1
|
Han J, Yang Q, Zhi Z, Li N, Wu JL. Bromine signature coded derivatization LC-MS for specific profiling of carboxyl or carbonyl-containing metabolites in Mycoplasma pneumoniae infection. Talanta 2024; 285:127345. [PMID: 39673980 DOI: 10.1016/j.talanta.2024.127345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Carboxyl or carbonyl-containing metabolites (CoCCMs) are widely distributed in biological samples. Global profiling of CoCCMs is essential for ascertaining specific functions of metabolites and their potential physiological roles in biogenic activities. However, simultaneous determination of these compounds is hampered by poor ionization efficiency, vast polarity differences, wide discrepancy of concentration ranges. Herein, a novel bromine isotope derivatization reagent 5-bromo-2- hydrazinopyridine was employed for CoCCMs profiling by liquid chromatography-mass spectrometry (LC-MS). This method enabled rapid derivatization of 44 CoCCMs under mild conditions. Enhanced separation efficiencies, detection sensitivities, and distinctive MS fragmentation characteristics were observed. Furthermore, this method was demonstrated to be efficient in revealing metabolic alternations, and abnormal serum levels of 6-keto-PGF1α, 12(S)-HHTrE, 15(S)-HEPE and N-acetyl tryptophan were disclosed for the first time in Mycoplasma pneumoniae (MP) infectious patients. Finally, based on the distinctive 2 Da differences of molecular ion peak pairs with almost 1:1 intensity ratio originated from 79Br and 81Br isotopes, an MS-DIAL and Python assisted MS1 isotope screening-MS2 fragments characterization combination strategy was developed for rapid screening, classification, and identification of detected CoCCMs. A total of 1069 CoCCMs were detected, of which 198 CoCCMs were identified in untargeted analysis. Statistical analysis revealed altered metabolic pathways, while glutamic acid, oxoglutaric acid, succinic acid, pyruvic acid, glyceric acid, and glycine were selected as potential biomarkers of MP infection. This bromine signature coded derivatization-LC-MS approach was proved to be a valuable tool for global probing of CoCCMs in biological samples with high sensitivity and broad coverage.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Zhi
- Chengdu West District Angel Children's Maternity Hospital Co Ltd, Chengdu, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| |
Collapse
|
2
|
Jiang S, Zhou Y, Gao J, Jin S, Pan G, Jiang Y. Urinary metabolomic profiles uncover metabolic pathways in children with asthma. J Asthma 2024; 61:1306-1315. [PMID: 38634666 DOI: 10.1080/02770903.2024.2338865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE The prevalence of asthma has gradually increased worldwide in recent years, which has made asthma a global public health problem. However, due to its complexity and heterogeneity, there are a few academic debates on the pathogenic mechanism of asthma. The study of the pathogenesis of asthma through metabolomics has become a new research direction. We aim to uncover the metabolic pathway of children with asthma. METHODS Liquid chromatography (LC)-mass spectrometry (MS)-based metabolomic analysis was conducted to compare urine metabolic profiles between asthmatic children (n = 30) and healthy controls (n = 10). RESULTS Orthogonal projections to latent structures-discrimination analysis (OPLS-DA) showed that there were significant differences in metabolism between the asthma group and the control group with three different metabolites screened out, including traumatic acid, dodecanedioic acid, and glucobrassicin, and the levels of traumatic acid and dodecanedioic acid in the urine samples of asthmatic children were lower than those of healthy controls therein. Pathway enrichment analysis of differentially abundant metabolites suggested that α-linolenic acid metabolism was an asthma-related pathway. CONCLUSIONS This study suggests that there are significant metabolic differences in the urine of asthmatic children and healthy controls, and α-linolenic acid metabolic pathways may be involved in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Sainan Jiang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiting Zhou
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianlong Gao
- Department of Pediatrics, Deqing People's Hospital (Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University), Deqing, China
| | - Siyi Jin
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Genli Pan
- Department of Pediatrics, Deqing People's Hospital (Deqing Campus, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University), Deqing, China
| | - Yuan Jiang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Lovrić M, Wang T, Staffe MR, Šunić I, Časni K, Lasky-Su J, Chawes B, Rasmussen MA. A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation. Metabolites 2024; 14:278. [PMID: 38786755 PMCID: PMC11122766 DOI: 10.3390/metabo14050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolomics has gained much attention due to its potential to reveal molecular disease mechanisms and present viable biomarkers. This work uses a panel of untargeted serum metabolomes from 602 children from the COPSAC2010 mother-child cohort. The annotated part of the metabolome consists of 517 chemical compounds curated using automated procedures. We created a filtering method for the quantified metabolites using predicted quantitative structure-bioactivity relationships for the Tox21 database on nuclear receptors and stress response in cell lines. The metabolites measured in the children's serums are predicted to affect specific targeted models, known for their significance in inflammation, immune function, and health outcomes. The targets from Tox21 have been used as targets with quantitative structure-activity relationships (QSARs). They were trained for ~7000 structures, saved as models, and then applied to the annotated metabolites to predict their potential bioactivities. The models were selected based on strict accuracy criteria surpassing random effects. After application, 52 metabolites showed potential bioactivity based on structural similarity with known active compounds from the Tox21 set. The filtered compounds were subsequently used and weighted by their bioactive potential to show an association with early childhood hs-CRP levels at six months in a linear model supporting a physiological adverse effect on systemic low-grade inflammation.
Collapse
Affiliation(s)
- Mario Lovrić
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia;
- The Lisbon Council, 1040 Brussels, Belgium
| | - Tingting Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
| | - Mads Rønnow Staffe
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Iva Šunić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia;
| | | | - Jessica Lasky-Su
- Department of Medicine, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
4
|
Zhu T, Ma Y, Wang J, Xiong W, Mao R, Cui B, Min Z, Song Y, Chen Z. Serum Metabolomics Reveals Metabolomic Profile and Potential Biomarkers in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:235-252. [PMID: 38910282 PMCID: PMC11199150 DOI: 10.4168/aair.2024.16.3.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Asthma is a highly heterogeneous disease. Metabolomics plays a pivotal role in the pathogenesis and development of asthma. The main aims of our study were to explore the underlying mechanism of asthma and to identify novel biomarkers through metabolomics approach. METHODS Serum samples from 102 asthmatic patients and 18 healthy controls were collected and analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. Multivariate analysis and weighted gene co-expression network analysis (WGCNA) were performed to explore asthma-associated metabolomics profile and metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Subsequently, 2 selected serum hub metabolites, myristoleic acid and dodecanoylcarnitine, were replicated in a validation cohort using ultra-high performance LC-MS/MS system (UHPLC-MS/MS). RESULTS Distinct metabolomics profile of asthma was revealed by multivariate analysis. Then, 116 overlapped asthma-associated metabolites between multivariate analysis and WGCNA, including 12 hub metabolites, were identified. Clinical features-associated hub metabolites were also identified by WGCNA. Among 116 asthma-associated metabolites, Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were revealed by KEGG analysis. Furthermore, serum myristoleic acid and dodecanoylcarnitine were significantly higher in asthmatic patients than in healthy controls in validation cohort. Additionally, serum myristoleic acid and dodecanoylcarnitine demonstrated high sensitivities and specificities in predicting asthma. CONCLUSIONS Collectively, asthmatic patients showed a unique serum metabolome. Sphingolipid metabolism and valine, leucine and isoleucine biosynthesis were involved in the pathogenesis of asthma. Furthermore, our results suggest the promising values of serum myristoleic acid and dodecanoylcarnitine for asthma diagnosis in adults.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, China
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Jiajia Wang
- Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Xiong
- Department of Respiratory Medicine and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Bo Cui
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China
| | - Zhihui Min
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Respiratory Disease, Shanghai, China.
