1
|
de Souza KA, Jackson M, Chen J, Reyes J, Muayad J, Tran E, Jackson W, Newell-Rogers MK, Earnest DJ. Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging. J Neuroinflammation 2025; 22:4. [PMID: 39780172 PMCID: PMC11716134 DOI: 10.1186/s12974-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging. METHODS C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule. At middle age (13-14mo), the long-term effects of circadian rhythm dysregulation on cognitive performance, immune cell regulation and hippocampal microglia were analyzed using behavioral, flow cytometry and immunohistochemical assays. RESULTS Entrainment of the activity rhythm was stable in all mice on a fixed LD 12:12 cycle but was fully compromised during exposure to shifted LD cycles. Even during "post-treatment" exposure to standard LD 12:12 conditions, re-entrainment in shifted LD mice was marked by altered patterns of entrainment and increased day-to-day variability in activity onset times that persisted into middle-age. These alterations in light-dark entrainment were closely associated with dramatic impairment in the Barnes maze test for the entire group of shifted LD mice at middle age, well before cognitive decline was first observed in aged (18-22mo) animals maintained on fixed LD cycles. In conjunction with the effects of circadian dysregulation on cognition, shifted LD mice at middle age were distinguished by significant expansion of splenic B cells and B cell subtypes expressing the activation marker CD69 or inflammatory marker MHC Class II Invariant peptide (CLIP), differential increases in CLIP+, 41BB-Ligand+, and CD74 + B cells in the meningeal lymphatics, alterations in splenic T cell subtypes, and increased number and altered functional state of microglia in the dentate gyrus. In shifted LD mice, the expansion in splenic B cells was negatively correlated with cognitive performance; when B cell numbers were higher, performance was worse in the Barnes maze. These results indicate that disordered circadian timekeeping associated with early exposure to shift work-like schedules alone accelerates cognitive decline during aging in conjunction with altered regulation of immune cells and microglia in the brain.
Collapse
Affiliation(s)
- Karienn A de Souza
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| | - Morgan Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Justin Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Jocelin Reyes
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Judy Muayad
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Emma Tran
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - William Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - M Karen Newell-Rogers
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - David J Earnest
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| |
Collapse
|
2
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Araya D, Taramasco C, Piñeiro M, Fleury A. Behavioral patterns in elderly single-person households. Heliyon 2024; 10:e39069. [PMID: 39498065 PMCID: PMC11532299 DOI: 10.1016/j.heliyon.2024.e39069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The global rise in the aging population and the increase in older adults living alone have raised concerns about health-related behaviors, particularly sedentary lifestyles and reduced daily activities. These behaviors are linked to higher risks of physical and cognitive conditions. While many global studies have explored these patterns, research within the Chilean context remains limited. This work presents a analysis of behavioral patterns in elderly individuals living alone in Chile, offering valuable insights into this population. Using clustering techniques, we identified two distinct activity patterns among the participants. The first pattern is characterized by a gradual increase in activity during the day, peaking around midday and followed by a decline, likely associated with meal preparation and rest. The second pattern demonstrates a more dynamic lifestyle, with a rapid surge in activity after waking and sustained levels throughout the day, suggesting a potentially healthier approach to aging. These findings align with previous studies indicating high levels of sedentary behavior in older adults, reinforcing the need for interventions tailored to diversify daily routines and promote physical activity. This study is the first to explore these patterns in the Chilean context, contributing to a more comprehensive understanding of elderly care and informing future strategies for improving the well-being of older adults living alone.
