1
|
Camilleri M, Zheng T. Cannabinoids and the Gastrointestinal Tract. Clin Gastroenterol Hepatol 2023; 21:3217-3229. [PMID: 37678488 PMCID: PMC10872845 DOI: 10.1016/j.cgh.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023]
Abstract
The synthesis and degradation of endocannabinoids, location of cannabinoid (CB) receptors, and cannabinoid mechanisms of action on immune/inflammatory, neuromuscular, and sensory functions in digestive organs are well documented. CB2 mechanisms are particularly relevant in immune and sensory functions. Increasing use of cannabinoids in the United States is impacted by social determinants of health including racial discrimination, which is associated with tobacco and cannabis co-use, and combined use disorders. Several conditions associated with emesis are related to cannabinoid use, including cannabinoid hyperemesis or withdrawal, cyclic vomiting syndrome, and nausea and vomiting of pregnancy. Cannabinoids generally inhibit gastrointestinal motor function; yet they relieve symptoms in patients with gastroparesis and diverse nausea syndromes. Cannabinoid effects on inflammatory mechanisms have shown promise in relatively small placebo-controlled studies in reducing disease activity and abdominal pain in patients with inflammatory bowel disease. Cannabinoids have been studied in disorders of motility, pain, and disorders of gut-brain interaction. The CB2-receptor agonist, cannabidiol, reduced the total Gastroparesis Cardinal Symptom Index and increases the ability to tolerate a meal in patients with gastroparesis appraised over 4 weeks of treatment. In contrast, predominant-pain end points in functional dyspepsia with normal gastric emptying were not improved significantly with cannabidiol. The CB2 agonist, olorinab, reduced abdominal pain in inflammatory bowel disease in an open-label trial and in constipation-predominant irritable bowel syndrome in a placebo-controlled trial. Cannabinoid mechanisms alter inflammation in pancreatic and liver diseases. In conclusion, cannabinoids, particularly agents affecting CB2 mechanisms, have potential for inflammatory, gastroparesis, and pain disorders; however, the trials require replication and further understanding of risk-benefit to enhance use of cannabinoids in gastrointestinal diseases.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Ting Zheng
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Samuel S, Michael M, Tadros M. Should gastroenterologists prescribe cannabis? The highs, the lows and the unknowns. World J Clin Cases 2023; 11:4210-4230. [PMID: 37449231 PMCID: PMC10336994 DOI: 10.12998/wjcc.v11.i18.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023] Open
Abstract
Cannabis, commonly known as marijuana, is a drug extracted from the Cannabis plant known for its psychotropic and medicinal properties. It has been used for healing purposes during ancient times, although its psychoactive components led to its restricted use in medicine. Nonetheless, cannabis is found to have modulatory effects on the endocannabinoid system exhibiting its medicinal role in the gastrointestinal (GI) system. Emerging animal and human studies demonstrate the influential effects of cannabis on a variety of GI diseases including inflammatory bowel disease, motility disorders and GI malignancies. It also has a regulatory role in GI symptoms including nausea and vomiting, anorexia, weight gain, abdominal pain, among others. However, both its acute and chronic use can lead to undesirable side effects such as dependency and addiction, cognitive impairment and cannabinoid hyperemesis syndrome. We will discuss the role of cannabis in the GI system as well as dosing strategies to help guide gastroenterologists to assess its efficacy and provide patient counseling before prescription of medical marijuana.
Collapse
Affiliation(s)
- Sonia Samuel
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Mark Michael
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, United States
| | - Micheal Tadros
- Department of Gastroenterology and Hepatology, Albany Medical Center, Albany, NY 12208, United States
| |
Collapse
|
3
|
Griffett K, Hayes ME, Boeckman MP, Burris TP. The role of REV-ERB in NASH. Acta Pharmacol Sin 2022; 43:1133-1140. [PMID: 35217816 PMCID: PMC9061770 DOI: 10.1038/s41401-022-00883-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBβ) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.