| |
Collapse
|
5
|
Shihui M, Shirong Y, Jing L, Jingjing H, Tongqian W, Tian T, Chenyu W, Fang Y. S100A4 reprofiles lipid metabolism in mast cells via RAGE and PPAR-γ signaling pathway. Int Immunopharmacol 2024; 128:111555. [PMID: 38280333 DOI: 10.1016/j.intimp.2024.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
S100A4 is implicated in metabolic reprogramming across various cell types and is known to propel the progression of numerous diseases including allergies. Nonetheless, the influence of S100A4 on mast cell metabolic reprogramming during allergic disorders remains unexplored. Utilizing a mast cell line (C57), cells were treated with recombinant mouse S100A4 protein, with or without a PPAR-γ agonist (ROSI) or a RAGE inhibitor (FPS-ZM1). Subsequent assessments were conducted for mast cell activation and lipid metabolism. S100A4 induced mast cell activation and the release of inflammatory mediators, concurrently altering molecules involved in lipid metabolism and glycolysis over time. Furthermore, S100A4 stimulation resulted in cellular oxidative stress and mitochondrial dysfunction. Alterations in the levels of pivotal molecules within the RAGE/Src/JAK2/STAT3/PPAR-γ and NF-κB signaling pathways were noted during this stimulation, which were partially counteracted by ROSI or FPS-ZMI. Additionally, a trend of metabolic alterations was identified in patients with allergic asthma who exhibited elevated serum S100A4 levels. Correlation analysis unveiled a positive association between serum S100A4 and serum IgE, implying an indirect association with asthma. Collectively, our findings suggest that S100A4 regulates the lipid-metabolic reprogramming of mast cells, potentially via the RAGE and PPAR-γ-involved signaling pathway, offering a novel perspective in the disease management in patients with allergic disorders.
Collapse
Affiliation(s)
- Mo Shihui
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Shirong
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Li Jing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - He Jingjing
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wu Tongqian
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Tian
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wang Chenyu
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Jie XL, Luo ZR, Yu J, Tong ZR, Li QQ, Wu JH, Tao Y, Feng PS, Lan JP, Wang P. Pi-Pa-Run-Fei-Tang alleviates lung injury by modulating IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB signaling pathway and balancing Th17 and Treg in murine model of OVA-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116719. [PMID: 37268260 DOI: 10.1016/j.jep.2023.116719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pi-Pa-Run-Fei-Tang (PPRFT) is an empirical TCM prescription for treating asthma. However, the underlying mechanisms of PPRFT in asthma treatment have yet to be elucidated. Recent advances have revealed that some natural components could ameliorate asthma injury by affecting host metabolism. Untargeted metabolomics can be used to better understand the biological mechanisms underlying asthma development and identify early biomarkers that can help advance treatment. AIM OF THE STUDY The aim of this study was to verification the efficacy of PPRFT in the treatment of asthma and to preliminarily explore its mechanism. MATERIALS AND METHODS A mouse asthma model was built by OVA induction. Inflammatory cell in BALF was counted. The level of IL-6, IL-1β, and TNF-α in BALF were measured. The levels of IgE in the serum and EPO, NO, SOD, GSH-Px, and MDA in the lung tissue were measured. Furthermore, pathological damage to the lung tissues was detected to evaluate the protective effects of PPRFT. The serum metabolomic profiles of PPRFT in asthmatic mice were determined by GC-MS. The regulatory effects on mechanism pathways of PPRFT in asthmatic mice were explored via immunohistochemical staining and western blotting analysis. RESULTS PPRFT displayed lung-protective effects through decreasing oxidative stress, airway inflammation, and lung tissue damage in OVA-induced mice, which was demonstrated by decreasing inflammatory cell levels, IL-6, IL-1β, and TNF-α levels in BALF, and IgE levels in serum, decreasing EPO, NO, and MDA levels in lung tissue, elevating SOD and GSH-Px levels in lung tissue and lung histopathological changes. In addition, PPRFT could regulate the imbalance in Th17/Treg cell ratios, suppress RORγt, and increase the expression of IL-10 and Foxp3 in the lung. Moreover, PPRFT treatment led to decreased expression of IL-6, p-JAK2/Jak2, p-STAT3/STAT3, IL-17, NF-κB, p-AKT/AKT, and p-PI3K/PI3K. Serum metabolomics analysis revealed that 35 metabolites were significantly different among different groups. Pathway enrichment analysis indicated that 31 pathways were involved. Moreover, correlation analysis and metabolic pathway analysis identified three key metabolic pathways: galactose metabolism; tricarboxylic acid cycle; and glycine, serine, and threonine metabolism. CONCLUSION This research indicated that PPRFT treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating serum metabolism. The anti-asthmatic activity of PPRFT may be associated with the regulatory effects of IL-6/JAK2/STAT3/IL-17 and PI3K/AKT/NF-κB mechanistic pathways.
Collapse
Affiliation(s)
- Xiao-Lu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zi-Rui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin Yu
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, 310014, China
| | - Zhe-Ren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiao-Qiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jia-Hui Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei-Shi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ji-Ping Lan
- Experiment Center for Teaching & Learning Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
7
|
Villalba H, Llambrich M, Gumà J, Brezmes J, Cumeras R. A Metabolites Merging Strategy (MMS): Harmonization to Enable Studies' Intercomparison. Metabolites 2023; 13:1167. [PMID: 38132849 PMCID: PMC10744506 DOI: 10.3390/metabo13121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolomics encounters challenges in cross-study comparisons due to diverse metabolite nomenclature and reporting practices. To bridge this gap, we introduce the Metabolites Merging Strategy (MMS), offering a systematic framework to harmonize multiple metabolite datasets for enhanced interstudy comparability. MMS has three steps. Step 1: Translation and merging of the different datasets by employing InChIKeys for data integration, encompassing the translation of metabolite names (if needed). Followed by Step 2: Attributes' retrieval from the InChIkey, including descriptors of name (title name from PubChem and RefMet name from Metabolomics Workbench), and chemical properties (molecular weight and molecular formula), both systematic (InChI, InChIKey, SMILES) and non-systematic identifiers (PubChem, CheBI, HMDB, KEGG, LipidMaps, DrugBank, Bin ID and CAS number), and their ontology. Finally, a meticulous three-step curation process is used to rectify disparities for conjugated base/acid compounds (optional step), missing attributes, and synonym checking (duplicated information). The MMS procedure is exemplified through a case study of urinary asthma metabolites, where MMS facilitated the identification of significant pathways hidden when no dataset merging strategy was followed. This study highlights the need for standardized and unified metabolite datasets to enhance the reproducibility and comparability of metabolomics studies.
