1
|
Kole IH, Vural P, Yurdacan B, Alemdar A, Mutlu C. Evaluation of SLC6A2 and CYP2D6 polymorphisms' effects on atomoxetine treatment in attention deficit and hyperactivity disorder. Eur J Clin Pharmacol 2024; 80:1773-1785. [PMID: 39158690 DOI: 10.1007/s00228-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND There is insufficient replicated data to establish a relationship between the polymorphisms of SLC6A2 and CYP2D6 and the treatment responses of atomoxetine (ATX) in ADHD. We focused on evaluating the effect of top-line single nucleotide polymorphisms (SNPs) in SLC6A2 and CYP2D6 on the ATX treatment response in attention deficit and hyperactivity disorder (ADHD). METHODS Of 160 patient records, 34 patients who met the inclusion criteria were evaluated to determine the relationship between genotypes of ten SNPs (six of SLC6A2 and four of CYP2D6) and ATX treatment response. Additionally, the connection between SNPs of CYP2D6 and the severity of side effects associated with ATX was analyzed in 37 patients, including the 34 study patients, and three patients discontinued because of ATX-dependent side effects. RESULTS All six polymorphisms we studied in SLC6A2 were associated with the treatment response of ATX. Clinical improvement in oppositional defiant disorder symptoms of patients with ADHD was only observed in carriers of the homozygous "C" allele of rs3785143 (podd = 0.026). We detected an association between higher CGI-side-effect severity scores and the "TT" genotype of rs1065852 polymorphism in CYP2D6 (p = 0.043). CONCLUSIONS The findings of this study suggest that genotypes of polymorphisms within the SLC6A2 and CYP2D6 may play an influential role in treatment response or the severity of side effects associated with ATX in ADHD patients.
Collapse
Affiliation(s)
- Ismail Hasan Kole
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye.
| | - Pınar Vural
- Department of Psychology, Faculty of Humanities and Social Sciences, Fatih Sultan Mehmet Vakif University, Istanbul, Türkiye
| | - Beste Yurdacan
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Adem Alemdar
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Caner Mutlu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Bursa Uludag University, Bursa, Türkiye.
| |
Collapse
|
2
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
3
|
Fitzpatrick M, Szalanczy A, Beeson A, Vora A, Scott C, Grzybowski M, Klotz J, Der N, Chen R, Geurts AM, Woods LCS. Protein-coding mutation in Adcy3 increases adiposity and alters emotional behaviors sex-dependently in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.598846. [PMID: 38916175 PMCID: PMC11195162 DOI: 10.1101/2024.06.16.598846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Objective Adenylate cyclase 3 (Adcy3) has been linked to both obesity and major depressive disorder (MDD). Our lab identified a protein-coding variant in the 2nd transmembrane (TM) helix of Adcy3 in rats, and similar obesity variants have been identified in humans. The current study investigates the role of a TM variant in adiposity and behavior. Methods We used CRISPR-SpCas9 to mutate the TM domain of Adcy3 in WKY rats (Adcy3mut/mut). We also created a heterozygous knockout rat in the same strain (Adcy3+/-). Wild-type (WT), Adcy3+/-, and Adcy3mut/mut rats were fed a high-fat diet for 12 weeks. We measured body weight, fat mass, glucose tolerance, food intake, metabolism, emotion-like behaviors, and memory. Results Adcy3+/- and Adcy3mut/mut rats weighed more than WT rats due to increased fat mass. There were key sex differences: adiposity was driven by increased food intake in males but by decreased energy expenditure in females. Adcy3mut/mut males displayed increased passive coping and decreased memory while Adcy3mut/mut females displayed increased anxiety-like behavior. Conclusions These studies show that the ADCY3 TM domain plays a role in protein function, that Adcy3 may contribute to the relationship between obesity and MDD, and that sex influences the relationships between Adcy3, metabolism, and behavior.
Collapse
Affiliation(s)
- Mackenzie Fitzpatrick
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Alexandria Szalanczy
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Angela Beeson
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Anusha Vora
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Christina Scott
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Nataley Der
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Rong Chen
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem NC, USA
| |
Collapse
|
4
|
Scherff AD, Feldmann L, Piechaczek C, Pehl V, Wagenbüchler P, Wermuth I, Ghotbi N, Allgaier AK, Freisleder FJ, Beins EC, Forstner AJ, Nöthen MM, Czamara D, Rex-Haffner M, Ising M, Binder E, Greimel E, Schulte-Körne G. Cohort profile: BioMD-Y (biopsychosocial factors of major depression in youth) - a biobank study on the molecular genetics and environmental factors of depression in children and adolescents in Munich. BMJ Open 2024; 14:e074925. [PMID: 38485175 PMCID: PMC10941147 DOI: 10.1136/bmjopen-2023-074925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE BioMD-Y is a comprehensive biobank study of children and adolescents with major depression (MD) and their healthy peers in Germany, collecting a host of both biological and psychosocial information from the participants and their parents with the aim of exploring genetic and environmental risk and protective factors for MD in children and adolescents. PARTICIPANTS Children and adolescents aged 8-18 years are recruited to either the clinical case group (MD, diagnosis of MD disorder) or the typically developing control group (absence of any psychiatric condition). FINDINGS TO DATE To date, four publications on both genetic and environmental risk and resilience factors (including FKBP5, glucocorticoid receptor activation, polygenic risk scores, psychosocial and sociodemographic risk and resilience factors) have been published based on the BioMD-Y sample. FUTURE PLANS Data collection is currently scheduled to continue into 2026. Research questions will be further addressed using available measures.