Collapse
Affiliation(s)
- Kristine Griffett
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Michael P Boeckman
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Sobotka LA, Mumtaz K, Hinton A, Kelly SG, Conteh LF, Michaels AJ, Hanje AJ, Wellner MR. Cannabis use may reduce healthcare utilization and improve hospital outcomes in patients with cirrhosis. Ann Hepatol 2022; 23:100280. [PMID: 33157269 DOI: 10.1016/j.aohep.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Previous studies reveal conflicting data on the effect of cannabis use in patients with cirrhosis. This research evaluates the impact of cannabis on hepatic decompensation, health care utilization, and mortality in patients with cirrhosis. MATERIAL AND METHODS A retrospective analysis of the State Inpatient Database (SID) was performed evaluating patients from Colorado and Washington in 2011 to represent pre-cannabis legalization and 2015 to represent post-cannabis legalization. Multivariable analysis was performed to study the impact of cannabis on the rate of admissions with hepatic decompensations, healthcare utilization, and mortality in patients with cirrhosis. RESULTS Cannabis use was detected in 370 (2.1%) of 17,520 cirrhotics admitted in 2011 and in 1162 (5.3%) of 21,917 cirrhotics in 2015 (p-value <0.001). On multivariable analysis, cirrhotics utilizing cannabis after its legalization experienced a decreased rate of admissions related to hepatorenal syndrome (Odds Ratio (OR): 0.51; 95% Confidence Interval (CI): 0.34-0.78) and ascites (OR: 0.73; 95% CI: 0.63-0.84). Cirrhotics with an etiology of disease other than alcohol and hepatitis C had a higher risk of admission for hepatic encephalopathy if they utilized cannabis [OR: 1.57; 95% CI: 1.16-2.13]. Decreased length of stay (-1.15 days; 95% CI: -1.62, -0.68), total charges (-$15,852; 95% CI: -$21,009, -$10,694), and inpatient mortality (OR: 0.68; 95% CI: 0.51-0.91) were also observed in cirrhotics utilizing cannabis after legalization compared to cirrhotics not utilizing cannabis or utilizing cannabis prior to legalization. CONCLUSION Cannabis use in patients with cirrhosis resulted in mixed outcomes regarding hospital admissions with hepatic decompensation. A trend towards decreased hospital utilization and mortality was noted in cannabis users after legalization. These observations need to be confirmed with a longitudinal randomized study.
Collapse
Affiliation(s)
- Lindsay A Sobotka
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - Khalid Mumtaz
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - Alice Hinton
- Division of Biostatistics, College of Public Heath, The Ohio State University, Columbus Ohio, 43210 US
| | - Sean G Kelly
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - Lanla F Conteh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - Anthony J Michaels
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - A James Hanje
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US
| | - Michael R Wellner
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State Wexner Medical Center, Columbus, Ohio, 43210 US.
| |
Collapse
|
5
|
Erukainure OL, Matsabisa MG, Salau VF, Oyedemi SO, Oyenihi OR, Ibeji CU, Islam MS. Cannabis sativa L. (var. indica) Exhibits Hepatoprotective Effects by Modulating Hepatic Lipid Profile and Mitigating Gluconeogenesis and Cholinergic Dysfunction in Oxidative Hepatic Injury. Front Pharmacol 2021; 12:705402. [PMID: 34992528 PMCID: PMC8724532 DOI: 10.3389/fphar.2021.705402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis sativa L. is a crop utilized globally for recreational, therapeutic, and religious purposes. Although considered as an illicit drug in most countries, C. sativa until recently started gaining attention for its medicinal application. This study sought to investigate the hepatoprotective effect of C. sativa on iron-mediated oxidative hepatic injury. Hepatic injury was induced ex vivo by incubating hepatic tissues with Fe2+, which led to depleted levels of reduced glutathione, superoxide dismutase, catalase and ENTPDase activities, triglyceride, and high-density lipoprotein-cholesterol (HDL-C). Induction of hepatic injury also caused significant elevation of malondialdehyde, nitric oxide, cholesterol, and low-density lipoprotein-cholesterol (LDL-C) levels while concomitantly elevating the activities of ATPase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, amylase, and lipase. Treatment with the hexane, dichloromethane (DCM), and ethanol extracts of C. sativa leaves significantly (p < 0.05) reversed these levels and activities to almost near normal. However, there was no significant effect on the HDL-C level. The extracts also improved the utilization of