Collapse
Affiliation(s)
- Héctor Villalba
- Department of Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204 Reus, Spain
| | - Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, University of Rovira i Virgili (URV), 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Institut d’Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204 Reus, Spain
| | - Josep Gumà
- Department of Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204 Reus, Spain
- Department of Medicine and Surgery, University of Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, University of Rovira i Virgili (URV), 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Institut d’Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204 Reus, Spain
| | - Raquel Cumeras
- Department of Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204 Reus, Spain
- Department of Electrical Electronic Engineering and Automation, University of Rovira i Virgili (URV), 43007 Tarragona, Spain
| |
Collapse
|
8
|
Lovrić M, Wang T, Staffe MR, Šunić I, Časni K, Lasky-Su J, Chawes B, Rasmussen MA. A chemical structure and machine learning approach to assess the potential bioactivity of endogenous metabolites and their association with early-childhood hs-CRP levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567095. [PMID: 38014335 PMCID: PMC10680762 DOI: 10.1101/2023.11.15.567095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metabolomics has gained much attraction due to its potential to reveal molecular disease mechanisms and present viable biomarkers. In this work we used a panel of untargeted serum metabolomes in 602 childhood patients of the COPSAC2010 mother-child cohort. The annotated part of the metabolome consists of 493 chemical compounds curated using automated procedures. Using predicted quantitative-structure-bioactivity relationships for the Tox21 database on nuclear receptors and stress response in cell lines, we created a filtering method for the vast number of quantified metabolites. The metabolites measured in children's serums used here have predicted potential against the chosen target modelled targets. The targets from Tox21 have been used with quantitative structure-activity relationships (QSARs) and were trained for ~7000 structures, saved as models, and then applied to 493 metabolites to predict their potential bioactivities. The models were selected based on strict accuracy criteria surpassing random effects. After application, 52 metabolites showed potential bioactivity based on structural similarity with known active compounds from the Tox21 set. The filtered compounds were subsequently used and weighted by their bioactive potential to show an association with early childhood hs-CRP levels at six months in a linear model supporting a physiological adverse effect on systemic low-grade inflammation. The significant metabolites were reported.
Collapse
Affiliation(s)
- Mario Lovrić
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2b, HR-31000 Osijek, Croatia
| | - Tingting Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mads Rønnow Staffe
- University of Copenhagen, Department of Food Science, Rolighedsvej 26, 1958 Frb. C., Denmark
| | - Iva Šunić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | | | - Jessica Lasky-Su
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kneza Trpimira 2b, HR-31000 Osijek, Croatia
- University of Copenhagen, Department of Food Science, Rolighedsvej 26, 1958 Frb. C., Denmark
- Know-Center, Inffeldgasse 13, AT-8010 Graz
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, Department of Food Science, Rolighedsvej 26, 1958 Frb. C., Denmark
| |
Collapse
|
9
|
Ferraro VA, Zanconato S, Carraro S. Metabolomics Applied to Pediatric Asthma: What Have We Learnt in the Past 10 Years? CHILDREN (BASEL, SWITZERLAND) 2023; 10:1452. [PMID: 37761413 PMCID: PMC10529856 DOI: 10.3390/children10091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Background: Asthma is the most common chronic condition in children. It is a complex non-communicable disease resulting from the interaction of genetic and environmental factors and characterized by heterogeneous underlying molecular mechanisms. Metabolomics, as with the other omic sciences, thanks to the joint use of high-throughput technologies and sophisticated multivariate statistical methods, provides an unbiased approach to study the biochemical-metabolic processes underlying asthma. The aim of this narrative review is the analysis of the metabolomic studies in pediatric asthma published in the past 10 years, focusing on the prediction of asthma development, endotype characterization and pharmaco-metabolomics. Methods: A total of 43 relevant published studies were identified searching the MEDLINE/Pubmed database, using the following terms: "asthma" AND "metabolomics". The following filters were applied: language (English), age of study subjects (0-18 years), and publication date (last 10 years). Results and Conclusions: Several studies were identified within the three areas of interest described in the aim, and some of them likely have the potential to influence our clinical approach in the future. Nonetheless, further studies are needed to validate the findings and to assess the role of the proposed biomarkers as possible diagnostic or prognostic tools to be used in clinical practice.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women’s and Children’s Health Department, University of Padova, 35122 Padova, Italy
| | | | | |
Collapse
|
10
|
Aleidi SM, Al Fahmawi H, Masoud A, Rahman AA. Metabolomics in diabetes mellitus: clinical insight. Expert Rev Proteomics 2023; 20:451-467. [PMID: 38108261 DOI: 10.1080/14789450.2023.2295866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is now considered a global epidemic disease associated with serious threats to a patient's life. Understanding the metabolic pathways involved in disease pathogenesis and progression is important and would improve prevention and management strategies. Metabolomics is an emerging field of research that offers valuable insights into the metabolic perturbation associated with metabolic diseases, including DM. AREA COVERED Herein, we discussed the metabolomics in type 1 and 2 DM research, including its contribution to understanding disease pathogenesis and identifying potential novel biomarkers clinically useful for disease screening, monitoring, and prognosis. In addition, we highlighted the metabolic changes associated with treatment effects, including insulin and different anti-diabetic medications. EXPERT OPINION By analyzing the metabolome, the metabolic disturbances involved in T1DM and T2DM can be explored, enhancing our understanding of the disease progression and potentially leading to novel clinical diagnostic and effective new therapeutic approaches. In addition, identifying specific metabolites would be potential clinical biomarkers for predicting the disease and thus preventing and managing hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hiba Al Fahmawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afshan Masoud
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
11
|
Weber R, Streckenbach B, Welti L, Inci D, Kohler M, Perkins N, Zenobi R, Micic S, Moeller A. Online breath analysis with SESI/HRMS for metabolic signatures in children with allergic asthma. Front Mol Biosci 2023; 10:1154536. [PMID: 37065443 PMCID: PMC10102578 DOI: 10.3389/fmolb.2023.1154536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: There is a need to improve the diagnosis and management of pediatric asthma. Breath analysis aims to address this by non-invasively assessing altered metabolism and disease-associated processes. Our goal was to identify exhaled metabolic signatures that distinguish children with allergic asthma from healthy controls using secondary electrospray ionization high-resolution mass spectrometry (SESI/HRMS) in a cross-sectional observational study. Methods: Breath analysis was performed with SESI/HRMS. Significant differentially expressed mass-to-charge features in breath were extracted using the empirical Bayes moderated t-statistics test. Corresponding molecules were putatively annotated by tandem mass spectrometry database matching and pathway analysis. Results: 48 allergic asthmatics and 56 healthy controls were included in the study. Among 375 significant mass-to-charge features, 134 were putatively identified. Many of these could be grouped to metabolites of common pathways or chemical families. We found several pathways that are well-represented by the significant metabolites, for example, lysine degradation elevated and two arginine pathways downregulated in the asthmatic group. Assessing the ability of breath profiles to classify samples as asthmatic or healthy with supervised machine learning in a 10 times repeated 10-fold cross-validation revealed an area under the receiver operating characteristic curve of 0.83. Discussion: For the first time, a large number of breath-derived metabolites that discriminate children with allergic asthma from healthy controls were identified by online breath analysis. Many are linked to well-described metabolic pathways and chemical families involved in pathophysiological processes of asthma. Furthermore, a subset of these volatile organic compounds showed high potential for clinical diagnostic applications.
