1
|
Dudek B, Brożyna M, Karoluk M, Frankiewicz M, Migdał P, Szustakiewicz K, Matys T, Wiater A, Junka A. In Vitro and In Vivo Translational Insights into the Intraoperative Use of Antiseptics and Lavage Solutions Against Microorganisms Causing Orthopedic Infections. Int J Mol Sci 2024; 25:12720. [PMID: 39684431 DOI: 10.3390/ijms252312720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The growing antibiotic resistance of microorganisms causing postoperative infections following orthopedic surgeries underscores the urgent need for localized antiseptic and lavage delivery systems to enhance infection control. This study evaluates the in vitro effectiveness of antiseptic and lavage solutions-including polyhexanide, povidone-iodine, low-concentrated hypochlorite, Ringer's solution, and saline-against Staphylococcus epidermidis, Staphylococcus aureus MRSA, Cutibacterium acnes, Corynebacterium amycolatum, Pseudomonas aeruginosa, and Candida albicans. Using microplate models (Minimum Inhibitory Concentration, Minimum Biofilm Eradication Concentration, and Biofilm-Oriented Antiseptic Test assays), flow-based models (Bioflux system), and surfaces relevant to orthopedic implants (e.g., stainless steel disks/screws, Co-Cr-Mo, Ti-Al-Nb orthopedic alloys, and ultra-high-molecular-weight polyethylene), as well as a bio-nano-cellulose scaffold representing tissue, we assessed the solutions' activity. The cytotoxicity of the solutions was evaluated using osteoblast and keratinocyte cell lines, with additional in vivo insights gained through the Galleria mellonella larval model. The results show that polyhexanide-based solutions outperformed povidone-iodine in biofilm eradication in most tests applied, particularly on complex surfaces, whereas iodine demonstrated higher cytotoxicity in applied in vitro and in vivo tests. Low-concentration hypochlorite solutions exhibited minimal antibiofilm activity but also showed no cytotoxicity in cell line and G. mellonella larval models. These findings highlight the importance of careful antiseptic selection and rinsing protocols to balance infection control efficacy with tissue compatibility in orthopedic applications.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| | - Malwina Brożyna
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| | - Michał Karoluk
- Faculty of Mechanical Engineering, Department of Laser Technologies, Automation and Production Organization, Wrocław University of Science and Technology, Ignacego Łukasiewicza 5, 50-371 Wroclaw, Poland
| | - Mariusz Frankiewicz
- Faculty of Mechanical Engineering, Department of Laser Technologies, Automation and Production Organization, Wrocław University of Science and Technology, Ignacego Łukasiewicza 5, 50-371 Wroclaw, Poland
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry and Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tomasz Matys
- The Department and Clinic of Angiology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adam Junka
- "P.U.M.A.", Platform for Unique Model Application, Department of Pharmacy, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland
| |
Collapse
|
2
|
Bhatt P. Quality of life case series review: wound bed preparation from a UK perspective. Br J Community Nurs 2024; 29:S8-S14. [PMID: 38814846 DOI: 10.12968/bjcn.2024.29.sup6.s8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Previous studies have reported that polyhexamethylene biguanide (PHMB) and betaine solution and gels remove biofilm, improve wound healing and reduce infection rates. Quality of life (QoL) outcomes are not commonly reported on when it comes to wound care. This review aims to summarise QoL data from a cohort of case studies previously published on chronic lower limb ulcers using PHMB products (Prontosan® Solution, Prontosan® Wound Gel X and Prontosan® Debridement Pad). Here, we report on and review a total of 38 case studies describing 56 wounds. From these 38 case studies, 36 reported that all the wounds involved had either healed or improved by the end of their respective study period. QoL themes explore malodour, slough, and exudate, pain, mobility, hair growth, antibiotic intake, return to work, social life and mood. This case series demonstrates that treatment with Prontosan® products improves many QoL outcomes for patients with non-healing wounds.
Collapse
Affiliation(s)
- Priti Bhatt
- Community Tissue Viability Lead, Guy's and St Thomas's NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Rippon MG, Daly K, Rogers AA, Westgate S. Safety and effectiveness of an antiseptic wound cleansing and irrigation solution containing polyhexamethylene biguanide. J Wound Care 2024; 33:324-334. [PMID: 38683774 DOI: 10.12968/jowc.2024.33.5.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE There is currently a wide range of cleansing and irrigation solutions available for wounds, many of which contain antimicrobial agents. The aim of this study was to assess the safety of HydroClean Solution (HARTMANN, Germany), a polyhexamethylene biguanide (PHMB)-containing irrigation solution, in a standard cytotoxicity assay, and to assess its effect in a three-dimensional (3D) full-thickness model of human skin. METHOD A number of commercially available wound cleansing and irrigation solutions, including the PHMB-containing irrigation solution, were tested in a cytotoxicity assay using L929 mouse fibroblasts (ISO 10993-5:2009). The PHMB-containing irrigation solution was then assessed in an in vitro human keratinocyte-fibroblast 3D full-thickness wounded skin model to determine its effect on wound healing over six days. The effect of the PHMB-containing irrigation solution on tissue viability was measured using a lactate dehydrogenase (LDH) assay, and proinflammatory effects were measured using an interleukin-6 (IL-6) production assay. RESULTS The PHMB-containing irrigation solution was shown to be equivalent to other commercially available cleansing and irrigation solutions when tested in the L929 fibroblast cytotoxicity assay. When assessed in the in vitro 3D human full-thickness wound healing model, the PHMB-containing irrigation solution treatment resulted in no difference in levels of LDH or IL-6 when compared with levels produced in control Dulbecco's phosphate-buffered saline cultures. There was, however, a pronounced tissue thickening of the skin model in the periwound region. CONCLUSION The experimental data presented in this study support the conclusion that the PHMB-containing irrigation solution has a safety profile similar to other commercially available cleansing and irrigation solutions. Evidence also suggests that the PHMB-containing irrigation solution does not affect tissue viability or proinflammatory cytokine production, as evidenced by LDH levels or the production of IL-6 in a 3D human full-thickness wound healing model. The PHMB-containing irrigation solution stimulated new tissue growth in the periwound region of the skin model.