glucose in Chang liver cells. High-performance liquid chromatography (HPLC) analysis showed the presence of phenolics in all extracts, with the ethanol extract having the highest constituents. Cannabidiol (CBD) was identified in all the extracts, while Δ-9-tetrahydrocannabinol (Δ-9-THC) was identified in the hexane and DCM extracts only. Molecular docking studies revealed strong interactions between CBD and Δ-9-THC with the β2 adrenergic receptor of the adrenergic system. The results demonstrate the potential of C. sativa to protect against oxidative-mediated hepatic injury by stalling oxidative stress, gluconeogenesis, and hepatic lipid accumulation while modulating cholinergic and purinergic activities. These activities may be associated with the synergistic effect of the compounds identified and possible interactions with the adrenergic system.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F. Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Sunday O. Oyedemi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Pharmacology, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Omolola R. Oyenihi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
6
|
Maselli DB, Camilleri M. Pharmacology, Clinical Effects, and Therapeutic Potential of Cannabinoids for Gastrointestinal and Liver Diseases. Clin Gastroenterol Hepatol 2021; 19:1748-1758.e2. [PMID: 32673642 PMCID: PMC7854774 DOI: 10.1016/j.cgh.2020.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Cannabis and cannabinoids (such as tetrahydrocannabinol and cannabidiol) are frequently used to relieve gastrointestinal symptoms. Cannabinoids have effects on the immune system and inflammatory responses, as well as neuromuscular and sensory functions of digestive organs, including pancreas and liver. Cannabinoids can cause hyperemesis and cyclic vomiting syndrome, but they might also be used to reduce gastrointestinal, pancreatic, or hepatic inflammation, as well as to treat motility, pain, and functional disorders. Cannabinoids activate cannabinoid receptors, which inhibit release of transmitters from presynaptic neurons and also inhibit diacylglycerol lipase alpha, to prevent synthesis of the endocannabinoid 2-arachidonoyl glycerol. However, randomized trials are needed to clarify their effects in patients; these compounds can have adverse effects on the central nervous system (such as somnolence and psychosis) or the developing fetus, when used for nausea and vomiting during pregnancy. Cannabinoid-based therapies can also hide symptoms and disease processes, such as in patients with inflammatory bowel diseases. It is important for gastroenterologists and hepatologists to understand cannabinoid mechanisms, effects, and risks.
Collapse
Affiliation(s)
- Daniel B Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Ahmed I, Rehman SU, Shahmohamadnejad S, Zia MA, Ahmad M, Saeed MM, Akram Z, Iqbal HMN, Liu Q. Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders. Molecules 2021; 26:3389. [PMID: 34205169 PMCID: PMC8199938 DOI: 10.3390/molecules26113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, School of medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran;
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan;
| | - Muhammad Muzammal Saeed
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Zain Akram
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| |
Collapse
|
9
|
Berk K, Bzdega W, Konstantynowicz-Nowicka K, Charytoniuk T, Zywno H, Chabowski A. Phytocannabinoids-A Green Approach toward Non-Alcoholic Fatty Liver Disease Treatment. J Clin Med 2021; 10:393. [PMID: 33498537 PMCID: PMC7864168 DOI: 10.3390/jcm10030393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease in adults in developed countries, with a global prevalence as high as one billion. The pathogenesis of NAFLD is a multifactorial and multi-step process. Nowadays, a growing body of research suggests the considerable role of the endocannabinoid system (ECS) as a complex cell-signaling system in NAFLD development. Although increased endocannabinoid tone in the liver highly contributes to NAFLD development, the complex effects and impacts of plant-derived cannabinoids in the aspect of NAFLD pathophysiology are yet not fully understood, and effective medications are still in demand. In our review, we present the latest reports describing the role of ECS in NAFLD, focusing primarily on two types of cannabinoid receptors. Moreover, we sum up the recent literature on the clinical use of natural cannabinoids in NAFLD treatment. This review is useful for understanding the importance of ECS in NAFLD development, and it also provides the basis for more extensive clinical phytocannabinoids testing in patients suffering from NAFLD.