Collapse
Affiliation(s)
- Ronja Weber
- Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Lara Welti
- Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Demet Inci
- Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Nathan Perkins
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Srdjan Micic
- Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Alexander Moeller
- Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Makrinioti H, Zhu Z, Camargo CA, Fainardi V, Hasegawa K, Bush A, Saglani S. Application of Metabolomics in Obesity-Related Childhood Asthma Subtyping: A Narrative Scoping Review. Metabolites 2023; 13:328. [PMID: 36984768 PMCID: PMC10054720 DOI: 10.3390/metabo13030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity-related asthma is a heterogeneous childhood asthma phenotype with rising prevalence. Observational studies identify early-life obesity or weight gain as risk factors for childhood asthma development. The reverse association is also described, children with asthma have a higher risk of being obese. Obese children with asthma have poor symptom control and an increased number of asthma attacks compared to non-obese children with asthma. Clinical trials have also identified that a proportion of obese children with asthma do not respond as well to usual treatment (e.g., inhaled corticosteroids). The heterogeneity of obesity-related asthma phenotypes may be attributable to different underlying pathogenetic mechanisms. Although few childhood obesity-related asthma endotypes have been described, our knowledge in this field is incomplete. An evolving analytical profiling technique, metabolomics, has the potential to link individuals' genetic backgrounds and environmental exposures (e.g., diet) to disease endotypes. This will ultimately help define clinically relevant obesity-related childhood asthma subtypes that respond better to targeted treatment. However, there are challenges related to this approach. The current narrative scoping review summarizes the evidence for metabolomics contributing to asthma subtyping in obese children, highlights the challenges associated with the implementation of this approach, and identifies gaps in research.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Fainardi
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK
- Centre for Paediatrics and Child Health, Imperial College, London SW7 2AZ, UK
- Royal Brompton Hospital, London SW3 6NP, UK
| |
Collapse
|
13
|
The Role of Pericytes in Regulation of Innate and Adaptive Immunity. Biomedicines 2023; 11:biomedicines11020600. [PMID: 36831136 PMCID: PMC9953719 DOI: 10.3390/biomedicines11020600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.
Collapse
|
14
|
Kelly RS, Cote MF, Begum S, Lasky-Su J. Pharmacometabolomics of Asthma as a Road Map to Precision Medicine. Handb Exp Pharmacol 2023; 277:247-273. [PMID: 36271166 PMCID: PMC10116407 DOI: 10.1007/164_2022_615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Pharmacometabolomics applies the principles of metabolomics to therapeutics in order to elucidate the biological mechanisms underlying the variation in responses to drugs between groups and individuals. Asthma is associated with broad systemic effects and heterogeneity in treatment response and as such is ideally suited to pharmacometabolomics. In this chapter, we discuss the state of the emerging field of asthma pharmacometabolomics, with a particular focus on studies of steroids, bronchodilators, and leukotriene inhibitors. We also consider those studies concerned with subtyping cases to better understand the pharmacology of those groups and those looking to leverage pharmacometabolomics for asthma prevention. We finish with a discussion of the challenges and opportunities of asthma pharmacometabolomics and reflect upon where this field must go next in order to realize its precision medicine potential.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Margaret F Cote
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sofina Begum
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, Wu T, Wang X, Zhang X. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. J Inflamm (Lond) 2022; 19:18. [PMID: 36324164 PMCID: PMC9628085 DOI: 10.1186/s12950-022-00315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a major health issue resulting in significant mortality worldwide. Due to the high heterogeneity and unclear pathogenesis, the management and therapy of COPD are still challenging until now. Elevated serum uric acid(SUA) levels seem to be associated with the inflammatory level in patients with COPD. However, the underlying mechanism is not yet clearly established. In the current research, we aim to elucidate the effect of high SUA levels on airway inflammation among COPD patients. METHODS Through bioinformatic analysis, the common potential key genes were determined in both COPD and hyperuricemia (HUA) patients. A total of 68 COPD patients aged 50-75-year were included in the study, and their clinical parameters, including baseline characteristics, lung function test, as well as blood chemistry test were recorded. These parameters were then compared between the COPD patients with and without HUA. Hematoxylin & Eosin (HE), immunofluorescence (IF), and Masson trichrome staining were performed to demonstrate the pathological changes in the lung tissues. Furthermore, we isolated extracellular vesicles (EVs) from plasma, sputum, and bronchoalveolar lavage fluid (BALF) samples and detected the expression of inflammatory factor (Interleukin-6 (IL-6), IL-8 and COPD related proteases (antitrypsin and elastase) between two groups. Additionally, we treated the human bronchial epithelial (HBE) cells with cigarette smoke extract (CSE), and EVs were derived from the plasma in vitro experiments. The critical pathway involving the relationship between COPD and HUA was eventually validated based on the results of RNA sequencing (RNA-seq) and western blot (WB). RESULTS In the study, the COPD patients co-existing with HUA were found to have more loss of pulmonary function compared with those COPD patients without HUA. The lung tissue samples of patients who had co-existing COPD and HUA indicated greater inflammatory cell infiltration, more severe airway destruction and even fibrosis. Furthermore, the high SUA level could exacerbate the progress of airway inflammation in COPD through the transfer of EVs. In vitro experiments, we determined that EVs isolated from plasma, sputum, and BALF played pivotal roles in the CSE-induced inflammation of HBE. The EVs in HUA patients might exacerbate both systemic inflammation and airway inflammatory response via the senescence-related pathway. CONCLUSION The pulmonary function and clinical indicators of COPD patients with HUA were worse than those without HUA, which may be caused by the increased airway inflammatory response through the EVs in the patient's peripheral blood. Moreover, it might mediate the EVs via senescence-related pathways in COPD patients with HUA.