Collapse
Affiliation(s)
- Mark G Rippon
- Huddersfield University, Huddersfield, UK
- Daneriver Consultancy Ltd, Holmes Chapel, Cheshire, UK
| | | | | | | |
Collapse
|
4
|
Yap JW, Ismail NI, Lee CS, Oh DY. Impact of Interfering Substances on the Bactericidal Efficacy of Different Commercially Available Hypochlorous Acid-Based Wound Irrigation Solutions Commonly Found in South-East Asia. Antibiotics (Basel) 2024; 13:309. [PMID: 38666985 PMCID: PMC11047473 DOI: 10.3390/antibiotics13040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
The high prevalence of chronic wounds is a growing concern. Recently, hypochlorous acid (HOCl)-based solutions were introduced as an alternative antimicrobial for wound cleansing. In this study, we assessed the in vitro bactericidal activities of seven commercially available wound irrigation products commonly found in South-East Asia. The evaluation was conducted using quantitative suspension method, EN 13727 in either low or high protein conditions. Under low protein conditions, four out of the five HOCl products achieved bactericidal activity (≥5 log10 reduction factor; RF) within 2-5 min, and only one product achieved 5 log10 RF at 15 s. None of the HOCl achieved 5 log10 RF under high protein, even after 30 min of exposure time. In contrast, protein interference on the antimicrobial activities of polyhexamethylene biguanide-based product is less pronounced (low protein: 60 s vs. high protein: 2 min to attain ≥5 log10 RF). Octenidine dihydrochloride is the only active not affected by protein interference achieving ≥5 log10 RF within 15 s in both low and high protein conditions. These findings warrant the need to screen antimicrobial wound care products, especially HOCl-based products, in high protein condition to better reflect the antimicrobial activities in wound care.
Collapse
Affiliation(s)
- Jiann Wen Yap
- Wound and Stoma Care Unit, Queen Elizabeth Hospital, Karung Berkunci No. 2029, Kota Kinabalu 88586, Sabah, Malaysia;
| | - Neni Iffanida Ismail
- TECOLAB SDN BHD, J-2-6, Pusat Komersial Jalan Kuching, Kuala Lumpur 51200, Malaysia; (N.I.I.); (C.S.L.)
| | - Cheng Shoou Lee
- TECOLAB SDN BHD, J-2-6, Pusat Komersial Jalan Kuching, Kuala Lumpur 51200, Malaysia; (N.I.I.); (C.S.L.)
| | - Ding Yuan Oh
- Schülke & Mayr (Asia) Pte Ltd., 10 Jalan Kilang #04-01/02/03, Singapore 159410, Singapore
| |
Collapse
|
5
|
Dzięgielewska M, Bartoszewicz M, Książczyk M, Dudek B, Brożyna M, Szymczyk-Ziółkowska P, Gruber P, Pawlak J, Kozłowska W, Zielińska S, Fischer J, Woytoń A, Junka A. Abietic Acid as a Novel Agent against Ocular Biofilms: An In Vitro and Preliminary In Vivo Investigation. Int J Mol Sci 2024; 25:1528. [PMID: 38338807 PMCID: PMC10855443 DOI: 10.3390/ijms25031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Biofilm-related ocular infections can lead to vision loss and are difficult to treat with antibiotics due to challenges with application and increasing microbial resistance. In turn, the design and testing of new synthetic drugs is a time- and cost-consuming process. Therefore, in this work, for the first time, we assessed the in vitro efficacy of the plant-based abietic acid molecule, both alone and when introduced to a polymeric cellulose carrier, against biofilms formed by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in standard laboratory settings as well as in a self-designed setting using the topologically challenging surface of the artificial eye. These analyses were performed using the standard microdilution method, the biofilm-oriented antiseptic test (BOAT), a modified disk-diffusion method, and eyeball models. Additionally, we assessed the cytotoxicity of abietic acid against eukaryotic cell lines and its anti-staphylococcal efficacy in an in vivo model using Galleria mellonella larvae. We found that abietic acid was more effective against Staphylococcus than Pseudomonas (from two to four times, depending on the test applied) and that it was generally more effective against the tested bacteria (up to four times) than against the fungus C. albicans at concentrations non-cytotoxic to the eukaryotic cell lines and to G. mellonella (256 and 512 µg/mL, respectively). In the in vivo infection model, abietic acid effectively prevented the spread of staphylococcus throughout the larvae organisms, decreasing their lethality by up to 50%. These initial results obtained indicate promising features of abietic acid, which may potentially be applied to treat ocular infections caused by pathogenic biofilms, with higher efficiency manifested against bacterial than fungal biofilms.
