Tribhuvan University, Pokhara, Nepal
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
38
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
39
|
New N- and C-modified RGD-hemorphins as potential biomedical application on Ti-surface materials: synthesis, characterization and antinociceptive activity. Mol Divers 2023; 27:263-280. [PMID: 35438429 DOI: 10.1007/s11030-022-10428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023]
Abstract
This manuscript presented the synthesis and characterization of two new N- and C-modified analogues of VV-hemorphin-7 containing RGD (Arg-Gly-Asp) residues as potential nociceptive agents and bioactive materials. It has been shown that the addition of one or two RGD sequences to natural VV-hemorphin-7 increases its effect on acute nociception, but the reduction of the inflammatory phase depends on the concentration of the peptide. The structure-property relationship of the new peptide derivatives was highlighted by electrochemical and FT-IR methods of analysis. Because of the proven bone-structural bonds of hydroxyapatite, the simultaneous deposition of peptide/hydroxyapatite on the surface of a titanium surface was investigated. The deposition was performed in a medium of gelatin solution containing dissolved amounts of peptide and hydroxyapatite using ultrasound. SEM-EDS analyzes confirmed the presence of a layer of the studied system.
Collapse
|
40
|
Zhang Y, Liu X, Geng C, Shen H, Zhang Q, Miao Y, Wu J, Ouyang R, Zhou S. Two Hawks with One Arrow: A Review on Bifunctional Scaffolds for Photothermal Therapy and Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030551. [PMID: 36770512 PMCID: PMC9920372 DOI: 10.3390/nano13030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 05/21/2023]
Abstract
Despite the significant improvement in the survival rate of cancer patients, the total cure of bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells. For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy (PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors, and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone defects. This review summarizes the recent application progress of various bifunctional scaffolds and puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor therapy and bone regeneration: two hawks with one arrow.
Collapse
Affiliation(s)
- Yulong Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chongrui Geng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyu Shen
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiupeng Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Jingxiang Wu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Shuang Zhou
- Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
41
|
Toufik E, Noukrati H, Rey C, Marsan O, Charvillat C, Cazalbou S, Ben Youcef H, Barroug A, Combes C. On the physicochemical properties, setting chemical reaction, and in vitro bioactivity of aragonite–chitosan composite cement as a bone substitute. NEW J CHEM 2023. [DOI: 10.1039/d2nj05515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A chitosan gel additive modulates the initial vaterite dissolution–recrystallisation in injectable aragonite-based composite cement and promotes its in vitro bioactivity.
Collapse
Affiliation(s)
- E. Toufik
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - H. Noukrati
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Rey
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - O. Marsan
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - C. Charvillat
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| | - S. Cazalbou
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 31062, Toulouse, France
| | - H. Ben Youcef
- Mohammed VI Polytechnic University, HTMR-Lab, 43150, Benguerir, Morocco
| | - A. Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University, ISSB-P, 43150, Benguerir, Morocco
| | - C. Combes
- CIRIMAT, Université de Toulouse, CNRS, ENSIACET, 4 allée EmileMonso, 31030 Toulouse Cedex 4, France
| |
Collapse
|
42
|
Sah MK, Mukherjee S, Flora B, Malek N, Rath SN. Advancement in "Garbage In Biomaterials Out (GIBO)" concept to develop biomaterials from agricultural waste for tissue engineering and biomedical applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1015-1033. [PMID: 36406592 PMCID: PMC9672289 DOI: 10.1007/s40201-022-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Presently on a global scale, one of the major concerns is to find effective strategies to manage the agricultural waste to protect the environment. One strategy that has been drawing attention among the researchers is the development of biocompatible materials from agricultural waste. This strategy implies successful conversion of agricultural waste products (e.g.: cellulose, eggshell etc.) into building blocks for biomaterial development. Some of these wastes contain even bioactive compounds having biomedical applications. The replacement and augmentation of human tissue with biomaterials as alternative to traditional method not only bypasses immune-rejection, donor scarcity, and maintenance; but also provides long term solution to damaged or malfunctioning organs. Biomaterials development as one of the key challenges in tissue engineering approach, resourced from natural origin imparts better biocompatibility due to closely mimicking composition with cellular microenvironment. The "Garbage In, Biomaterials Out (GIBO)" concept, not only recycles the agricultural wastes, but also adds to biomaterial raw products for further product development in tissue regeneration. This paper reviews the conversion of garbage agricultural by-products to the biocompatible materials for various biomedical applications. Graphical abstract The agro-waste biomass processed, purified, modified, and further utilized for the fabrication of biomaterials-based support system for tissue engineering applications to grow living body parts in vitro or in vivo.