Collapse
Affiliation(s)
- Klaudia Berk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (W.B.); (K.K.-N.); (T.C.); (H.Z.); (A.C.)
| | | | | | | | | | | |
Collapse
|
10
|
Obesity, Diabetes, Coffee, Tea, and Cannabis Use Alter Risk for Alcohol-Related Cirrhosis in 2 Large Cohorts of High-Risk Drinkers. Am J Gastroenterol 2021; 116:106-115. [PMID: 32868629 DOI: 10.14309/ajg.0000000000000833] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sustained high alcohol intake is necessary but not sufficient to produce alcohol-related cirrhosis. Identification of risk factors, apart from lifetime alcohol exposure, would assist in discovery of mechanisms and prediction of risk. METHODS We conducted a multicenter case-control study (GenomALC) comparing 1,293 cases (with alcohol-related cirrhosis, 75.6% male) and 754 controls (with equivalent alcohol exposure but no evidence of liver disease, 73.6% male). Information confirming or excluding cirrhosis, and on alcohol intake and other potential risk factors, was obtained from clinical records and by interview. Case-control differences in risk factors discovered in the GenomALC participants were validated using similar data from 407 cases and 6,573 controls from UK Biobank. RESULTS The GenomALC case and control groups reported similar lifetime alcohol intake (1,374 vs 1,412 kg). Cases had a higher prevalence of diabetes (20.5% (262/1,288) vs 6.5% (48/734), P = 2.27 × 10-18) and higher premorbid body mass index (26.37 ± 0.16 kg/m2) than controls (24.44 ± 0.18 kg/m2, P = 5.77 × 10-15). Controls were significantly more likely to have been wine drinkers, coffee drinkers, smokers, and cannabis users than cases. Cases reported a higher proportion of parents who died of liver disease than controls (odds ratio 2.25 95% confidence interval 1.55-3.26). Data from UK Biobank confirmed these findings for diabetes, body mass index, proportion of alcohol as wine, and coffee consumption. DISCUSSION If these relationships are causal, measures such as weight loss, intensive treatment of diabetes or prediabetic states, and coffee consumption should reduce the risk of alcohol-related cirrhosis.
Collapse
|
11
|
Damiris K, Tafesh ZH, Pyrsopoulos N. Efficacy and safety of anti-hepatic fibrosis drugs. World J Gastroenterol 2020; 26:6304-6321. [PMID: 33244194 PMCID: PMC7656211 DOI: 10.3748/wjg.v26.i41.6304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in our understanding of the pathways linked to progression from hepatic insult to cirrhosis has led to numerous novel therapies being investigated as potential cures and inhibitors of hepatic fibrogenesis. Liver cirrhosis is the final result of prolonged fibrosis, which is an intimate balance between fibrogenesis and fibrinolysis. A number of these complex mechanisms are shared across the various etiologies of liver disease. Thankfully, investigation has yielded some promising results in regard to reversal of fibrosis, particularly the indirect benefits associated with antiviral therapy for the treatment of hepatitis B and C and the farnesoid receptor agonist for the treatment of primary biliary cholangitis and metabolic associated fatty liver disease. A majority of current clinical research is focused on targeting metabolic associated fatty liver disease and its progression to metabolic steatohepatitis and ultimately cirrhosis, with some hope of potential standardized therapeutics in the near future. With our ever-evolving understanding of the underlying pathophysiology, these therapeutics focus on either controlling the primary disease (the initial trigger of fibrogenesis), interrupting receptor ligand interactions and other intracellular communications, inhibiting fibrogenesis, or even promoting resolution of fibrosis. It is imperative to thoroughly test these potential therapies with the rigorous standards of clinical therapeutic trials in order to ensure the highest standards of patient safety. In this article we will briefly review the key pathophysiological pathways that lead to liver fibrosis and present current clinical and experimental evidence that has shown reversibility of liver fibrosis and cirrhosis, while commenting on therapeutic safety.