Collapse
Affiliation(s)
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland;
| | - Marta Książczyk
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wroclaw, Poland;
| | - Bartłomiej Dudek
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Patrycja Szymczyk-Ziółkowska
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Piotr Gruber
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Jacek Pawlak
- Medical Department, Lazarski University, 02-662 Warsaw, Poland;
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Sylwia Zielińska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Jędrzej Fischer
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Aleksandra Woytoń
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Adam Junka
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| |
Collapse
|
6
|
Korbecka-Paczkowska M, Karpiński TM. In Vitro Assessment of Antifungal and Antibiofilm Efficacy of Commercial Mouthwashes against Candida albicans. Antibiotics (Basel) 2024; 13:117. [PMID: 38391503 PMCID: PMC10885913 DOI: 10.3390/antibiotics13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Candida albicans is the most critical fungus causing oral mycosis. Many mouthwashes contain antimicrobial substances, including antifungal agents. This study aimed to investigate the in vitro activity of 15 commercial mouthwashes against 12 strains of C. albicans. The minimal inhibitory concentrations (MICs), minimal fungicidal concentrations (MFCs), and anti-biofilm activity were studied. MICs were determined by the micro-dilution method using 96-well plates, and MFCs were determined by culturing MIC suspensions on Sabouraud dextrose agar. Anti-biofilm activity was evaluated using the crystal violet method. The mouthwashes containing octenidine dihydrochloride (OCT; mean MICs 0.09-0.1%), chlorhexidine digluconate (CHX; MIC 0.12%), and CHX with cetylpyridinium chloride (CPC; MIC 0.13%) exhibited the best activity against C. albicans. The active compound antifungal concentrations were 0.5-0.9 µg/mL for OCT products and 1.1-2.4 µg/mL for CHX rinses. For mouthwashes with CHX + CPC, concentrations were 1.56 µg/mL and 0.65 µg/mL, respectively. Products with polyaminopropyl biguanide (polyhexanide, PHMB; MIC 1.89%) or benzalkonium chloride (BAC; MIC 6.38%) also showed good anti-Candida action. In biofilm reduction studies, mouthwashes with OCT demonstrated the most substantial effect (47-51.1%). Products with CHX (32.1-41.7%), PHMB (38.6%), BAC (35.7%), Scutellaria extract (35.6%), and fluorides + essential oils (33.2%) exhibited moderate antibiofilm activity. The paper also provides an overview of the side effects of CHX, CPC, and OCT. Considering the in vitro activity against Candida albicans, it can be inferred that, clinically, mouthwashes containing OCT are likely to offer the highest effectiveness. Meanwhile, products containing CHX, PHMB, or BAC can be considered as promising alternatives.
Collapse
Affiliation(s)
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| |
Collapse
|
7
|
Lazarus E, Meyer AS, Ikuma K, Rivero IV. Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications. Microb Biotechnol 2024; 17:e14360. [PMID: 38041693 PMCID: PMC10832517 DOI: 10.1111/1751-7915.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023] Open
Abstract
Three dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bioarchitecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed.
Collapse
Affiliation(s)
- Emily Lazarus
- Department Industrial and Systems EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
| | - Anne S. Meyer
- Department of BiologyUniversity of RochesterRochesterNew YorkUSA
| | - Kaoru Ikuma
- Department of Civil, Construction, and Environmental EngineeringIowa State UniversityAmesIowaUSA
| | - Iris V. Rivero
- Department Industrial and Systems EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
- Department of Biomedical EngineeringRochester Institute of TechnologyRochesterNew YorkUSA
- Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
8
|
Paleczny J, Brożyna M, Dudek B, Woytoń A, Chodaczek G, Szajnik M, Junka A. Culture Shock: An Investigation into the Tolerance of Pathogenic Biofilms to Antiseptics in Environments Resembling the Chronic Wound Milieu. Int J Mol Sci 2023; 24:17242. [PMID: 38139071 PMCID: PMC10744066 DOI: 10.3390/ijms242417242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.
Collapse
Affiliation(s)
- Justyna Paleczny
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Aleksandra Woytoń
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Lukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Marta Szajnik
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (B.D.); (A.W.)
