1
|
Ueda Y, Sakai T, Yamada K, Arita K, Ishige Y, Hoshi D, Yanagisawa H, Iwao-Kawanami H, Kawanami T, Mizuta S, Fukushima T, Yamada S, Yachie A, Masaki Y. Fatal hemophagocytic lymphohistiocytosis with intravascular large B-cell lymphoma following coronavirus disease 2019 vaccination in a patient with systemic lupus erythematosus: an intertwined case. Immunol Med 2024; 47:192-199. [PMID: 38619098 DOI: 10.1080/25785826.2024.2338594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) has been recognized as a rare adverse event following the coronavirus disease 2019 (COVID-19) vaccination. We report a case of neuropsychiatric symptoms and refractory HLH in a woman with systemic lupus erythematosus (SLE) after receiving her COVID-19 vaccine treated with belimumab, later found to have intravascular large B-cell lymphoma (IVLBCL) at autopsy. A 61-year-old woman with SLE was referred to our hospital because of impaired consciousness and fever. One month prior to consulting, she received her second COVID-19 vaccine dose. Afterward, her consciousness level decreased, and she developed a high fever. She tested negative for SARS-CoV-2. Neuropsychiatric SLE was suspected; therefore, glucocorticoid pulse therapy was initiated on day 1 and 8. She had thrombocytopenia, increased serum ferritin levels and hemophagocytosis. The patient was diagnosed with HLH and treated with etoposide, dexamethasone and cyclosporine. Despite treatment, the patient died on day 75; autopsy report findings suggested IVLBCL as the underlying cause of HLH. Differentiating comorbid conditions remains difficult; however, in the case of an atypical clinical presentation, other causes should be considered. Therefore, we speculate that the COVID-19 vaccination and her autoimmune condition may have expedited IVLBCL development.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Tomoyuki Sakai
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Kazunori Yamada
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
- Department of Medical Education, Kanazawa Medical University, Uchinada, Japan
| | - Kotaro Arita
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Yoko Ishige
- Department of Respiratory Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Hoshi
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroto Yanagisawa
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Haruka Iwao-Kawanami
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Takafumi Kawanami
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Shuichi Mizuta
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Toshihiro Fukushima
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Akihiro Yachie
- Division of Medical Safety, Kanazawa University Hospital, Kanazawa, Japan
| | - Yasufumi Masaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
2
|
Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol 2024; 267:131427. [PMID: 38583833 DOI: 10.1016/j.ijbiomac.2024.131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | - David Cowley
- University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, United Kingdom
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
3
|
Gibo M, Kojima S, Fujisawa A, Kikuchi T, Fukushima M. Increased Age-Adjusted Cancer Mortality After the Third mRNA-Lipid Nanoparticle Vaccine Dose During the COVID-19 Pandemic in Japan. Cureus 2024; 16:e57860. [PMID: 38721172 PMCID: PMC11077472 DOI: 10.7759/cureus.57860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 06/14/2024] Open
Abstract
During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.
Collapse
Affiliation(s)
- Miki Gibo
- Primary Health Care, Matsubara Clinic, Kochi, JPN
| | - Seiji Kojima
- Pediatrics, Nagoya Pediatric Cancer Fund, Nagoya, JPN
| | - Akinori Fujisawa
- Cardiovascular Medicine, Honbetsu Cardiovascular Medicine Clinic, Honbetsu, JPN
| | - Takayuki Kikuchi
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| | - Masanori Fukushima
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| |
Collapse
|
4
|
Igyártó BZ, Qin Z. The mRNA-LNP vaccines - the good, the bad and the ugly? Front Immunol 2024; 15:1336906. [PMID: 38390323 PMCID: PMC10883065 DOI: 10.3389/fimmu.2024.1336906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The mRNA-LNP vaccine has received much attention during the COVID-19 pandemic since it served as the basis of the most widely used SARS-CoV-2 vaccines in Western countries. Based on early clinical trial data, these vaccines were deemed safe and effective for all demographics. However, the latest data raise serious concerns about the safety and effectiveness of these vaccines. Here, we review some of the safety and efficacy concerns identified to date. We also discuss the potential mechanism of observed adverse events related to the use of these vaccines and whether they can be mitigated by alterations of this vaccine mechanism approach.