Collapse
Affiliation(s)
- David Araya
- ITISB (Instituto de Tecnología e Innovación para la Salud y Bienestar), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar, 2520000, Chile
| | - Carla Taramasco
- ITISB (Instituto de Tecnología e Innovación para la Salud y Bienestar), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar, 2520000, Chile
- Núcleo Milenio de Sociomedicina, Santiago, 8320000, Chile
| | - Miguel Piñeiro
- ITISB (Instituto de Tecnología e Innovación para la Salud y Bienestar), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar, 2520000, Chile
| | - Anthony Fleury
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Digital Systems (CERI SN), Lille, 59160, France
| |
Collapse
|
5
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
6
|
Chujan S, Cholpraipimolrat W, Satayavivad J. Integrated Transcriptomics and Network Analysis Identified Altered Neural Mechanisms in Frontal Aging Brain-Associated Alzheimer's Disease. Biochem Genet 2024; 62:2382-2398. [PMID: 37934339 DOI: 10.1007/s10528-023-10549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The late stage of AD typically develops after 60 years of age and AD pathogenesis can be detected predominately in the frontal lobe, which is responsible for memory. Multiple alterations in cellular mechanisms have been associated with AD, but there is no clear information on AD pathogenesis during brain aging. This study aimed to explore the differentially expressed genes (DEGs) in the frontal lobe of aging brains and to identify shared crucial mechanisms in the aging brain linked to AD pathogenesis. Three datasets were downloaded from the Gene Expression Omnibus (GEO). Biological function analysis was performed by DAVID and KEGG databases. An AD patient's cohort (GSE150696) was collected for verification of the enriched pathway. The results demonstrated that multiple neurochemical synapsis and regulation of the cytoskeleton are linked to AD pathogenesis during aging. Taken together, this study contributes to our further understanding of neural alterations during aging in AD that could be used to develop therapeutics for early intervention to prevent or slow progression.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1345498. [PMID: 38689734 PMCID: PMC11058985 DOI: 10.3389/fendo.2024.1345498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | | | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
9
|
Cho E, Lee H, Shin J, Kim S, Heo SJ, Park H, Seok JW. Salivary Cortisol and Melatonin, Sleep, and Behavioral Patterns in Older Adults Living With Dementia. Nurs Res 2024; 73:E11-E20. [PMID: 38112608 DOI: 10.1097/nnr.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Over half of the older adults living with dementia have behavioral and psychological symptoms of dementia (BPSD), including sleep disturbance; however, little is known about physiological markers. Salivary cortisol and melatonin have been identified as potential biomarkers of BPSD, with evidence suggesting a relationship between these biomarkers and various behavioral factors, as well as sleep and activity patterns. OBJECTIVES The aim of this study was to investigate the time-dependent changes in salivary cortisol and melatonin levels in older adults with dementia, their relationship with the sleep-wake cycle, and their correlation with BPSD symptoms and behavioral factors. METHODS This observational study conducted in Seoul and Gyeonggi-do, South Korea, used data from 172 older adults with dementia, measuring sleep and activity patterns for 2 weeks using a wearable device, in addition to administering questionnaires for neuropsychiatric and psychological symptoms-the Neuropsychiatric Inventory, Cohen-Mansfield Agitation Inventory, and Cornell Scale for Depression in Dementia. Salivary cortisol and melatonin levels were measured at four time points and divided into four groups based on a dual-trajectory model. Differences among the groups were analyzed using one-way analysis of variance. RESULTS The participants showed normal but heterogeneous patterns of salivary cortisol and melatonin levels. Dual-trajectory pattern analysis showed that higher levels of melatonin during the daytime were correlated with poor nighttime sleep efficiency and decreased disinhibited behaviors, and higher levels of cortisol at all four time points were associated with decreased physical activity. DISCUSSION Measuring and analyzing periodic changes in cortisol and melatonin levels can predict various behavioral symptoms (e.g., sleep disturbances, activity counts, and disinhibition) in older adults with dementia. A study with an experimental design is needed to discover the direct physiological interactions between cortisol, melatonin, and these symptoms.
Collapse
|
10
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Haskologlu IC, Erdag E, Sehirli AO, Uludag O, Abacioglu N. Beyond Conventional Therapies: Molecular Dynamics of Alzheimer's Treatment through CLOCK/BMAL1 Interactions. Curr Alzheimer Res 2024; 20:862-874. [PMID: 38509675 DOI: 10.2174/0115672050301014240315065235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) represents a neurodegenerative disorder characterized by cognitive and behavioral impairments significantly hindering social and occupational functioning. Melatonin, a hormone pivotal in regulating the body's intrinsic circadian rhythm, also acts as a catalyst in the breakdown of beta-amyloid deposits, offering a promising therapeutic approach for AD. The upregulation of Brain and Muscle ARNT-Like 1 (Bmal1) gene expression, stimulated by melatonin, emerges as a potential contributor to AD intervention. Current pharmacological interventions, such as FDA-approved cholinesterase inhibitors and the recently authorized monoclonal antibody, Lecanemab, are utilized in AD management. However, the connection between these medications and Bmal1 remains insufficiently explored. OBJECTIVE This study aims to investigate the molecular effects of FDA-endorsed drugs on the CLOCK: Bmal1 dimer. Furthermore, considering the interactions between melatonin and Bmal1, this research explores the potential synergistic efficacy of combining these pharmaceutical agents with melatonin for AD treatment. METHODS Using molecular docking and MM/PBSA methodologies, this research determines the binding affinities of drugs within the Bmal1 binding site, constructing interaction profiles. RESULTS The findings reveal that, among FDA-approved drugs, galanthamine and donepezil demonstrate notably similar binding energy values to melatonin, interacting within the Bmal1 binding site through analogous amino acid residues and functional groups. CONCLUSION A novel therapeutic approach emerges, suggesting the combination of melatonin with Lecanemab as a monoclonal antibody therapy. Importantly, prior research has not explored the effects of FDA-approved drugs on Bmal1 expression or their potential for synergistic effects.