Collapse
Affiliation(s)
- Aline Doreen Scherff
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Feldmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Charlotte Piechaczek
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Verena Pehl
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Petra Wagenbüchler
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Inga Wermuth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Neda Ghotbi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Antje-Kathrin Allgaier
- Department of Human Sciences, Institute of Psychology, University of the Bundeswehr Munich, Munich, Germany
| | | | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Darina Czamara
- Department Genes and Environment, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Marcus Ising
- Max-Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth Binder
- Department Genes and Environment, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Ellen Greimel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Vyas A, Doshi G. A cross talk on the role of contemporary biomarkers in depression. Biomarkers 2024; 29:18-29. [PMID: 38261718 DOI: 10.1080/1354750x.2024.2308834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Introduction: Biomarkers can be used to identify determinants of response to various treatments of mental disorders. Evidence to date demonstrates that markers of inflammatory, neurotransmitter, neurotrophic, neuroendocrine, and metabolic function can predict the psychological and physical consequences of depression in individuals, allowing for the development of new therapeutic targets with fewer side effects. Extensive research has included hundreds of potential biomarkers of depression, but their roles in depression, abnormal patients, and how bioinformatics can be used to improve diagnosis, treatment, and prognosis have not been determined or defined. To determine which biomarkers can and cannot be used to predict treatment response, classify patients for specific treatments, and develop targets for new interventions, proprietary strategies, and current research projects need to be tailored.Material and Methods: This review article focuses on - biomarker systems that would help in the further development and expansion of newer targets - which holds great promise for reducing the burden of depression.Results and Discussion: Further, this review point to the inflammatory response, metabolic marker, and microribonucleic acids, long non-coding RNAs, HPA axis which are - related to depression and can serve as future targets.
Collapse
Affiliation(s)
- Aditi Vyas
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
7
|
Chauhan A, Jain CK. Psychosomatic Disorder: The Current Implications and Challenges. Cardiovasc Hematol Agents Med Chem 2024; 22:399-406. [PMID: 37873912 DOI: 10.2174/0118715257265832231009072953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023]
Abstract
In recent years, there has been increasing global concern about the rising prevalence and rapid progression of psychosomatic disorders (PD). This surge can be attributed to irregular biological conditions and the increasingly stressful lifestyles that individuals lead, ultimately resulting in functional impairments of vital organs. PD arises from intricate interactions involving the central nervous, endocrine, and immune systems. Notably, the hypothalamic-pituitaryadrenal (HPA) axis plays an essential role, as its dysregulation is influenced by prolonged stress and psychological distress. Consequently, stress hormones, including cortisol, exert detrimental effects on immunological function, inflammation, and homeostatic equilibrium. It emerges as physical symptoms influenced by psychological factors, such as persistent pain, gastrointestinal disturbances, or respiratory complications, and is pertinent to highlight that excessive and chronic stress, anxiety, or emotional distress may engender the onset or exacerbation of cardiovascular disorders, namely hypertension and heart disease. Although several therapeutic strategies have been proposed so far, the precise etiology of PD remains elusive due to the intricate nature of disease progression and the underlying modalities of action. This comprehensive review seeks to elucidate the diverse classifications of psychosomatic disorders, explicate their intricate mechanisms, and shed light on their impact on the human body, which may act as catalysts for the development of various other diseases. Additionally, it explores the inherent medico-clinical challenges posed by PD and also explores the cutting-edge technologies, tools, and data analytics pipelines that are being applied in the contemporary era to effectively analyze psychosomatic data.