| |
Collapse
|
9
|
Fang T, Xiong J, Wang L, Feng Z, Hang S, Yu J, Li W, Feng Y, Lu H, Jiang Y. Unexpected Inhibitory Effect of Octenidine Dihydrochloride on Candida albicans Filamentation by Impairing Ergosterol Biosynthesis and Disrupting Cell Membrane Integrity. Antibiotics (Basel) 2023; 12:1675. [PMID: 38136708 PMCID: PMC10741164 DOI: 10.3390/antibiotics12121675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans filamentation plays a significant role in developing both mucosal and invasive candidiasis, making it a crucial virulence factor. Consequently, exploring and identifying inhibitors that impede fungal hyphal formation presents an intriguing approach toward antifungal strategies. In line with this anti-filamentation strategy, we conducted a comprehensive screening of a library of FDA-approved drugs to identify compounds that possess inhibitory properties against hyphal growth. The compound octenidine dihydrochloride (OCT) exhibits potent inhibition of hyphal growth in C. albicans across different hyphae-inducing media at concentrations below or equal to 3.125 μM. This remarkable inhibitory effect extends to biofilm formation and the disruption of mature biofilm. The mechanism underlying OCT's inhibition of hyphal growth is likely attributed to its capacity to impede ergosterol biosynthesis and induce the generation of reactive oxygen species (ROS), compromising the integrity of the cell membrane. Furthermore, it has been observed that OCT demonstrates protective attributes against invasive candidiasis in Galleria mellonella larvae through its proficient eradication of C. albicans colonization in infected G. mellonella larvae by impeding hyphal formation. Although additional investigation is required to mitigate the toxicity of OCT in mammals, it possesses considerable promise as a potent filamentation inhibitor against invasive candidiasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
10
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
11
|
Karine Marcomini E, Negri M. Fungal quorum-sensing molecules and antiseptics: a promising strategy for biofilm modulation? Drug Discov Today 2023:103624. [PMID: 37224996 DOI: 10.1016/j.drudis.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
New strategies to control fungal biofilms are essential, especially those that interfere in the biofilm organization process and cellular communication, known as quorum sensing. The effect of antiseptics and quorum-sensing molecules (QSMs) have been considered with regard to this; however, little has been elucidated, particularly because studies are often restricted to the action of antiseptics and QSMs against a few fungal genera. In this review, we discuss progress reported in the literature thus far and analyze, through in silico methods, 13 fungal QSMs with regard to their physicochemical, pharmacological, and toxicity properties, including their mutagenicity, tumorigenicity, hepatotoxicity, and nephrotoxicity. From these in silico analyses, we highlight 4-hydroxyphenylacetic acid and tryptophol as having satisfactory properties and, thus, propose that these should be investigated further as antifungal agents. We also recommend future in vitro approaches to determine the association of QSMs with commonly used antiseptics as potential antibiofilm agents.
Collapse
|
12
|
Paleczny J, Junka AF, Krzyżek P, Czajkowska J, Kramer A, Benkhai H, Żyfka-Zagrodzińska E, Bartoszewicz M. Comparison of antibiofilm activity of low-concentrated hypochlorites vs polyhexanide-containing antiseptic. Front Cell Infect Microbiol 2023; 13:1119188. [PMID: 37009512 PMCID: PMC10050698 DOI: 10.3389/fcimb.2023.1119188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic wound infection is highly associated with morbidity and endangers the patient's life. Therefore, wound care products must have a potent antimicrobial and biofilm-eradicating effect. In this work, the antimicrobial/antibiofilm activity of two low-concentrated chlorine-based and releasing solutions was investigated on a total of 78 strains of methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, using the cohesive spectrum of in vitro settings, including microtiter plate models, biofilm-oriented antiseptic test, cellulose-based biofilm model, biofilm bioreactors and Bioflux model. The antiseptic containing polyhexamethylene biguanide was used in the character of usability control of performed tests. The results obtained by static biofilm models indicate that low-concentrated chlorine-based and releasing solutions display none to moderate antibiofilm activity, while data obtained by means of the Bioflux model, providing flow conditions, indicate the moderate antibiofilm activity of substances compared with the polyhexanide antiseptic. Considering in vitro data presented in this manuscript, the earlier reported favorable clinical results of low-concentrated hypochlorites should be considered rather an effect of their rinsing activity combined with low cytotoxicity but not the antimicrobial effect per se. For the treatment of heavily biofilm-infected wounds, polyhexanide should be considered the agent of choice because of its higher efficacy against pathogenic biofilms.
Collapse
Affiliation(s)
- Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Unique Application Models Laboratory, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Adam Junka, ; Justyna Paleczny,
| | - Adam Felix Junka
- Department of Pharmaceutical Microbiology and Parasitology, Unique Application Models Laboratory, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Adam Junka, ; Justyna Paleczny,
| | - Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Czajkowska
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hicham Benkhai
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Unique Application Models Laboratory, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
13
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
14
|
Krasowski G, Migdał P, Woroszyło M, Fijałkowski K, Chodaczek G, Czajkowska J, Dudek B, Nowicka J, Oleksy-Wawrzyniak M, Kwiek B, Paleczny J, Brożyna M, Junka A. The Assessment of Activity of Antiseptic Agents against Biofilm of Staphylococcus aureus Measured with the Use of Processed Microscopic Images. Int J Mol Sci 2022; 23:ijms232113524. [PMID: 36362310 PMCID: PMC9658380 DOI: 10.3390/ijms232113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal biofilms are major causative factors of non-healing wound infections. Their treatment algorithms recommend the use of locally applied antiseptic agents to counteract the spread of infection. The efficacy of antiseptics against biofilm is assessed in vitro by a set of standard quantitative and semi-quantitative methods. The development of software for image processing additionally allowed for the obtainment of quantitative data from microscopic images of biofilm dyed with propidium iodine and SYTO-9 reagents, differentiating dead cells from live ones. In this work, the method of assessment of the impact of antiseptic agents on staphylococcal biofilm in vitro, based on biofilms’ processed images, was proposed and scrutinized with regard to clinically relevant antiseptics, polyhexanide, povidone–iodine and hypochlorite. The standard quantitative culturing method was applied to validate the obtained data from processed images. The results indicated significantly higher activity of polyhexanide and povidone–iodine than hypochlorite against staphylococcal biofilm. Taking into account the fact that in vitro results of the efficacy of antiseptic agents against staphylococcal biofilm are frequently applied to back up their use in hospitals and ambulatory units, our work should be considered an important tool; providing reliable, quantitative data in this regard.