Collapse
Affiliation(s)
- Ismail Celil Haskologlu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Nicosia Mersin-10, Near East Boulevard 99138, Türkiye
| | - Emine Erdag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Near East University, Nicosia Mersin- 10, Near East Boulevard 99138, Türkiye
| | - Ahmet Ozer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia Mersin-10, Near East Boulevard 99138, Türkiye
| | - Orhan Uludag
- Department of Clinical Pharmacy, Faculty of Pharmacy, Near East University, Nicosia Mersin-10, Near East Boulevard 99138, Türkiye
| | - Nurettin Abacioglu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Nicosia Mersin-10, Near East Boulevard 99138, Türkiye
| |
Collapse
|
12
|
Javed B, Javed A, Kow CS, Hasan SS. Pharmacological and non-pharmacological treatment options for sleep disturbances in Alzheimer's disease. Expert Rev Neurother 2023:1-14. [PMID: 37267149 DOI: 10.1080/14737175.2023.2214316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the most common neurodegenerative disorders among the older population. Sleep disruption and circadian rhythm disorders often develop in AD patients, and many experience sleeping difficulties requiring pharmacological and non-pharmacological interventions. AREAS COVERED This review appraised the evidence from clinical studies on various pharmacological and non-pharmacological therapies for sleep disturbances in AD patients and proposed an algorithm to manage sleep disturbances in this population of patients. EXPERT OPINION Non-pharmacological interventions are generally preferred as the first-line approach to improve sleep-related symptoms in AD due to their favorable safety profile. However, when non-pharmacological interventions alone are insufficient, a range of pharmacological agents can be considered. Trazodone and melatonin are commonly used as adjunctive therapies, while Z-drugs including zopiclone and zolpidem are specifically employed to treat insomnia in patients with late-onset AD. Furthermore, a newer class of agents known as dual orexin receptor antagonists has emerged and gained approval for improving sleep onset and maintenance in AD patients.
Collapse
Affiliation(s)
- Binish Javed
- College of Medicine, Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital New Delhi, Delhi, India
| | - Amaan Javed
- University College of Medical Sciences, University of Delhi, New Delhi, India
| | - Chia Siang Kow
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa, Bukit Jalil, Kuala Lumpur, MY, Malaysia
| | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK, UK
| |
Collapse
|
13
|
Codoñer-Franch P, Gombert M, Martínez-Raga J, Cenit MC. Circadian Disruption and Mental Health: The Chronotherapeutic Potential of Microbiome-Based and Dietary Strategies. Int J Mol Sci 2023; 24:ijms24087579. [PMID: 37108739 PMCID: PMC10146651 DOI: 10.3390/ijms24087579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Mental illness is alarmingly on the rise, and circadian disruptions linked to a modern lifestyle may largely explain this trend. Impaired circadian rhythms are associated with mental disorders. The evening chronotype, which is linked to circadian misalignment, is a risk factor for severe psychiatric symptoms and psychiatric metabolic comorbidities. Resynchronization of circadian rhythms commonly improves psychiatric symptoms. Furthermore, evidence indicates that preventing circadian misalignment may help reduce the risk of psychiatric disorders and the impact of neuro-immuno-metabolic disturbances in psychiatry. The gut microbiota exhibits diurnal rhythmicity, as largely governed by meal timing, which regulates the host's circadian rhythms. Temporal circadian regulation of feeding has emerged as a promising chronotherapeutic strategy to prevent and/or help with the treatment of mental illnesses, largely through the modulation of gut microbiota. Here, we provide an overview of the link between circadian disruption and mental illness. We summarize the connection between gut microbiota and circadian rhythms, supporting the idea that gut microbiota modulation may aid in preventing circadian misalignment and in the resynchronization of disrupted circadian rhythms. We describe diurnal microbiome rhythmicity and its related factors, highlighting the role of meal timing. Lastly, we emphasize the necessity and rationale for further research to develop effective and safe microbiome and dietary strategies based on chrononutrition to combat mental illness.