Collapse
Affiliation(s)
- Abhimanyu Chauhan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
8
|
Gafarov VV, Gromova EA, Gubina MA, Gagulin IV, Maksimov VN, Gafarova AV. [The association of polymorphisms of the serotonin transporter gene SLC6A4 with depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:135-139. [PMID: 38465822 DOI: 10.17116/jnevro2024124021135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE To study the relationship of polymorphic variants of the SLC6A4 gene with depression among people aged 25-44 years in Novosibirsk. MATERIAL AND METHODS Under the WHO program «MONICA-psychosocial (MOPSY)», a random representative sample of people aged 25-44 years from the population of the Oktyabrsky district of Novosibirsk (men n=725, mean age 43.4±0.4 years, response - 71.3%, women n=710, mean age 44.8±0.4 years, response - 72%). Depression was assessed using the MONICA-MOPSY psychosocial questionnaire. Every fourth respondent was examined for polymorphic variants of 5HTTLPR-VNTR SNP rs25531 A>G of the SLC6A4 gene. The study was carried out within the framework of the budget topic Reg. No. 122031700094-5. RESULTS The high level of depression among people aged 25-44 was 12.8% (for men 9.1%, for women - 15.92%); the average level of depression occurred in 24.5% of the population (among men in 21.24%, among women in 26.76%) (χ2=17.071, df=2, p<0.001). The most common genotype of the SLC6A4 gene, among people aged 25--4 years old in Novosibirsk, was SLA - 43.29%, LALA - 26.53% - in second place, SS - 17.87% - third, LALG - 6 genotypes were less represented genotypes. 74%, SLG - 4.18%, LGLG - 1.39%. Carrying the SLA genotype (53.3% and 63.6%) increased the chance of developing both the average level of depression by 2.359 (95% CI 1.278-4.355) times, and depression in general by 1.933 (95% CI 1.142-3.271) times, compared with persons carrying the LALA genotype (32.0% and 46.9%), (χ2=7.674, df=1, p<0.01 and χ2=6.095, df=1, p<0.05). Persons carrying the LALG genotype (54.5%) also had a higher chance of developing a mean level of depression RR=2.929 (95% CI 1.039-8.261), compared with carriers of the LALA genotype (32.0%) (χ2=4.326, df =1, p<0.05) (p<0.05). CONCLUSION Associative links between polymorphic variants of the SLC6A4 gene and depression have been established.
Collapse
Affiliation(s)
- V V Gafarov
- Research Institute of Therapy and Preventive Medicine - branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Gromova
- Research Institute of Therapy and Preventive Medicine - branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Gubina
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Gagulin
- Research Institute of Therapy and Preventive Medicine - branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V N Maksimov
- Research Institute of Therapy and Preventive Medicine - branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Gafarova
- Research Institute of Therapy and Preventive Medicine - branch of the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Singh P, Srivastava A, Guin D, Thakran S, Yadav J, Chandna P, Sood M, Chadda RK, Kukreti R. Genetic Landscape of Major Depressive Disorder: Assessment of Potential Diagnostic and Antidepressant Response Markers. Int J Neuropsychopharmacol 2023; 26:692-738. [PMID: 36655406 PMCID: PMC10586057 DOI: 10.1093/ijnp/pyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation. METHODS We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values. RESULTS A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response. CONCLUSIONS The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Puneet Chandna
- Indian Society of Colposcopy and Cervical Pathology (ISCCP), Safdarjung Hospital, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
姚 珂, 董 强, 叶 兰. [Recent research on the association between depressive disorder and gene polymorphisms in adolescents]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:328-332. [PMID: 36946171 PMCID: PMC10032068 DOI: 10.7499/j.issn.1008-8830.2208178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/15/2022] [Indexed: 03/23/2023]
Abstract
Biogenetics plays an important role in the pathogenesis of depressive disorder in adolescents. Various genetic polymorphism studies have updated the understanding of adolescent depressive disorder. However, due to the influence of gene-environment interaction and age of puberty, the influence of gene polymorphisms on adolescent depressive disorder is complicated to clarify. Investigating and clarifying the relationship between gene polymorphisms and adolescent depressive disorder will promote the research on the pathogenesis of this disorder and provide a reference for the prevention and treatment of this disorder. This article reviews the genetic polymorphisms related to adolescent depressive disorder.
Collapse
|
11
|
Transcriptome Profiling of the Dorsomedial Prefrontal Cortex in Suicide Victims. Int J Mol Sci 2022; 23:ijms23137067. [PMID: 35806070 PMCID: PMC9266666 DOI: 10.3390/ijms23137067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The default mode network (DMN) plays an outstanding role in psychiatric disorders. Still, gene expressional changes in its major component, the dorsomedial prefrontal cortex (DMPFC), have not been characterized. We used RNA sequencing in postmortem DMPFC samples to investigate suicide victims compared to control subjects. 1400 genes differed using log2FC > ±1 and adjusted p-value < 0.05 criteria between groups. Genes associated with depressive disorder, schizophrenia and impaired cognition were strongly overexpressed in top differentially expressed genes. Protein−protein interaction and co-expressional networks coupled with gene set enrichment analysis revealed that pathways related to cytokine receptor signaling were enriched in downregulated, while glutamatergic synaptic signaling upregulated genes in suicidal individuals. A validated differentially expressed gene, which is known to be associated with mGluR5, was the N-terminal EF-hand calcium-binding protein 2 (NECAB2). In situ hybridization histochemistry and immunohistochemistry proved that NECAB2 is expressed in two different types of inhibitory neurons located in layers II-IV and VI, respectively. Our results imply extensive gene expressional alterations in the DMPFC related to suicidal behavior. Some of these genes may contribute to the altered mental state and behavior of suicide victims.
Collapse
|