Collapse
Affiliation(s)
- Xuanqi Liu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413087.90000 0004 1755 3939Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Yang Zheng
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Wenhao Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Peiqing He
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Kangwei Guan
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Tao Wu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xiaojun Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xuelin Zhang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| |
Collapse
|
16
|
Gruzieva O, Jeong A, He S, Yu Z, de Bont J, Pinho MGM, Eze IC, Kress S, Wheelock CE, Peters A, Vlaanderen J, de Hoogh K, Scalbert A, Chadeau-Hyam M, Vermeulen RCH, Gehring U, Probst-Hensch N, Melén E. Air pollution, metabolites and respiratory health across the life-course. Eur Respir Rev 2022; 31:220038. [PMID: 35948392 PMCID: PMC9724796 DOI: 10.1183/16000617.0038-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
Previous studies have explored the relationships of air pollution and metabolic profiles with lung function. However, the metabolites linking air pollution and lung function and the associated mechanisms have not been reviewed from a life-course perspective. Here, we provide a narrative review summarising recent evidence on the associations of metabolic profiles with air pollution exposure and lung function in children and adults. Twenty-six studies identified through a systematic PubMed search were included with 10 studies analysing air pollution-related metabolic profiles and 16 studies analysing lung function-related metabolic profiles. A wide range of metabolites were associated with short- and long-term exposure, partly overlapping with those linked to lung function in the general population and with respiratory diseases such as asthma and COPD. The existing studies show that metabolomics offers the potential to identify biomarkers linked to both environmental exposures and respiratory outcomes, but many studies suffer from small sample sizes, cross-sectional designs, a preponderance on adult lung function, heterogeneity in exposure assessment, lack of confounding control and omics integration. The ongoing EXposome Powered tools for healthy living in urbAN Settings (EXPANSE) project aims to address some of these shortcomings by combining biospecimens from large European cohorts and harmonised air pollution exposure and exposome data.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
- Both authors contributed equally to this article
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Both authors contributed equally to this article
| | - Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhebin Yu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G M Pinho
- Dept of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sara Kress
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Dept of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Annette Peters
- Institute of Epidemiology, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Imperial College London, London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- These authors contributed equally to this article
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- These authors contributed equally to this article
| | - Erik Melén
- Dept of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs Children's Hospital, Stockholm, Sweden
- These authors contributed equally to this article
| |
Collapse
|
17
|
Wu J, Yu Y, Yao X, Zhang Q, Zhou Q, Tang W, Huang X, Ye C. Visualizing the knowledge domains and research trends of childhood asthma: A scientometric analysis with CiteSpace. Front Pediatr 2022; 10:1019371. [PMID: 36245730 PMCID: PMC9562269 DOI: 10.3389/fped.2022.1019371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Asthma is one of the most common chronic diseases in children globally. In recent decades, advances have been made in understanding the mechanism, diagnosis, treatment and management for childhood asthma, but few studies have explored its knowledge structure and future interests comprehensively. Objective This scientometric study aims to understand the research status and emerging trends of childhood asthma. Methods CiteSpace (version 5.8.R3) was used to demonstrate national and institutional collaborations in childhood asthma, analyze research subjects and journal distribution, review research keywords and their clusters, as well as detect research bursts. Results A total of 14,340 publications related to childhood asthma were extracted from Web of Science (core database) during January 2011 to December 2021. The results showed that academic activities of childhood asthma had increased steadily in the last decade. Most of the research was conducted by developed countries while China, as a developing country, was also actively engaged in this field. In addition to subjects of allergy and immunology, both public health aspects and ecological environmental impacts on the disease were emphasized recently in this research field. Keywords clustering analysis indicated that research on asthma management and atopy was constantly updated and became the two major research focuses recently, as a significant shift in research hotspots from etiology and diagnosis to atopic march and asthma management was identified. Subgroup analysis for childhood asthma management and atopy suggested that caregiver- or physician-based education and interventions were emerging directions for asthma management, and that asthma should be carefully studied in the context of atopy, together with other allergic diseases. Conclusions This study presented a comprehensive and systematic overview of the research status of childhood asthma, provided clues to future research directions, and highlighted two significant research trends of asthma management and atopy in this field.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yi Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xinmeng Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Qinzhun Zhang
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhou
- Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Weihong Tang
- Department of Gastroenterology, Hangzhou Children’s Hospital, Hangzhou, China
| | - Xianglong Huang
- Department of Pediatrics, Xihu District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Chengyin Ye
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Li H, Ma L, Li W, Zheng B, Wang J, Chen S, Wang Y, Ge F, Qin B, Zheng X, Deng Y, Zeng R. Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood of mice. Front Immunol 2022; 13:977235. [PMID: 36211408 PMCID: PMC9533174 DOI: 10.3389/fimmu.2022.977235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.
Collapse
Affiliation(s)
- Hanglin Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Linyan Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Boyang Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Shunyan Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Fei Ge
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Beibei Qin
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Clinical Lab, Hebei Provincial People’s Hospital, Shijiazhuang, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ruihong Zeng,
| |
Collapse
|
19
|
Li N, Cui X, Ma C, Yu Y, Li Z, Zhao L, Xiong H. Uncovering the effects and mechanism of Danggui Shaoyao San intervention on primary dysmenorrhea by serum metabolomics approach. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123434. [PMID: 36027705 DOI: 10.1016/j.jchromb.2022.123434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
Danggui Shaoyao San (DSS) is a well-known prescription for relieving primary dysmenorrhea (PD) of women in China. However, its pharmacological mechanism has not been thoroughly uncovered. Here, an integrative UPLC-Q-TOF-MS-based serum metabolomics approach coupled with multivariate data analysis has been proposed to investigate the effects and mechanism of DSS on estradiol benzoate and oxytocin-induced PD rats. 31 potential biomarkers of PD were screened and identified, mainly involving phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, and the occurrence of PD could destroy biological homeostasis in vivo by monitoring these pathways. After DSS treatment, 18 identified different metabolites were restored to the nomal state in varying degrees and could be potential biomarkers contributing to the treatment of DSS. These findings implyed that DSS exhibited a therapeutic effect on PD rats through regulating multiple abnormal pathways. Of note, this study discovered some potential biomarkers related to PD for the first time, such as L-tyrosine, glycocholic acid, citric acid, palmitoylcarnitine, cholesterol. It preliminarily proved the pathophysiology of PD and action mechanisms of DSS on PD, and provided a novel insight into the effectiveness of DSS on PD.
Collapse
Affiliation(s)
- Na Li
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical College, Chengde 067000, Hebei, China; Institute of Basic Medicine, Chengde Medical College, Chengde 067000, Hebei, China
| | - Xiaoyan Cui
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050299, Hebei, China
| | - Chunyan Ma
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050299, Hebei, China
| | - Yongzhou Yu
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical College, Chengde 067000, Hebei, China; Institute of Basic Medicine, Chengde Medical College, Chengde 067000, Hebei, China
| | - Zhe Li
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde 067000, Hebei, China
| | - Lanqingqing Zhao
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde 067000, Hebei, China
| | - Hui Xiong
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde 067000, Hebei, China.
| |
Collapse
|
20
|
Liang L, Hu M, Chen Y, Liu L, Wu L, Hang C, Luo X, Xu X. Metabolomics of bronchoalveolar lavage in children with persistent wheezing. Respir Res 2022; 23:161. [PMID: 35718784 PMCID: PMC9208141 DOI: 10.1186/s12931-022-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Recent studies have demonstrated the important role of metabolomics in the pathogenesis of asthma. However, the role of lung metabolomics in childhood persistent wheezing (PW) or wheezing recurrence remains poorly understood. Methods In this prospective observational study, we performed a liquid chromatography/mass spectrometry-based metabolomic survey on bronchoalveolar lavage samples collected from 30 children with PW and 30 age-matched infants (control group). A 2-year follow-up study on these PW children was conducted. Results Children with PW showed a distinct characterization of respiratory metabolome compared with control group. Children with PW had higher abundances of choline, oleamide, nepetalactam, butyrylcarnitine, l-palmitoylcarnitine, palmitoylethanolamide, and various phosphatidylcholines. The glycerophospholipid metabolism pathway was the most relevant pathway involving in PW pathophysiologic process. Additionally, different gender, prematurity, and systemic corticoids use demonstrated a greater impact in airway metabolite compositions. Furthermore, for PW children with recurrence during the follow-up period, children who were born prematurely had an increased abundance of butyrylcarnitine relative to those who were carried to term. Conclusions This study suggests that the alterations of lung metabolites could be associated with the development of wheezing, and this early alteration could also be correlated with wheezing recurrence later in life. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02087-6.