Collapse
Affiliation(s)
- Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Department of Pediatrics, University Hospital Doctor Peset, Foundation for the Promotion of Health and Bio-Medical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain
| | - Marie Gombert
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset, University of Valencia, 46017 Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
14
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
15
|
The Role of Dietary Antioxidants and Their Potential Mechanisms in Alzheimer’s Disease Treatment. Metabolites 2023; 13:metabo13030438. [PMID: 36984879 PMCID: PMC10054164 DOI: 10.3390/metabo13030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with cognitive decline and characterized by amyloid-β plaques and neurofibrillary tau tangles. Although AD’s exact pathophysiology remains unclear, oxidative stress is known to play a role in the neurodegenerative process. Since no curative treatment exists, antioxidants represent a potential treatment for AD due to their ability to modulate oxidative stress. Therefore, this review aims to examine the impact of antioxidant supplementation and its potential mechanisms on cognitive function. The review primarily discusses research articles published between 2012 and 2022 reporting the results of clinical trials involving antioxidant supplementation on cognitive function in individuals with AD. Antioxidant supplementation included probiotics, selenium, melatonin, resveratrol, rosmarinic acid, carotenoids, curcumin, vitamin E, and coenzyme Q. While the studies included in this review did not provide much evidence for the beneficial role of antioxidant supplements on cognitive function in AD, the results varied from antioxidant to antioxidant and among trials examining the same antioxidant. Furthermore, many of the studies’ findings face several limitations, including short trial durations, small sample sizes, and a lack of diversity among study participants. As a result, more research is required to examine the impact of antioxidant supplementation on cognitive function in AD.
Collapse
|
16
|
Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol 2023; 14:1106515. [PMID: 36814920 PMCID: PMC9939898 DOI: 10.3389/fimmu.2023.1106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.
Collapse
Affiliation(s)
- Iswarya Muthukumarasamy
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sharleen M. Buel
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jennifer M. Hurley
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
18
|
Manippa V, Palmisano A, Filardi M, Vilella D, Nitsche MA, Rivolta D, Logroscino G. An update on the use of gamma (multi)sensory stimulation for Alzheimer's disease treatment. Front Aging Neurosci 2022; 14:1095081. [PMID: 36589536 PMCID: PMC9797689 DOI: 10.3389/fnagi.2022.1095081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by reduced fast brain oscillations in the gamma band (γ, > 30 Hz). Several animal studies show that inducing gamma oscillations through (multi)sensory stimulation at 40 Hz has the potential to impact AD-related cognitive decline and neuropathological processes, including amyloid plaques deposition, neurofibrillary tangles formation, and neuronal and synaptic loss. Therefore Gamma Entrainment Using Sensory stimulation (GENUS) is among the most promising approaches for AD patients' treatment. This review summarizes the evidence on GENUS effectiveness, from animal models to AD patients. Despite the application on human is in its infancy, the available findings suggest its feasibility for the treatment of AD. We discuss such results in light of parameter improvement and possible underlying mechanisms. We finally emphasize the need for further research for its development as a disease-modifying non-pharmacological intervention.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| |
Collapse
|
19
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
20
|
Zhang S, Zhen K, Su Q, Chen Y, Lv Y, Yu L. The Effect of Aerobic Exercise on Cognitive Function in People with Alzheimer's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315700. [PMID: 36497772 PMCID: PMC9736612 DOI: 10.3390/ijerph192315700] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/25/2023]
Abstract
A growing body of research has examined the effect of aerobic exercise on cognitive function in people with Alzheimer's Disease (AD), but the findings of the available studies were conflicting. The aim of this study was to explore the effect of aerobic exercise on cognitive function in AD patients. Searches were performed in PubMed, Web of Science, and EBSCO databases from the inception of indexing until 12 November 2021. Cochrane risk assessment tool was used to evaluate the methodological quality of the included literature. From 1942 search records initially identified, 15 randomized controlled trials (RCTs) were considered eligible for systematic review and meta-analysis. Included studies involved 503 participants in 16 exercise groups (mean age: 69.2-84 years) and 406 participants (mean age: 68.9-84 years) in 15 control groups. There was a significant effect of aerobic exercise on increasing mini-mental state examination (MMSE) score in AD patients [weighted mean difference (WMD), 1.50 (95% CI, 0.55 to 2.45), p = 0.002]. Subgroup analyses showed that interventions conducted 30 min per session [WMD, 2.52 (95% CI, 0.84 to 4.20), p = 0.003], less than 150 min per week [WMD, 2.10 (95% CI, 0.84 to 3.37), p = 0.001], and up to three times per week [WMD, 1.68 (95% CI, 0.46 to 2.89), p = 0.007] increased MMSE score significantly. In addition, a worse basal cognitive status was associated with greater improvement in MMSE score. Our analysis indicated that aerobic exercise, especially conducted 30 min per session, less than 150 min per week, and up to three times per week, contributed to improving cognitive function in AD patients. Additionally, a worse basal cognitive status contributed to more significant improvements in cognitive function.