Collapse
Affiliation(s)
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Stanisława Przybyszewskiego 63, 51-148 Wrocław, Poland
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Bartłomiej Kwiek
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence:
| |
Collapse
|
15
|
Esin S, Kaya E, Maisetta G, Romanelli M, Batoni G. The antibacterial and antibiofilm activity of Granudacyn in vitro in a 3D collagen wound infection model. J Wound Care 2022; 31:908-922. [DOI: 10.12968/jowc.2022.31.11.908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: It is widely agreed that infection and the formation of biofilms play a major role in increasing inflammation and delaying wound healing. The aim of this study was to evaluate, in vitro, the antimicrobial activity of the wound irrigation solution, Granudacyn (Mölnlycke Health Care AB, Sweden) against planktonic bacteria and mature biofilms of clinically relevant bacterial species. Method: Quantitative evaluation of bacterial numbers and confocal and/or scanning electron microscopy were used to evaluate the wound irrigation solution's antimicrobial/antibiofilm activity in standard laboratory conditions as well as in a three-dimensional (3D) collagen wound infection model. Results: The wound irrigation solution exhibited a rapid and strong antibacterial activity against both Gram-positive and Gram-negative strains isolated from infected wounds in planktonic form, with a reduction in bacterial number of >4 Logs after as little as one minute of treatment. The wound irrigation solution also exerted an evident activity against preformed biofilms of Pseudomonas aeruginosa and Staphylococcus aureus (>3 Log and >1 Log reduction in colony forming unit number, respectively, after 15 minutes of incubation). Although the wound irrigation solution was partially inhibited in the presence of simulated wound fluid, it maintained a marked antibiofilm activity in in vivo-like conditions (ie. in a 3D collagen wound infection model) with a strong killing and a mild debridement effect, which was superior to standard saline. Conclusion: The results obtained in this study suggest that although the wound irrigation solution used might be partially inhibited by wound exudate, it has the potential to effectively kill wound infecting planktonic as well as biofilm bacteria.
Collapse
Affiliation(s)
- Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Romanelli
- Division of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Benedusi M, Tamburini E, Sicurella M, Summa D, Ferrara F, Marconi P, Cervellati F, Costa S, Valacchi G. The Lesson Learned from the COVID-19 Pandemic: Can an Active Chemical Be Effective, Safe, Harmless-for-Humans and Low-Cost at a Time? Evidence on Aerosolized Hypochlorous Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13163. [PMID: 36293740 PMCID: PMC9602504 DOI: 10.3390/ijerph192013163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has underlined the importance of disinfectants as tools to prevent and fight against coronavirus spreading. An ideal disinfectant and sanitizer must be nontoxic to surface contact, noncorrosive, effective, and relatively inexpensive as it is hypochlorous acid (HOCl). The present work intended to evaluate, on different surfaces, the bactericidal and virucidal effectiveness of nebulized HOCl and test its safety usage in 2D and 3D skin and lung models. Our data showed that HOCl at the dose of 300 ppm did not affect cellular and tissue viability, not their morphology. The HOCl bactericidal properties varies with the surface analyzed: 69% for semi-porous, 96-99.9% for flat and porous. This discrepancy was not noticed for the virucidal properties. Overall, this study showed that nebulized HOCl can prevent virus and bacteria growth without affecting lung and skin tissues, making this compound a perfect candidate to sanitize indoor environments.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Denysko TV, Nazarchuk OA, Gruzevskyi O, Bahniuk NÀ, Dmytriiev DV, Chornopyschuk RM, Bebyk VV. In vitro evaluation of the antimicrobial activity of antiseptics against clinical Acinetobacter baumannii strains isolated from combat wounds. Front Microbiol 2022; 13:932467. [PMID: 36267170 PMCID: PMC9577188 DOI: 10.3389/fmicb.2022.932467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Healthcare-associated infections (HCAIs) are among the most prominent medical problems worldwide. In the context of increasing antibiotic resistance globally, the use of antiseptics as the main active agent and potentiator of antibiotics for the treatment of purulent-inflammatory complications of traumatic wounds, burns, and surgical wounds can be considered to tackle opportunistic infections and their prevention during war. This study presents a comparative investigation of the antimicrobial efficacy of antiseptics used for surgical antisepsis and antiseptic treatment of skin, mucous membranes, and wounds against multidrug-resistant clinical isolates of Acinetobacter baumannii as a wound pathogen of critical priority (according to the WHO). It was found that strains of A. baumannii, which have natural and acquired resistance to antimicrobial drugs, remain susceptible to modern antiseptics. Antiseptic drugs based on decamethoxine, chlorhexidine, octenidine, polyhexanide, and povidone-iodine 10% and 2% provide effective bactericidal activity against A. baumannii within the working concentrations of these drugs. Chlorhexidine and decamethoxine can inhibit biofilm formation by A. baumannii cells. In terms of bactericidal properties and biofilm formation inhibition, chlorhexidine and decamethoxine are the most effective of all tested antiseptics.