Collapse
Affiliation(s)
- Lingfang Liang
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Minfei Hu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Yuanling Chen
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Lingke Liu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Lei Wu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Chengcheng Hang
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Xiaofei Luo
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
21
|
Metabolomic Profiling of Samples from Pediatric Asthma Patients Unveils Deficient Nutrients in African Americans. iScience 2022; 25:104650. [PMID: 35811841 PMCID: PMC9263988 DOI: 10.1016/j.isci.2022.104650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Plasma metabolomics represents a potentially powerful approach to understand the biochemical mechanisms of nutrition and metabolism in asthma. This study aims to acquire knowledge on plasma metabolites in asthma, which may provide avenues for nutrition therapy, as well as explanations for the observed effects in existing therapies. This study investigated 249 metabolites from 18 metabolite groups in a large cohort of African American population, including 602 pediatric patients with asthma and 593 controls, using a nuclear magnetic resonance (NMR) metabolomics platform. Decreased levels of citrate, ketone bodies, and two amino acids histidine (His) and glutamine (Gln), were observed in asthma cases compared to controls. Metabolites for lipid metabolism lost significance after controlling for comorbid obesity. For the first time, this study depicts a broad panorama of lipid metabolism and nutrition in asthma. Supplementation or augmentation of nutrients that are deficient may be beneficial for asthma care. Asthma is a major health issue in African Americans Metabolomics represents a powerful approach to understand the metabolism in asthma We observed decreased citrate, ketone bodies, and amino acids in the plasma Supplementation of nutrients that are deficient may be beneficial for asthma care
Collapse
|
22
|
Carraro S, Di Palmo E, Licari A, Barni S, Caldarelli V, De Castro G, Di Marco A, Fenu G, Giordano G, Lombardi E, Pirillo P, Stocchero M, Volpini A, Zanconato S, Rusconi F. Metabolomics to identify omalizumab responders among children with severe asthma: a prospective study. Allergy 2022; 77:2852-2856. [PMID: 35603478 PMCID: PMC9541025 DOI: 10.1111/all.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health DepartmentUniversity of PadovaPadovaItaly
| | - Emanuela Di Palmo
- Pediatric Unit – IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCSS Policlinico San MatteoUniversity of PaviaPaviaItaly
| | - Simona Barni
- Allergy UnitMeyer Paediatric University HospitalFlorenceItaly
| | - Valeria Caldarelli
- Pediatric Unit, Department of Obstetrics, Gynecology and PediatricsAzienda USL – IRCCSReggio EmiliaItaly
| | - Giovanna De Castro
- Pediatric Allergology Unit, Maternal and Child Department and Urological ScienceUmberto I Hospital, Sapienza UniversityRomeItaly
| | - Antonio Di Marco
- Pediatric Pulmonology & Respiratory Intermediate Care Unit, Sleep and long term Ventilation Unit, Academic Department of Pediatrics (DPUO)Bambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Grazia Fenu
- Pulmonary UnitMeyer Paediatric University HospitalFlorenceItaly
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health DepartmentUniversity of PadovaPadovaItaly
- Fondazione Istituto di Ricerca Pediatrica (IRP)PadovaItaly
| | - Enrico Lombardi
- Pulmonary UnitMeyer Paediatric University HospitalFlorenceItaly
| | - Paola Pirillo
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health DepartmentUniversity of PadovaPadovaItaly
- Fondazione Istituto di Ricerca Pediatrica (IRP)PadovaItaly
| | - Matteo Stocchero
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health DepartmentUniversity of PadovaPadovaItaly
- Fondazione Istituto di Ricerca Pediatrica (IRP)PadovaItaly
| | - Alessandro Volpini
- Pediatric Unit, Department of Mother and Child HealthSalesi Children's HospitalAnconaItaly
| | - Stefania Zanconato
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health DepartmentUniversity of PadovaPadovaItaly
| | - Franca Rusconi
- Department of Mother and Child HealthAzienda USL Toscana Nord OvestPisaItaly
| | | |
Collapse
|
23
|
Chang YH, Yeh KW, Huang JL, Su KW, Tsai MH, Hua MC, Liao SL, Lai SH, Chen LC, Chiu CY. Metabolomics analysis reveals molecular linkages for the impact of vitamin D on childhood allergic airway diseases. Pediatr Allergy Immunol 2022; 33:e13785. [PMID: 35616893 DOI: 10.1111/pai.13785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Several studies have reported the relevance between serum vitamin D and allergic immunoglobulin E (IgE) responses and atopic diseases. However, a metabolomics-based approach to the impacts of vitamin D on allergic reactions remains unclear. METHODS A total of 111 children completed a 3-year follow-up were enrolled and classified based on longitudinal vitamin D status (≥ 30 ng/ml, n = 54; 20-29.9 ng/ml, n = 41; <20 ng/ml, n = 16). Urinary metabolomic profiling was performed using 1 H-Nuclear magnetic resonance (NMR) spectroscopy at age 3. Integrative analyses of their associations related to vitamin D levels, atopic indices, and allergies were performed, and their roles in functional metabolic pathways were also assessed. RESULTS Six and five metabolites were identified to be significantly associated with vitamin D status and atopic diseases, respectively (FDR-adjusted p-value <.05). A further correlation analysis revealed that vitamin D-associated 3-hydroxyisobutyric acid and glutamine were positively correlated with atopic disease-associated succinic acid and alanine, respectively. Furthermore, hippuric acid was negatively correlated with atopic disease-associated formic acid, which was positively correlated with vitamin D level (p < .01). Absolute eosinophil count (AEC) was positively correlated with serum D. pteronyssinus- and D. farinae-specific IgE level (p < .01) but negatively correlated with vitamin D level (p < .05). Amino acid metabolisms were significantly associated with vitamin D related to childhood allergies. CONCLUSION Integrative metabolomic analysis provides the link of vitamin D-associated metabolites with the gut microbiome and immunoallergic reactions related to childhood allergies.
Collapse
Affiliation(s)
- Yu-Ho Chang
- School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - Kuan-Wen Su
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Man-Chin Hua
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Sui-Ling Liao
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung, and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shen-Hao Lai
- Division of Pediatric Pulmonology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Chen Chen
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Dagla I, Iliou A, Benaki D, Gikas E, Mikros E, Bagratuni T, Kastritis E, Dimopoulos MA, Terpos E, Tsarbopoulos A. Plasma Metabolomic Alterations Induced by COVID-19 Vaccination Reveal Putative Biomarkers Reflecting the Immune Response. Cells 2022; 11:1241. [PMID: 35406806 PMCID: PMC8997405 DOI: 10.3390/cells11071241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.