Collapse
Affiliation(s)
- Shiyan Zhang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Kai Zhen
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Qing Su
- Ersha Sports Training Center of Guangdong Province, Guangzhou 510100, China
| | - Yiyan Chen
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Sports Performance, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
21
|
Souza KA, Powell A, Allen GC, Earnest DJ. Development of an age-dependent cognitive index: relationship between impaired learning and disturbances in circadian timekeeping. Front Aging Neurosci 2022; 14:991833. [PMID: 36438000 PMCID: PMC9682238 DOI: 10.3389/fnagi.2022.991833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 09/19/2023] Open
Abstract
Preclinical quantitative models of cognitive performance are necessary for translation from basic research to clinical studies. In rodents, non-cognitive factors are a potential influence on testing outcome and high variability in behavior requires multiple time point testing for better assessment of performance in more sophisticated tests. Thus, these models have limited translational value as most human cognitive tests characterize cognition using single digit scales to distinguish between impaired and unimpaired function. To address these limitations, we developed a cognitive index for learning based on previously described scores for strategies used by mice to escape the Barnes maze. We compared the cognitive index and circadian patterns of light-dark entrainment in young (4-6 months), middle-aged (13-14 months), and aged (18-24 months) mice as cognitive changes during aging are often accompanied by pronounced changes in sleep-wake cycle. Following continuous analysis of circadian wheel-running activity (30-40 days), the same cohorts of mice were tested in the Barnes maze. Aged mice showed significant deficits in the learning and memory portions of the Barnes maze relative to young and middle-aged animals, and the cognitive index was positively correlated to the memory portion of the task (probe) in all groups. Significant age-related alterations in circadian entrainment of the activity rhythm were observed in the middle-aged and aged cohorts. In middle-aged mice, the delayed phase angle of entrainment and increased variability in the daily onsets of activity preceded learning and memory deficits observed in aged animals. Interestingly, learning-impaired mice were distinguished by a positive relationship between the extent of Barnes-related cognitive impairment and variability in daily onsets of circadian activity. While it is unclear whether changes in the sleep-wake cycle or other circadian rhythms play a role in cognitive impairment during aging, our results suggest that circadian rhythm perturbations or misalignment may nevertheless provide an early predictor of age-related cognitive decline.
Collapse
Affiliation(s)
- Karienn A. Souza
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| | - Andrew Powell
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| | - Gregg C. Allen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| | - David J. Earnest
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
Smies CW, Bodinayake KK, Kwapis JL. Time to learn: The role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem 2022; 193:107651. [PMID: 35697314 PMCID: PMC9903177 DOI: 10.1016/j.nlm.2022.107651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The circadian system plays an important role in aligning biological processes with the external time of day. A range of physiological functions are governed by the circadian cycle, including memory processes, yet little is understood about how the clock interfaces with memory at a molecular level. The molecular circadian clock consists of four key genes/gene families, Period, Clock, Cryptochrome, and Bmal1, that rhythmically cycle in an ongoing transcription-translation negative feedback loop that maintains an approximately 24-hour cycle within cells of the brain and body. In addition to their roles in generating the circadian rhythm within the brain's master pacemaker (the suprachiasmatic nucleus), recent research has suggested that these clock genes may function locally within memory-relevant brain regions to modulate memory across the day/night cycle. This review will discuss how these clock genes function both within the brain's central clock and within memory-relevant brain regions to exert circadian control over memory processes. For each core clock gene, we describe the current research that demonstrates a potential role in memory and outline how these clock genes might interface with cascades known to support long-term memory formation. Together, the research suggests that clock genes function locally within satellite clocks across the brain to exert circadian control over long-term memory formation and possibly other biological processes. Understanding how clock genes might interface with local molecular cascades in the hippocampus and other brain regions is a critical step toward developing treatments for the myriad disorders marked by dysfunction of both the circadian system and cognitive processes.
Collapse
Affiliation(s)
- Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
24
|
The microRNA-455 Null Mouse Has Memory Deficit and Increased Anxiety, Targeting Key Genes Involved in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23010554. [PMID: 35008980 PMCID: PMC8745123 DOI: 10.3390/ijms23010554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022] Open
Abstract
The complete molecular mechanisms underlying the pathophysiology of Alzheimer's disease (AD) remain to be elucidated. Recently, microRNA-455-3p has been identified as a circulating biomarker of early AD, with increased expression in post-mortem brain tissue of AD patients. MicroRNA-455-3p also directly targets and down-regulates APP, with the overexpression of miR-455-3p suppressing its toxic effects. Here, we show that miR-455-3p expression decreases with age in the brains of wild-type mice. We generated a miR-455 null mouse utilising CRISPR-Cas9 to explore its function further. Loss of miR-455 resulted in increased weight gain, potentially indicative of metabolic disturbances. Furthermore, performance on the novel object recognition task diminished significantly in miR-455 null mice (p = 0.004), indicating deficits in recognition memory. A slight increase in anxiety was also captured on the open field test. BACE1 and TAU were identified as new direct targets for miR-455-3p, with overexpression of miR-455-3p leading to a reduction in the expression of APP, BACE1 and TAU in neuroblastoma cells. In the hippocampus of miR-455 null mice at 14 months of age, the levels of protein for APP, BACE1 and TAU were all increased. Such findings reinforce the involvement of miR-455 in AD progression and demonstrate its action on cognitive performance.