Collapse
Affiliation(s)
- Tetyana Valeriyivna Denysko
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Oleksandr Adamovych Nazarchuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
- *Correspondence: Oleksandr Adamovych Nazarchuk,
| | - Oleksandr Gruzevskyi
- Department of Microbiology, Virology and Immunology Odessa National Medical University, Odessa, Ukraine
| | - Nataliia Ànatoliivna Bahniuk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Dmytro Valeriiovych Dmytriiev
- Department of Anesthesiology, Intensive care, and Emergency Medicine, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | | | - Vira Volodymyrivna Bebyk
- Department of Microbiology, Virology and Immunology, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
18
|
Ciecholewska-Juśko D, Junka A, Fijałkowski K. The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiol Res 2022; 263:127125. [PMID: 35878492 DOI: 10.1016/j.micres.2022.127125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
The highly absorbent, antibacterial dressings with a sustained release of the antimicrobial are considered necessary measures to counteract chronic wound biofilm-based infections. This study aimed to analyze wet and dry bacterial cellulose (BC) materials, modified by chemical cross-linking, and impregnated with an antiseptic based on octenidine dihydrochloride (OCT) in the context of its antibiofilm/antibacterial activity, exudate absorption, and cytotoxicity. The native BC was obtained from cost-effective, ecological-friendly potato juice (leftover from the starch industry). The ability to absorb and retain OCT, exudate absorption capacity, the kinetics of OCT release as well as antibiofilm/antibacterial activity of modified BC materials against biofilm-forming and planktonic bacteria (Staphylococcus aureus and Pseudomonas aeruginosa) were investigated. The performed analyses revealed that modified BC materials, thanks to their layered structure with numerous air spaces, were characterized by sustained exudate absorption and OCT release profile, which allowed them to exhibit high antimicrobial activity for up to 7 days, with a reduction of planktonic and biofilm cells of 84-100% and 69-93%, respectively. The modified BC materials showed also no cytotoxicity against fibroblast cell line L929 in vitro and were characterized by firm adhesion to the curved surfaces. These results indicate that cross-linked BC impregnated with OCT may be a particularly promising dressing material (obtained using sustainable processes), especially in the treatment of biofilm-infected, highly-exuding wounds.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50534 Wrocław, Poland.
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland.
| |
Collapse
|
19
|
Hale SJM, Wagner Mackenzie B, Lux CA, Biswas K, Kim R, Douglas RG. Topical Antibiofilm Agents With Potential Utility in the Treatment of Chronic Rhinosinusitis: A Narrative Review. Front Pharmacol 2022; 13:840323. [PMID: 35770097 PMCID: PMC9234399 DOI: 10.3389/fphar.2022.840323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial biofilms in chronic and recalcitrant diseases is widely appreciated, and the treatment of biofilm infection is an increasingly important area of research. Chronic rhinosinusitis (CRS) is a complex disease associated with sinonasal dysbiosis and the presence of bacterial biofilms. While most biofilm-related diseases are associated with highly persistent but relatively less severe inflammation, the presence of biofilms in CRS is associated with greater severity of inflammation and recalcitrance despite appropriate treatment. Oral antibiotics are commonly used to treat CRS but they are often ineffective, due to poor penetration of the sinonasal mucosa and the inherently antibiotic resistant nature of bacteria in biofilms. Topical non-antibiotic antibiofilm agents may prove more effective, but few such agents are available for sinonasal application. We review compounds with antibiofilm activity that may be useful for treating biofilm-associated CRS, including halogen-based compounds, quaternary ammonium compounds and derivatives, biguanides, antimicrobial peptides, chelating agents and natural products. These include preparations that are currently available and those still in development. For each compound, antibiofilm efficacy, mechanism of action, and toxicity as it relates to sinonasal application are summarised. We highlight the antibiofilm agents that we believe hold the greatest promise for the treatment of biofilm-associated CRS in order to inform future research on the management of this difficult condition.
Collapse
Affiliation(s)
- Samuel J M Hale
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian A Lux
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raymond Kim
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose. Int J Mol Sci 2022; 23:ijms23094835. [PMID: 35563224 PMCID: PMC9105287 DOI: 10.3390/ijms23094835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Hernia repairs are the most common abdominal wall elective procedures performed by general surgeons. Hernia-related postoperative infective complications occur with 10% frequency. To counteract the risk of infection emergence, the development of effective, biocompatible and antimicrobial mesh adjuvants is required. Therefore, the aim of our in vitro investigation was to evaluate the suitability of bacterial cellulose (BC) polymer coupled with gentamicin (GM) antibiotic as an absorbent layer of surgical mesh. Our research included the assessment of GM-BC-modified meshes’ cytotoxicity against fibroblasts ATCC CCL-1 and a 60-day duration cell colonisation measurement. The obtained results showed no cytotoxic effect of modified meshes. The quantified fibroblast cells levels resembled a bimodal distribution depending on the time of culturing and the type of mesh applied. The measured GM minimal inhibitory concentration was 0.47 µg/mL. Results obtained in the modified disc-diffusion method showed that GM-BC-modified meshes inhibited bacterial growth more effectively than non-coated meshes. The results of our study indicate that BC-modified hernia meshes, fortified with appropriate antimicrobial, may be applied as effective implants in hernia surgery, preventing risk of infection occurrence and providing a high level of biocompatibility with regard to fibroblast cells.
Collapse
|
21
|
Paleczny J, Junka A, Brożyna M, Dydak K, Oleksy-Wawrzyniak M, Ciecholewska-Juśko D, Dziedzic E, Bartoszewicz M. The High Impact of Staphylococcus aureus Biofilm Culture Medium on In Vitro Outcomes of Antimicrobial Activity of Wound Antiseptics and Antibiotic. Pathogens 2021; 10:pathogens10111385. [PMID: 34832540 PMCID: PMC8626063 DOI: 10.3390/pathogens10111385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The staphylococcal biofilm-based infections of wounds still pose a significant therapeutical challenge. Treated improperly, they increase the risk of limb amputation or even death of the patient. The present algorithms of infected wound treatment include, among others, the application of antiseptic substances. In vitro wound biofilm models are applied in order to scrutinize their activity. In the present work, using a spectrum of techniques, we showed how the change of a single variable (medium composition) in the standard in vitro model translates not only to shift in staphylococcal biofilm features but also to the change of efficacy of clinically applied wound antimicrobials such as octenidine, polyhexamethylene biguanide, chlorhexidine, hypochlorite solutions, and locally applied gentamycin. The data presented in this study may be of a pivotal nature, taking into consideration the fact that results of in vitro analyses are frequently used to propagate application of specific antimicrobials in hospitals and ambulatory care units.