Collapse
Affiliation(s)
- Mahesh Kumar Sah
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Sunny Mukherjee
- Department of Biotechnology, Dr. B. R. Ambedkar, National Institute of Technology, Jalandhar, Punjab 144011 India
| | - Bableen Flora
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab India
| | - Naved Malek
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Medak, Telangana India
| |
Collapse
|
43
|
Calcium Phosphates-Chitosan Composite Layers Obtained by Combining Radio-Frequency Magnetron Sputtering and Matrix-Assisted Pulsed Laser Evaporation Techniques. Polymers (Basel) 2022; 14:polym14235241. [PMID: 36501635 PMCID: PMC9738455 DOI: 10.3390/polym14235241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, we report the synthesis of calcium phosphate-chitosan composite layers. Calcium phosphate layers were deposited on titanium substrates by radio-frequency magnetron sputtering technique by varying the substrate temperature from room temperature (25 °C) up to 100 and 300 °C. Further, chitosan was deposited by matrix-assisted pulsed laser evaporation technique on the calcium phosphate layers. The temperature at the substrate during the deposition process of calcium phosphate layers plays an important role in the embedding of chitosan, as scanning electron microscopy analysis showed. The degree of chitosan incorporation into the calcium phosphate layers significantly influence the physico-chemical properties and the adherence strength of the resulted layers to the substrates. For example, the decreases of Ca/P ratio at the addition of chitosan suggests that a calcium deficient hydroxyapatite structure is formed when the CaP layers are generated on Ti substrates kept at room temperature during the deposition process. The Fourier transform infrared spectroscopy analysis of the samples suggest that the PO43-/CO32- substitution is possible. The X-ray diffraction spectra indicated that the crystalline structure of the calcium phosphate layers obtained at the 300 °C substrate temperature is disturbed by the addition of chitosan. The adherence strength of the composite layers to the titanium substrates is diminished after the chitosan deposition. However, no complete exfoliation of the layers was observed.
Collapse
|
44
|
Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14235079. [PMID: 36501473 PMCID: PMC9739485 DOI: 10.3390/polym14235079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we developed and characterized various open-cell composite scaffolds for bone regeneration. These scaffolds were made from Polylactic acid (PLA) as the scaffold matrix biopolymeric phase, and chitosan (CS) and chitosan-grafted-PLA (CS-g-PLA) copolymer as the dispersed biopolymeric phase. As a first step, successful grafting of PLA onto CS backbone was executed and confirmed by both FTIR and XPS. Mechanical characterization confirmed that adding CS or CS-g-PLA to the intrinsically rigid PLA made their corresponding PLA/CS and PLA/CS-g-PLA composite scaffolds more flexible under compression. This flexibility was higher for the latter due to the improved compatibility between PLA and CS-g-PLA copolymer. The hydrolytic stability of both PLA/CS and PLA/CS-g-PLA composite scaffolds inside phosphate-buffered saline (PBS) solution, as well as MG-63 osteoblast cell adhesion and proliferation inside both scaffolds, were characterized. The corresponding results revealed that PLA/CS composite scaffolds showed hydrolytic degradation due to the cationic properties of CS. However, modified PLA/CS-g-PLA scaffolds were hydrolytically stable due to the improved interfacial adhesion between the PLA matrix and CS-g-PLA copolymer. Finally, biological characterization was done for both PLA/CS and PLA/CS-g-PLA composite scaffolds. Contrarily to what was observed for uncompatibilized PLA/CS scaffolds, compatibilized PLA/CS-g-PLA scaffolds showed a high MG-63 osteoblast cell proliferation after three and five days of cell culture. Moreover, it was observed that cell proliferation increased with CS-g-PLA content. This suggests that the PLA/CS-g-PLA composite scaffolds could be a potential solution for bone regeneration.
Collapse
|
45
|
Kandil H, Ekram B, Abo-Zeid MAM. Cytocompatibility of MG-63 osteosarcoma cells on chitosan/hydroxyapatite/lignin hybrid composite scaffold in vitro. Biomed Mater 2022; 18. [PMID: 36322972 DOI: 10.1088/1748-605x/ac9f92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
This study aims at fabricating promising cytocompatible hybrid biocomposite scaffolds from chitosan (CS), hydroxyapatite (HAP) and lignin (L) for bone tissue engineering by using freeze-drying technique. Different ratios of HAP to L (50:0, 37.5:12.5, 25:25 and 12.5:37.5) were taken to determine the optimum ratio for obtaining a composite with superior properties. The mechanical and biological properties of the resulting composites were investigated. The mechanical results showed that the prepared composite with a ratio of 25:25 of HAP/L exhibited a remarkable enhancement in the mechanical properties compared to the others. Additionally, it was found from thein vitroresults that the addition of L enhanced the water uptake value of the resulting scaffolds indicating their increased hydrophilicity. As a result, a significant increase in the attachment and proliferation of MG-63 cell line (osteoblast like cells) was observed in composite scaffolds with L over the scaffold without L (CS/HAP). From these results, it could be suggested that the prepared composite scaffold with 25:25 of HAP/L is very promising biomaterials in bone tissue-engineering as it exhibited a better mechanical and biological properties than the other prepared composites.
Collapse
Affiliation(s)
- Heba Kandil
- Polymers and Pigments department, Chemical Industries Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Basma Ekram
- Polymers and Pigments department, Chemical Industries Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mona A M Abo-Zeid
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622 Cairo, Egypt
| |
Collapse
|
46
|
Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1051-1067. [PMID: 36247529 PMCID: PMC9531556 DOI: 10.3762/bjnano.13.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| |
Collapse
|
47
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
48
|
Yousefiasl S, Sharifi E, Salahinejad E, Makvandi P, Irani S. Bioactive 3D-Printed Chitosan-Based Scaffolds for Personalized Craniofacial Bone Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
49
|
Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine. Polymers (Basel) 2022; 14:polym14173544. [PMID: 36080619 PMCID: PMC9460659 DOI: 10.3390/polym14173544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.
Collapse
|
50
|
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022; 14:polym14163430. [PMID: 36015686 PMCID: PMC9416295 DOI: 10.3390/polym14163430] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.
Collapse
|