Collapse
|
25
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Koc F, Stanton C, Ross RP, Salkovic-Petrisic M. Disbalance of the Duodenal Epithelial Cell Turnover and Apoptosis Accompanies Insensitivity of Intestinal Redox Homeostasis to Inhibition of the Brain Glucose-Dependent Insulinotropic Polypeptide Receptors in a Rat Model of Sporadic Alzheimer's Disease. Neuroendocrinology 2022; 112:744-762. [PMID: 34607331 DOI: 10.1159/000519988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gastrointestinal dyshomeostasis is investigated in the context of metabolic dysfunction, systemic, and neuroinflammation in Alzheimer's disease. Dysfunctional gastrointestinal redox homeostasis and the brain-gut incretin axis have been reported in the rat model of insulin-resistant brain state-driven neurodegeneration induced by intracerebroventricular streptozotocin (STZ-icv). We aimed to assess whether (i) the structural epithelial changes accompany duodenal oxidative stress; (ii) the brain glucose-dependent insulinotropic polypeptide receptor (GIP-R) regulates redox homeostasis of the duodenum; and (iii) the STZ-icv brain-gut axis is resistant to pharmacological inhibition of the brain GIP-R. METHODS GIP-R inhibitor [Pro3]-GIP (85 μg/kg) was administered intracerebroventricularly to the control and the STZ-icv rats 1 month after model induction. Thiobarbituric acid reactive substances (TBARSs) were measured in the plasma and duodenum, and the sections were analyzed morphometrically. Caspase-3 expression and activation were assessed by Western blot and multiplex fluorescent signal amplification. RESULTS Intracerebroventricular [Pro3]-GIP decreased plasma TBARSs in the control and STZ-icv animals and increased duodenal TBARSs in the controls. In the controls, inhibition of brain GIP-R affected duodenal epithelial cells, but not villus structure, while all morphometric parameters were altered in the STZ-icv-treated animals. Morphometric changes in the STZ-icv animals were accompanied by reduced levels of caspase-3. Suppression of brain GIP-R inhibited duodenal caspase-3 activation. CONCLUSION Brain GIP-R seems to be involved in the regulation of duodenal redox homeostasis and epithelial cell turnover. Resistance of the brain-gut GIP axis and morphological changes indicative of abnormal epithelial cell turnover accompany duodenal oxidative stress in the STZ-icv rats.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fatma Koc
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
26
|
Mehramiz M, Porter T, Laws SM, Rainey-Smith SR. Sleep, Sirtuin 1 and Alzheimer's disease: A review. AGING BRAIN 2022; 2:100050. [PMID: 36908890 PMCID: PMC9997138 DOI: 10.1016/j.nbas.2022.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep plays a major role in brain health, and cognition. Disrupted sleep is a well-described symptom of Alzheimer's disease (AD). However, accumulating evidence suggests suboptimal sleep also increases AD risk. The deacetylase Sirtuin 1 (Sirt 1), encoded by the SIRT1 gene, impacts sleep via its relationship to wake-sleep neurotransmitters and somnogens. Evidence from animal and human studies supports a significant and complex relationship between sleep, Sirt 1/ SIRT1 and AD. Numerous hypotheses attempt to explain the critical impact of Sirt 1/ SIRT1 on wake- and sleep- promoting neurons, their related mechanisms and neurotransmitters. However, there is a paucity of studies assessing the interaction between sleep and Sirt 1/ SIRT1, as a principal component of sleep regulation, on AD pathology. In this review, we explore the potential association between Sirt 1/ SIRT1, sleep, and AD aetiology. Given sleep is a likely modifiable risk factor for AD, and recent studies suggest Sirt 1/ SIRT1 activation can be modulated by lifestyle or dietary approaches, further research in this area is required to explore its potential as a target for AD prevention and treatment.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
27
|
Traikapi A, Konstantinou N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front Syst Neurosci 2021; 15:782399. [PMID: 34966263 PMCID: PMC8710538 DOI: 10.3389/fnsys.2021.782399] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Despite decades of research, Alzheimer’s Disease (AD) remains a lethal neurodegenerative disorder for which there are no effective treatments. This review examines the latest evidence of a novel and newly introduced perspective, which focuses on the restoration of gamma oscillations and investigates their potential role in the treatment of AD. Gamma brain activity (∼25–100 Hz) has been well-known for its role in cognitive function, including memory, and it is fundamental for healthy brain activity and intra-brain communication. Aberrant gamma oscillations have been observed in both mice AD models and human AD patients. A recent line of work demonstrated that gamma entrainment, through auditory and visual sensory stimulation, can effectively attenuate AD pathology and improve cognitive function in mice models of the disease. The first evidence from AD patients indicate that gamma entrainment therapy can reduce loss of functional connectivity and brain atrophy, improve cognitive function, and ameliorate several pathological markers of the disease. Even though research is still in its infancy, evidence suggests that gamma-based therapy may have a disease-modifying effect and has signified a new and promising era in AD research.