Collapse
Affiliation(s)
- Ioanna Dagla
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
| | - Aikaterini Iliou
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Dimitra Benaki
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 157 71 Athens, Greece;
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 157 71 Athens, Greece; (A.I.); (D.B.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 28 Athens, Greece; (T.B.); (E.K.); (M.A.D.); (E.T.)
| | - Anthony Tsarbopoulos
- The Goulandris Natural History Museum, Bioanalytical Laboratory, GAIA Research Center, 145 62 Kifissia, Greece;
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Panepistiomiopolis, Zografou, 115 27 Athens, Greece
| |
Collapse
|
25
|
Metabolomics Signatures and Subsequent Maternal Health among Mothers with a Congenital Heart Defect-Affected Pregnancy. Metabolites 2022; 12:metabo12020100. [PMID: 35208175 PMCID: PMC8877777 DOI: 10.3390/metabo12020100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/24/2022] Open
Abstract
Congenital heart defects (CHDs) are the most prevalent and serious of all birth defects in the United States. However, little is known about the impact of CHD-affected pregnancies on subsequent maternal health. Thus, there is a need to characterize the metabolic alterations associated with CHD-affected pregnancies. Fifty-six plasma samples were identified from post-partum women who participated in the National Birth Defects Prevention Study between 1997 and 2011 and had (1) unaffected control offspring (n = 18), (2) offspring with tetralogy of Fallot (ToF, n = 22), or (3) hypoplastic left heart syndrome (HLHS, n = 16) in this pilot study. Absolute concentrations of 408 metabolites using the AbsoluteIDQ® p400 HR Kit (Biocrates) were evaluated among case and control mothers. Twenty-six samples were randomly selected from above as technical repeats. Analysis of covariance (ANCOVA) and logistic regression models were used to identify significant metabolites after controlling for the maternal age at delivery and body mass index. The receiver operating characteristic (ROC) curve and area-under-the-curve (AUC) are reported to evaluate the performance of significant metabolites. Overall, there were nine significant metabolites (p < 0.05) identified in HLHS case mothers and 30 significant metabolites in ToF case mothers. Statistically significant metabolites were further evaluated using ROC curve analyses with PC (34:1), two sphingolipids SM (31:1), SM (42:2), and PC-O (40:4) elevated in HLHS cases; while LPC (18:2), two triglycerides: TG (44:1), TG (46:2), and LPC (20:3) decreased in ToF; and cholesterol esters CE (22:6) were elevated among ToF case mothers. The metabolites identified in the study may have profound structural and functional implications involved in cellular signaling and suggest the need for postpartum dietary supplementation among women who gave birth to CHD offspring.
Collapse
|
26
|
Wasserman E, Worgall S. Perinatal origins of chronic lung disease: mechanisms-prevention-therapy-sphingolipid metabolism and the genetic and perinatal origins of childhood asthma. Mol Cell Pediatr 2021; 8:22. [PMID: 34931265 PMCID: PMC8688659 DOI: 10.1186/s40348-021-00130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Childhood asthma derives from complex host-environment interactions occurring in the perinatal and infant period, a critical time for lung development. Sphingolipids are bioactive molecules consistently implicated in the pathogenesis of childhood asthma. Genome wide association studies (GWAS) initially identified a link between alleles within the 17q21 asthma-susceptibility locus, childhood asthma, and overexpression of the ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), an inhibitor of de novo sphingolipid synthesis. Subsequent studies of pediatric asthma offer strong evidence that these asthma-risk alleles correlate with early-life aberrancies of sphingolipid homeostasis and asthma. Relationships between sphingolipid metabolism and asthma-related risk factors, including maternal obesity and respiratory viral infections, are currently under investigation. This review will summarize how these perinatal and early life exposures can synergize with 17q21 asthma risk alleles to exacerbate disruptions of sphingolipid homeostasis and drive asthma pathogenesis.
Collapse
Affiliation(s)
- Emily Wasserman
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA.,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA. .,Department of Genetic Medicine, Weill Cornell Medicine, 1305 York Avenue, 13th Floor, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Wilde MJ, Siddiqui S. Endotyping Asthma - Profiling the Metabolic Dimension? Am J Respir Crit Care Med 2021; 205:261-263. [PMID: 34914570 PMCID: PMC8886991 DOI: 10.1164/rccm.202111-2605ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael J Wilde
- University of Plymouth, 6633, School of Geography, Earth and Environmental Sciences (Faculty of Science and Engineering), Plymouth, Devon, United Kingdom of Great Britain and Northern Ireland
| | - Salman Siddiqui
- Institute for Lung Health/University of Leicester, Infection, Immunity and Inflammation, Leicester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
28
|
Alharbi ET, Nadeem F, Cherif A. Predictive models for personalized asthma attacks based on patient's biosignals and environmental factors: a systematic review. BMC Med Inform Decis Mak 2021; 21:345. [PMID: 34886852 PMCID: PMC8656014 DOI: 10.1186/s12911-021-01704-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is a chronic disease that exacerbates due to various risk factors, including the patient's biosignals and environmental conditions. It is affecting on average 7% of the world population. Preventing an asthma attack is the main challenge for asthma patients, which requires keeping track of any risk factor that can cause a seizure. Many researchers developed asthma attacks prediction models that used various asthma biosignals and environmental factors. These predictive models can help asthmatic patients predict asthma attacks in advance, and thus preventive measures can be taken. This paper introduces a review of these models to evaluate the used methods, model's performance, and determine the need to improve research in this field. METHOD A systematic review was conducted for the research articles introducing asthma attack prediction models for children and adults. We searched the PubMed, ScienceDirect, Springer, and IEEE databases from January 2000 to December 2020. The search includes the prediction models that used biosignal, environmental, and both risk factors. The research article's quality was assessed and scored based on two checklists, the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) and the Critical Appraisal Skills Programme clinical prediction rule checklist (CASP). The highest scored articles were selected to review. RESULT From 1068 research articles we reviewed, we found that most of the studies used asthma biosignal factors only for prediction, few of the studies used environmental factors, and limited studies used both of these factors. Fifteen different asthma attack predictive models were selected for this review. we found that most of the studies used traditional prediction methods, like Support Vector Machine and regression. We have identified the pros and cons of the reviewed asthma attack prediction models and propose solutions to advance the studies in this field. CONCLUSION Asthma attack predictive models become more significant when using both patient's biosignal and environmental factors. There is a lack of utilizing advanced machine learning methods, like deep learning techniques. Besides, there is a need to build smart healthcare systems that provide patients with decision-making systems to identify risk and visualize high-risk regions.
Collapse
Affiliation(s)
- Eman T. Alharbi
- Department of Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farrukh Nadeem
- Department of Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Cherif
- Department of Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Metabolomics, Microbiota, and In Vivo and In Vitro Biomarkers in Type 2 Severe Asthma: A Perspective Review. Metabolites 2021. [PMID: 34677362 DOI: 10.3390/metabo11100647.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient; thus, it could be a new approach for the management of severe asthma that considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. Metabolomics is the systematic study of low molecular weight (bio)chemicals in a given biological system and offers a powerful approach to biomarker discovery and elucidating disease mechanisms. In this point of view, metabolomics could play a key role in targeting precision medicine.