Collapse
Affiliation(s)
- Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
- Correspondence:
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Ewelina Dziedzic
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| |
Collapse
|
22
|
Meshkin DH, Fan KL, Charipova K, Hill C, Evans KK, Steinberg JS, Kim PJ, Attinger CE. Long-Term Outcome Assessment Between Antiseptic and Normal Saline for Negative Pressure Wound Therapy with Instillation. Adv Wound Care (New Rochelle) 2021; 10:535-543. [PMID: 33860686 DOI: 10.1089/wound.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: To analyze long-term outcomes following inpatient treatment of infected wounds with antimicrobial or normal saline instillation during negative pressure wound therapy (NPWT). Approach: This was a single-center retrospective study analyzing the course of patients receiving 0.9% normal saline or 0.1% polyhexanide plus 0.1% betaine as instillation for wounds requiring surgery. Measured outcomes included rates of dehiscence, new wounds, re-operations, amputations, and mortality over 5 years. The article adheres to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Results: Forty-two patients received normal saline instillation and 41 the antiseptic solution. Rates of dehiscence, wound recurrence, and re-operations in the saline and antiseptic cohorts were 6.3% and 5.6%, 9.4% and 5.6%, and 14.3% and 9.8%, respectively (p > 0.05). In patients requiring further surgery, time to wound closure averaged 104 and 130 days in the saline and antiseptic cohorts, respectively (p = 0.81). Five-year amputation and mortality rates were 14.3% and 22% (p = 0.36) and 24% and 17% (p = 0.45) in the saline and antiseptic cohorts, respectively. Innovation: To compare clinical outcomes associated with two fundamentally different instillation solutions over the full wound care episode and elucidate the potential impact of these results for future applications. Conclusion: This is the first evaluation of nonsurrogate outcomes of different instillations for NPWT in infected wounds. The results indicate that normal saline instillation outcomes are comparable to those of 0.1% polyhexanide plus 0.1% betaine. The clinical success, cost benefit, and accessibility of normal saline can expand the utilization of this therapeutic approach for larger patient populations.
Collapse
Affiliation(s)
- Dean H. Meshkin
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Kenneth L. Fan
- Department of Plastic and Reconstructive Surgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Karina Charipova
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Christine Hill
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Karen K. Evans
- Department of Plastic and Reconstructive Surgery, Center for Wound Healing, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - John S. Steinberg
- Department of Plastic and Reconstructive Surgery, Center for Wound Healing, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Paul J. Kim
- Department of Plastic Surgery, Wound Care Center, William P. Clements Jr. University Hospital, Dallas, Texas, USA
| | - Christopher E. Attinger
- Department of Plastic and Reconstructive Surgery, Center for Wound Healing, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
23
|
Zielińska S, Dziągwa-Becker M, Junka A, Piątczak E, Jezierska-Domaradzka A, Brożyna M, Paleczny J, Sobiecka A, Słupski W, Mess E, Kucharski M, Çiçek SS, Zidorn C, Matkowski A. Screening Papaveraceae as Novel Antibiofilm Natural-Based Agents. Molecules 2021; 26:4778. [PMID: 34443363 PMCID: PMC8399268 DOI: 10.3390/molecules26164778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Ewelina Piątczak
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Anna Jezierska-Domaradzka
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (A.J.); (M.B.); (J.P.)
| | - Aleksandra Sobiecka
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Eleonora Mess
- Department of Oncology and Palliative Care, Wroclaw Medical University, K. Bartla 5, 51-618 Wrocław, Poland;
| | - Mariusz Kucharski
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, Orzechowa 61, 50-540 Wrocław, Poland; (M.D.-B.); (M.K.)
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany; (S.S.Ç.); (C.Z.)
| | - Adam Matkowski
- Department of Pharmaceutical Biotechnology, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (A.J.-D.); (A.S.)
- Laboratory of Experimental Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-556 Wrocław, Poland
| |
Collapse
|
24
|
Is Negative Pressure Wound Therapy with Instillation Suitable for the Treatment of Acute Periprosthetic Hip Joint Infection? J Clin Med 2021; 10:jcm10153246. [PMID: 34362030 PMCID: PMC8347389 DOI: 10.3390/jcm10153246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Periprosthetic joint infection (PJI) can be devastating for the patient and demanding for the surgeon. In acute PJI, attempts are made to retain the prosthesis by debridement of the infected tissue, targeted antibiotic therapy and an exchange of modular components with implant retention (DAIR). There has been sparse research with adjunctive negative pressure wound treatment with wound irrigation (NPWTI) on the treatment outcome. Questions/purposes: The goal was to assess the efficacy of our protocol of DAIR with adjunctive NPWTI in acute PJI and to reduce the need for later additional DAIR and Irrigation and Debridement (I and D). Patients and Methods: Our cohort of 30 patients (31 hips) with acute PJI was divided into two groups based on symptom presentation up to 6 weeks or >6 weeks from prior (index) surgery (acute early or acute late groups, respectively). All received DAIR with an exchange of modular components and NPWTI with polyhexanide instillation, with the goal of bacterial elimination and biofilm elimination. Postoperatively, the patients were followed up clinically and radiographically for a mean of 4.3 years. Results: Of the 31 PJI hips, 19 were early acute and 12 were late acute. In total, 21 hips had no evidence of residual infection, 10 required further surgical revision: 1 due to dislocation and 9 due to infection. Of these nine, seven had a removal of all the components and two were treated with irrigation and debridement (I and D), with the demise of one patient from pneumonia shortly after the procedure. The Kaplan–Meier 60-month revision free implant survival from infection was 73.2% (CI: 58.9–91.0%) and at the final follow up, the mean Harris Hip Score (HHS) was 81.1 ± 11.8 and the mean WOMAC score was 33.3 ± 20.1. Conclusions: Our results are in line with those reported in prior studies. However, the utility of our protocol is inconclusive and needs further evaluation based on our small cohort and the lack of a control group. Level of Evidence: IV.