Collapse
|
28
|
Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021; 13:nu13113846. [PMID: 34836101 PMCID: PMC8622682 DOI: 10.3390/nu13113846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/17/2023] Open
Abstract
We used time-restricted feeding (TRF) to investigate whether microbial metabolites and the hunger hormone ghrelin can become the dominant entraining factor during chronic jetlag to prevent disruption of the master and peripheral clocks, in order to promote health. Therefore, hypothalamic clock gene and Agrp/Npy mRNA expression were measured in mice that were either chronically jetlagged and fed ad libitum, jetlagged and fed a TRF diet, or not jetlagged and fed a TRF diet. Fecal short-chain fatty acid (SCFA) concentrations, plasma ghrelin and corticosterone levels, and colonic clock gene mRNA expression were measured. Preventing the disruption of the food intake pattern during chronic jetlag using TRF restored the rhythmicity in hypothalamic clock gene mRNA expression of Reverbα but not of Arntl. TRF countered the changes in plasma ghrelin levels and in hypothalamic Npy mRNA expression induced by chronic jetlag, thereby reestablishing the food intake pattern. Increase in body mass induced by chronic jetlag was prevented. Alterations in diurnal fluctuations in fecal SCFAs during chronic jetlag were prevented thereby re-entraining the rhythmic expression of peripheral clock genes. In conclusion, TRF during chronodisruption re-entrains the rhythms in clock gene expression and signals from the gut that regulate food intake to normalize body homeostasis.
Collapse
|
29
|
Adewale Q, Khan AF, Carbonell F, Iturria-Medina Y. Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer's disease. eLife 2021; 10:e62589. [PMID: 34002691 PMCID: PMC8131100 DOI: 10.7554/elife.62589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Both healthy aging and Alzheimer's disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.
Collapse
Affiliation(s)
- Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | - Ahmed F Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | |
Collapse
|
30
|
Deciphering the Interacting Mechanisms of Circadian Disruption and Alzheimer's Disease. Neurochem Res 2021; 46:1603-1617. [PMID: 33871799 DOI: 10.1007/s11064-021-03325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is one of the crucial causative factors for progressive dementia. Neuropathologically, AD is characterized by the extracellular accumulation of amyloid beta plaques and intracellular neurofibrillary tangles in cortical and limbic regions of the human brain. The circadian system is one of the many affected physiological processes in AD, the dysfunction of which may reflect in the irregularity of the sleep/wake cycle. The interplay of circadian and sleep disturbances inducing AD progression is bidirectional. Sleep-associated pathological alterations are frequently evident in AD. Understanding the interrelation between circadian disruption and AD may allow for earlier identification of AD pathogenesis as well as better suited approaches and potential therapies to combat dementia. In this article, we examine the existing literature related to the molecular mechanisms of the circadian clock and interacting mechanisms of circadian disruption and AD pathogenesis.
Collapse
|
31
|
Association of sleep with cognition and beta amyloid accumulation in adults with Down syndrome. Neurobiol Aging 2020; 93:44-51. [PMID: 32447011 PMCID: PMC7380565 DOI: 10.1016/j.neurobiolaging.2020.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Adults with Down syndrome have an increased risk for both disordered sleep and Alzheimer's disease (AD). In the general population, disrupted sleep has been linked to beta amyloid accumulation, an early pathophysiologic feature of AD. In this study, the association among sleep, beta amyloid, and measures of AD-related cognitive decline was examined in 47 non-demented adults with Down syndrome (aged 26-56 years). Sleep was measured using actigraphy over 7 nights. Pittsburgh Compound B positron emission tomography was used to assess global and striatal beta amyloid burden. Participants had the following clinical AD status: 7 (15%) mild cognitive impairment and 40 (85%) cognitively unaffected. Average length of night-time awakenings was significantly positively associated with striatal beta amyloid and decreased cognitive performance in executive functioning and motor planning and coordination. Findings suggest that disrupted sleep is associated with beta amyloid accumulation and cognitive features of preclinical AD in Down syndrome. Early identification and treatment of sleep problems could be a lifestyle intervention that may delay beta amyloid accumulation and cognitive decline in this AD vulnerable group.