Collapse
|
30
|
Caruso C, Colantuono S, Nicoletti A, Arasi S, Firinu D, Gasbarrini A, Coppola A, Di Michele L. Metabolomics, Microbiota, and In Vivo and In Vitro Biomarkers in Type 2 Severe Asthma: A Perspective Review. Metabolites 2021; 11:metabo11100647. [PMID: 34677362 PMCID: PMC8541451 DOI: 10.3390/metabo11100647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient; thus, it could be a new approach for the management of severe asthma that considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. Metabolomics is the systematic study of low molecular weight (bio)chemicals in a given biological system and offers a powerful approach to biomarker discovery and elucidating disease mechanisms. In this point of view, metabolomics could play a key role in targeting precision medicine.
Collapse
Affiliation(s)
- Cristiano Caruso
- Allergy Unit, Fondazione Policlinico A. Gemelli, IRCCS, Catholic University of the Sacred Heart, 00100 Rome, Italy;
- Correspondence:
| | - Stefania Colantuono
- Allergy Unit, Fondazione Policlinico A. Gemelli, IRCCS, Catholic University of the Sacred Heart, 00100 Rome, Italy;
- Digestive Disease Center, Medical and Surgical Sciences Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, 00100 Rome, Italy;
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Internal Medicine, Catholic University of the Sacred Heart, 00100 Rome, Italy;
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy;
| | - Antonio Gasbarrini
- Digestive Disease Center, Medical and Surgical Sciences Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, 00100 Rome, Italy;
| | - Angelo Coppola
- Division of Respiratory Medicine, Ospedale San Filippo Neri-ASL Roma 1, 00100 Rome, Italy;
- UniCamillus, Saint Camillus International, University of Health Sciences, 00131 Rome, Italy
| | - Loreta Di Michele
- Pulmonary Interstitial Diseases Unit, UOSD Interstiziopatie Polmonari Az Osp. S. Camillo-Forlanini, 00100 Rome, Italy;
| |
Collapse
|
31
|
Duman B, Borekci S, Akdeniz N, Gazioglu SB, Deniz G, Gemicioglu B. Inhaled corticosteroids' effects on biomarkers in exhaled breath condensate and blood in patients newly diagnosed with asthma who smoke. J Asthma 2021; 59:1613-1620. [PMID: 34376110 DOI: 10.1080/02770903.2021.1962341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Exposure to cigarette smoke complicates the treatment and management of asthma through a variety of inflammatory effects. This study aimed to investigate the differences between newly diagnosed cases of asthma in smokers and nonsmokers in terms of localized and systemic biomarkers following treatment with inhaled corticosteroids (ICS) or ICS in combination with a long-acting β2 agonist (LABA). METHODS Specimens of exhaled breath condensate (EBC) from newly diagnosed patients with asthma were used to quantify inflammation in the airways, while blood samples were used to assess systemic inflammation. In both samples, the levels of IL-6, LTB4, LTD4, and 8-isoprostane were measured and these were repeated after 3 months of treatment with ICS or ICS + LABA. RESULTS Of the 20 patients, 10 (50%) were nonsmokers with asthma (NSA) and 10 (50%) smokers with asthma (SA). There was no statistically significant difference in the blood or EBC levels of IL-6, LTB4, LTD4, or 8-isoprostane between the groups prior to treatment. Only the decrease in 8-isoprostane level in the EBC samples was found to be significantly greater in the NSA group after treatment (for smokers, the change was 2.91 ± 23.22, while for nonsmokers it was -22.72 ± 33.12, p = 0.022). Post-treatment asthma control was significantly better in the NSA group (p = 0.033). CONCLUSION Monitoring the alterations in 8-isoprostane levels in EBC in patients with asthma who smoke may be helpful in deciding on therapeutic management and switching treatments. Asthma control was better in nonsmokers than in smokers.
Collapse
Affiliation(s)
- Berna Duman
- Bezmiâlem Vakıf University School of Medicine, Istanbul, Turkey
| | - Sermin Borekci
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Bilgic Gazioglu
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Bilun Gemicioglu
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
32
|
Metabolic Phenotypes in Asthmatic Adults: Relationship with Inflammatory and Clinical Phenotypes and Prognostic Implications. Metabolites 2021; 11:metabo11080534. [PMID: 34436475 PMCID: PMC8400680 DOI: 10.3390/metabo11080534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Bronchial asthma is a chronic disease that affects individuals of all ages. It has a high prevalence and is associated with high morbidity and considerable levels of mortality. However, asthma is not a single disease, and multiple subtypes or phenotypes (clinical, inflammatory or combinations thereof) can be detected, namely in aggregated clusters. Most studies have characterised asthma phenotypes and clusters of phenotypes using mainly clinical and inflammatory parameters. These studies are important because they may have clinical and prognostic implications and may also help to tailor personalised treatment approaches. In addition, various metabolomics studies have helped to further define the metabolic features of asthma, using electronic noses or targeted and untargeted approaches. Besides discriminating between asthma and a healthy state, metabolomics can detect the metabolic signatures associated with some asthma subtypes, namely eosinophilic and non-eosinophilic phenotypes or the obese asthma phenotype, and this may prove very useful in point-of-care application. Furthermore, metabolomics also discriminates between asthma and other “phenotypes” of chronic obstructive airway diseases, such as chronic obstructive pulmonary disease (COPD) or Asthma–COPD Overlap (ACO). However, there are still various aspects that need to be more thoroughly investigated in the context of asthma phenotypes in adequately designed, homogeneous, multicentre studies, using adequate tools and integrating metabolomics into a multiple-level approach.
Collapse
|
33
|
Villaseñor A, Eguiluz-Gracia I, Moreira A, Wheelock CE, Escribese MM. Metabolomics in the Identification of Biomarkers of Asthma. Metabolites 2021; 11:metabo11060346. [PMID: 34072459 PMCID: PMC8227545 DOI: 10.3390/metabo11060346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Asthma is a major non-communicable disease characterized by recurrent attacks of breathlessness and wheezing [...].
Collapse
Affiliation(s)
- Alma Villaseñor
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine (IMMA), Universidad San Pablo CEU, CEU Universities, 28660 Madrid, Spain;
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Ibon Eguiluz-Gracia
- Allergy Group, Instituto de Investigacion Biomedica de Malaga (IBIMA) and ARADyAL, 29009 Malaga, Spain;
- Allergy Unit, Hospital Regional Universitario de Malaga, 29009 Malaga, Spain
| | - André Moreira
- EPI Unit, Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal;
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar São João EPE, 4200-319 Porto, Portugal
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum Quartier 9A, SE-171-77 Stockholm, Sweden;
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE-171-77 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - María M Escribese
- Department of Basic Medical Sciences, Facultad de Medicina, Institute of Applied Molecular Medicine (IMMA), Universidad San Pablo CEU, CEU Universities, 28660 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-372-4700 (ext. 4665)
| |
Collapse
|