Collapse
|
25
|
Antibiofilm Efficacy of Polihexanide, Octenidine and Sodium Hypochlorite/Hypochlorous Acid Based Wound Irrigation Solutions against Staphylococcus aureus, Pseudomonas aeruginosa and a Multispecies Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1369:53-67. [PMID: 34173213 DOI: 10.1007/5584_2021_645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Infection and the formation of biofilms have been shown to have a significant role in increased inflammation and delayed wound healing. Wound irrigation solutions are used to debride wounds, removing cell debris and infecting microorganisms, therefore preventing infection. The aim of this study was to evaluate a Polihexanide (PHMB) based wound irrigation solution, Octenidine HCl based wound irrigation solution and electrolysed water based wound care solution for antibiofilm efficacy against Staphylococcus aureus, Pseudomonas aeruginosa and a multispecies biofilm in several models to gain a broad understanding of ability. The PHMB based wound irrigation solution demonstrated broad range antibiofilm efficacy against P. aeruginosa, S. aureus and the multispecies biofilm. The Octenidine HCl based wound irrigation solution and the electrolysed water based wound care solution demonstrated potent antibiofilm efficacy against S. aureus and to a lesser extent P. aeruginosa. Overall, less efficacy was observed in the drip flow bioreactor model for all 3 test solutions, which may be attributed to the continuous flow of nutrients during treatment, which may have diluted or washed away the solution. The data presented also highlights the importance of testing antibiofilm activity in a range of biofilm models and against different bacterial strains to get an overall representation of efficacy.
Collapse
|
26
|
Activity of Liquid and Volatile Fractions of Essential Oils against Biofilm Formed by Selected Reference Strains on Polystyrene and Hydroxyapatite Surfaces. Pathogens 2021; 10:pathogens10050515. [PMID: 33922823 PMCID: PMC8145098 DOI: 10.3390/pathogens10050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biofilms are surface-attached, structured microbial communities displaying higher tolerance to antimicrobial agents in comparison to planktonic cells. An estimated 80% of all infections are thought to be biofilm-related. The drying pipeline of new antibiotics efficient against biofilm-forming pathogens urges the search for alternative routes of treatment. Essential Oils (EOs), extracted from medicinally important plants, are a reservoir of bioactive compounds that may serve as a foothold in investigating novel antibiofilm compounds. The aim of this study was to compare antimicrobial activity of liquid and volatile fractions of tested EOs against biofilm-forming pathogens using different techniques. In this research, we tested five EOs, extracted from Syzygium aromaticum L., Boswelia serrata Roxb., Juniperus virginiana L., Pelargonium graveolens L. and Melaleuca alternifolia Cheel., against planktonic and biofilm forms of five selected reference strains, namely Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. To obtain cohesive results, we applied four various methodological approaches: to assess the activity of the liquid fraction of EOs, disc diffusion and the microdilution method were applied; to test EOs’ volatile fraction, the AntiBioVol assay and modified Antibiofilm Dressing Activity Measurement (A.D.A.M.) were used. The molecular composition and dynamics of antimicrobial substances released from specific EOs was measured using Gas Chromatography–Mass Spectrometry (GC-MS). The antimicrobial potency of EO’s volatile fraction against biofilm formed by tested strains differed from that of the liquid fraction and was related to the molecular weight of volatile compounds. The liquid fraction of CW-EO and volatile fraction of F-EO acted in the strongest manner against biofilm of C. albicans. The addition of 0.5% Tween 20 to liquid phase, enhanced activity of G-EO against E. coli and K. pneumoniae biofilm. EO activity depended on the microbial species it was applied against and the chosen assessment methodology. While all tested EOs have shown a certain level of antimicrobial and antibiofilm effect, our results indicate that the choice of EO to be applied against a specific biofilm-forming pathogen requires careful consideration with regard to the above-listed aspects. Nevertheless, the results presented in this research contribute to the growing body of evidence indicating the beneficial effects of EOs, which may be applied to fight biofilm-forming pathogens.
Collapse
|
27
|
Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci 2021; 22:3996. [PMID: 33924416 PMCID: PMC8069587 DOI: 10.3390/ijms22083996] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Agata Dydak
- Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Karol Fijalkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastow 45, 70-311 Szczecin, Poland;
| | - Grzegorz Kubielas
- Faculty of Health Sciences, Wroclaw Medical University, 50-996 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| |
Collapse
|