Collapse
Affiliation(s)
- Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
5
|
Ghildiyal T, Rai N, Mishra Rawat J, Singh M, Anand J, Pant G, Kumar G, Shidiki A. Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. J Immunol Res 2024; 2024:9125398. [PMID: 38304142 PMCID: PMC10834093 DOI: 10.1155/2024/9125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Since the COVID-19 outbreak, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus has evolved into variants with varied infectivity. Vaccines developed against COVID-19 infection have boosted immunity, but there is still uncertainty on how long the immunity from natural infection or vaccination will last. The present study attempts to outline the present level of information about the contagiousness and spread of SARS-CoV-2 variants of interest and variants of concern (VOCs). The keywords like COVID-19 vaccine types, VOCs, universal vaccines, bivalent, and other relevant terms were searched in NCBI, Science Direct, and WHO databases to review the published literature. The review provides an integrative discussion on the current state of knowledge on the type of vaccines developed against SARS-CoV-2, the safety and efficacy of COVID-19 vaccines concerning the VOCs, and prospects of novel universal, chimeric, and bivalent mRNA vaccines efficacy to fend off existing variants and other emerging coronaviruses. Genomic variation can be quite significant, as seen by the notable differences in impact, transmission rate, morbidity, and death during several human coronavirus outbreaks. Therefore, understanding the amount and characteristics of coronavirus genetic diversity in historical and contemporary strains can help researchers get an edge over upcoming variants.
Collapse
Affiliation(s)
- Tanmay Ghildiyal
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Janhvi Mishra Rawat
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Maargavi Singh
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, India
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | | |
Collapse
|
6
|
Banoun H. mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues. Int J Mol Sci 2023; 24:10514. [PMID: 37445690 DOI: 10.3390/ijms241310514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 vaccines were developed and approved rapidly in response to the urgency created by the pandemic. No specific regulations existed at the time they were marketed. The regulatory agencies therefore adapted them as a matter of urgency. Now that the pandemic emergency has passed, it is time to consider the safety issues associated with this rapid approval. The mode of action of COVID-19 mRNA vaccines should classify them as gene therapy products (GTPs), but they have been excluded by regulatory agencies. Some of the tests they have undergone as vaccines have produced non-compliant results in terms of purity, quality and batch homogeneity. The wide and persistent biodistribution of mRNAs and their protein products, incompletely studied due to their classification as vaccines, raises safety issues. Post-marketing studies have shown that mRNA passes into breast milk and could have adverse effects on breast-fed babies. Long-term expression, integration into the genome, transmission to the germline, passage into sperm, embryo/fetal and perinatal toxicity, genotoxicity and tumorigenicity should be studied in light of the adverse events reported in pharmacovigilance databases. The potential horizontal transmission (i.e., shedding) should also have been assessed. In-depth vaccinovigilance should be carried out. We would expect these controls to be required for future mRNA vaccines developed outside the context of a pandemic.
Collapse
|
7
|
Eens S, Van Hecke M, Favere K, Tousseyn T, Guns PJ, Roskams T, Heidbuchel H. B-cell lymphoblastic lymphoma following intravenous BNT162b2 mRNA booster in a BALB/c mouse: A case report. Front Oncol 2023; 13:1158124. [PMID: 37197431 PMCID: PMC10183601 DOI: 10.3389/fonc.2023.1158124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Unprecedented immunization campaigns have been rolled out worldwide in an attempt to contain the ongoing COVID-19 pandemic. Multiple vaccines were brought to the market, among two utilizing novel messenger ribonucleic acid technology. Despite their undisputed success in decreasing COVID-19-associated hospitalizations and mortality, various adverse events have been reported. The emergence of malignant lymphoma is one of such rare adverse events that has raised concern, although an understanding of the mechanisms potentially involved remains lacking. Herein, we present the first case of B-cell lymphoblastic lymphoma following intravenous high-dose mRNA COVID-19 vaccination (BNT162b2) in a BALB/c mouse. Two days following booster vaccination (i.e., 16 days after prime), at only 14 weeks of age, our animal suffered spontaneous death with marked organomegaly and diffuse malignant infiltration of multiple extranodal organs (heart, lung, liver, kidney, spleen) by lymphoid neoplasm. Immunohistochemical examination revealed organ sections positive for CD19, terminal deoxynucleotidyl transferase, and c-MYC, compatible with a B-cell lymphoblastic lymphoma immunophenotype. Our murine case adds to previous clinical reports on malignant lymphoma development following novel mRNA COVID-19 vaccination, although a demonstration of direct causality remains difficult. Extra vigilance is required, with conscientious reporting of similar cases and a further investigation of the mechanisms of action explaining the aforementioned association.
Collapse
Affiliation(s)
- Sander Eens
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- *Correspondence: Sander Eens,
| | - Manon Van Hecke
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Kasper Favere
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Thomas Tousseyn
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
| | - Tania Roskams
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|