Collapse
|
32
|
Robust light-dark patterns and reduced amyloid load in an Alzheimer's disease transgenic mouse model. Sci Rep 2020; 10:11436. [PMID: 32651420 PMCID: PMC7351709 DOI: 10.1038/s41598-020-68199-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/05/2020] [Indexed: 12/01/2022] Open
Abstract
Circadian disruption resulting from exposure to irregular light–dark patterns and sleep deprivation has been associated with beta amyloid peptide (Aβ) aggregation, which is a major event in Alzheimer’s disease (AD) pathology. We exposed 5XFAD mice and littermate controls to dim-light vs. bright-light photophases to investigate the effects of altering photophase strength on AD-associated differences in cortical Aβ42 levels, wheel-running activity, and circadian free-running period (tauDD). We found that increasing light levels significantly reduced cortical Aβ42 accumulation and activity levels during the light phase of the light:dark cycle, the latter being consistent with decreased sleep fragmentation and increased sleep duration for mice exposed to the more robust light–dark pattern. No significant changes were observed for tauDD. Our results are consistent with circadian pacemaker period being relatively unaffected by Aβ pathology in AD, and with reductions in cortical Aβ loads in AD through tailored lighting interventions.
Collapse
|
33
|
Basili D, Lutfi E, Falcinelli S, Balbuena-Pecino S, Navarro I, Bertolucci C, Capilla E, Carnevali O. Photoperiod Manipulation Affects Transcriptional Profile of Genes Related to Lipid Metabolism and Apoptosis in Zebrafish (Danio rerio) Larvae: Potential Roles of Gut Microbiota. MICROBIAL ECOLOGY 2020; 79:933-946. [PMID: 31820072 DOI: 10.1007/s00248-019-01468-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Gut microbiota plays a fundamental role in maintaining host's health by controlling a wide range of physiological processes. Administration of probiotics and manipulation of photoperiod have been suggested as modulators of microbial composition and are currently undergoing an extensive research in aquaculture as a way to improve health and quality of harvested fish. However, our understanding regarding their effects on physiological processes is still limited. In the present study we investigated whether manipulation of photoperiod and/or probiotic administration was able to alter microbial composition in zebrafish larvae at hatching stage. Our findings show that probiotic does not elicit effects while photoperiod manipulation has a significant impact on microbiota composition. Moreover, we successfully predicted lipid biosynthesis and apoptosis to be modulated by microbial communities undergoing continuous darkness. Interestingly, expression levels of caspase 3 gene (casp3) and lipid-related genes (hnf4a, npc1l1, pparγ, srebf1, agpat4 and fitm2) were found to be significantly overexpressed in dark-exposed larvae, suggesting an increase in the occurrence of apoptotic processes and a lipid metabolism impairment, respectively (p < 0.05). Our results provide the evidence that microbial communities in zebrafish at early life stages are not modulated by a short administration of probiotics and highlight the significant effect that dark photoperiod elicits on zebrafish microbiota and potentially on health.
Collapse
Affiliation(s)
- Danilo Basili
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, 1431, Ås, Norway
| | - Silvia Falcinelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cristiano Bertolucci
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
34
|
Ferini-Strambi L, Galbiati A, Casoni F, Salsone M. Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease. Curr Treat Options Neurol 2020; 22:4. [PMID: 32025925 DOI: 10.1007/s11940-020-0612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW There is strong evidence for a bidirectional association between sleep disorders and Alzheimer's disease (AD). In particular, insomnia may be a potentially modifiable risk factor for AD. The present review summarizes recent advances in treatment of sleep disorders in AD. RECENT FINDINGS Some studies investigated the efficacy and safety of hypnotic agents as ramelteon and mirtazapine to treat sleep disorders in AD but no significant therapeutic effects have been observed. Benzodiazepines are the most frequently used medication for treatment of insomnia but they may cause significant side effects in old subjects. Suvorexant, an orexin receptor antagonist, showed a positive effect on AD insomnia. Recent report suggests an association between trazodone use and delayed cognitive decline in AD. With respect to circadian rhythm disorders, non-pharmacological treatments, especially bright light therapy, could be useful and safe options for treatment in AD. Some pharmacological and non-pharmacological treatments might have benefits in AD patients with sleep disturbances, but further well-designed controlled trials are needed.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy. .,Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Galbiati
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Salsone
- National Research Council, Institute of Molecular Bioimaging and Physiology, Catanzaro, Italy
| |
Collapse
|
35
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
36
|
Rainer M, M. Mucke H. Management of Alzheimer's disease. HAMDAN MEDICAL JOURNAL 2019. [DOI: 10.4103/hmj.hmj_10_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|