Collapse
Affiliation(s)
- Konstantinos Damiris
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Zaid H Tafesh
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
12
|
Exacerbated LPS/GalN-Induced Liver Injury in the Stress-Sensitive Wistar Kyoto Rat Is Associated with Changes in the Endocannabinoid System. Molecules 2020; 25:molecules25173834. [PMID: 32842550 PMCID: PMC7504576 DOI: 10.3390/molecules25173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.
Collapse
|
13
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
14
|
Issa YA, El Achy SN, Mady RF. Cannabinoid receptor-1 antagonism: a new perspective on treating a murine schistosomal liver fibrosis model. Mem Inst Oswaldo Cruz 2019; 114:e190062. [PMID: 31389521 PMCID: PMC6684006 DOI: 10.1590/0074-02760190062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Formation of schistosomal granulomata surrounding the ova can result in
schistosomiasis-associated liver fibrosis (SSLF). The current standard of
treatment is praziquantel (PZQ), which cannot effectively reverse SSLF. The
role of the cannabinoid (CB) receptor family in liver fibrosis has recently
been highlighted. OBJECTIVES This study aimed to assess the therapeutic effect of CB1 receptor antagonism
in reversing SSLF in a murine model of Schistosoma mansoni
infection. METHODS One hundred male Swiss albino mice were divided equally into five groups:
healthy uninfected control (group I), infected control (group II), PZQ
treated (group III), rimonabant (RIM) (SR141716, a CB1 receptor
antagonist)-treated (group IV) and group V was treated with combined PZQ and
RIM. Liver sections were obtained for histopathological examination, alpha-1
smooth muscle actin (α-SMA) immunostaining and assessment of CB1 receptor
expression using real-time polymerase chain reaction (RT-PCR). FINDINGS The most effective reduction in fibrotic marker levels and granuloma load was
achieved by combined treatment with PZQ+RIM (group V): CB1 receptor
expression (H = 26.612, p < 0.001), number of α-SMA-positive cells (F =
57.086, p < 0.001), % hepatic portal fibrosis (F = 42.849, p < 0.001)
and number of granulomata (F = 69.088, p < 0.001). MAIN CONCLUSIONS Combining PZQ with CB1 receptor antagonists yielded the best results in
reversing SSLF. To our knowledge, this is the first study to test this
regimen in S. mansoni infection.
Collapse
Affiliation(s)
- Yasmine Amr Issa
- University of Alexandria, Alexandria Faculty of Medicine, Medical Biochemistry Department, Alexandria, Egypt
| | - Samar Nabil El Achy
- University of Alexandria, Alexandria Faculty of Medicine, Pathology Department, Alexandria, Egypt
| | - Rasha Fadly Mady
- University of Alexandria, Alexandria Faculty of Medicine, Medical Parasitology Department, Alexandria, Egypt
| |
Collapse
|
15
|
Potential Therapeutic Benefits of Herbs and Supplements in Patients with NAFLD. Diseases 2018; 6:diseases6030080. [PMID: 30201879 PMCID: PMC6165515 DOI: 10.3390/diseases6030080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Our aim is to review the efficacy of various herbs and supplements as a possible therapeutic option in the treatment and/or prevention of nonalcoholic fatty liver disease (NAFLD). We performed a systematic review of medical literature using the PubMed Database by searching the chemical names of many common herbs and supplements with “AND (NAFLD or NASH)”. Studies and medical literature that discussed the roles and usage of herbs and supplements in NAFLD and nonalcoholic steatohepatitis (NASH) from inception until 20 June 2018 were reviewed. Many studies have claimed that the use of various herbs and supplements may improve disease endpoints and outcomes related to NAFLD and/or NASH. Improvement in liver function tests were noted. Amelioration or reduction of lobular inflammation, hepatic steatosis, and fibrosis were also noted. However, well-designed studies demonstrating improved clinical outcomes are lacking. Furthermore, experts remain concerned about the lack of regulation of herbs/supplements and the need for further research on potential adverse effects and herb–drug interactions. In conclusion, preliminary data on several herbs have demonstrated promising antioxidant, anti-inflammatory, anti-apoptotic, and anti-adipogenic properties that may help curtail the progression of NAFLD/NASH. Clinical trials testing the safety and efficacy must be completed before widespread use can be recommended.
Collapse
|