1
|
Jia R, Hou Y, Zhou L, Zhang L, Li B, Zhu J. Comparative Transcriptome Analysis Reveals the Impact of a High-Fat Diet on Hepatic Metabolic Function in Tilapia ( Oreochromis niloticus). Animals (Basel) 2024; 14:3204. [PMID: 39595257 PMCID: PMC11590938 DOI: 10.3390/ani14223204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatic steatosis is prevalent among cultured fish, yet the molecular mechanisms remain incompletely understood. This study aimed to assess changes in hepatic metabolic function in tilapia and to explore the underlying molecular mechanisms through transcriptomic analyses. Tilapia were allocated into two groups: a normal control (Ctr)-fed group and a high-fat diet (HFD)-fed group. Serum biochemical analyses revealed that HFD feeding led to liver damage and lipid accumulation, characterized by elevated levels of glutamic-pyruvic transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), triglycerides (TGs), and total cholesterol (TC). Transcriptome analysis showed that 538 genes were significantly downregulated, and 460 genes were significantly upregulated in the HFD-fed fish. Gene Ontology (GO) enrichment analysis showed that these differentially expressed genes (DEGs) were apparently involved in the lipid metabolic process and monocarboxylic acid metabolic process. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated significant alterations in pathways of steroid biosynthesis, porphyrin metabolism, terpenoid backbone biosynthesis, and retinol metabolism after HFD feeding. Additionally, results from Gene Set Enrichment Analysis (GSEA) revealed that gene expression patterns in pathways including oxidative phosphorylation, protein export, protein processing in the endoplasmic reticulum, and ribosome biogenesis were positively enriched in the HFD-fed tilapia. These findings provide novel insights into the mechanisms underlying HFD-induced hepatic dysfunction in fish, contributing to the optimization of feeding strategies in aquaculture.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Linjun Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (L.Z.); (L.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| |
Collapse
|
2
|
Yuan Y, Wu D, Chen H, Ma Z, Peng X, Li X, Zhao C, Jiang L, Liang J, Zhang W, Dai J. Farnesol ameliorates DSS-induced IBD by regulating inflammatory cytokines, repairing the intestinal barrier, reversing the gut microbiota imbalance, and influencing fecal metabolome in C57BL/6 mice. Biomed Pharmacother 2024; 180:117518. [PMID: 39405907 DOI: 10.1016/j.biopha.2024.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
The incidence of inflammatory bowel disease (IBD) is rising globally, increasing interest in food ingredients for its prevention and control. This study evaluated the effect of farnesol (FAR), a key component of pomelo flower volatile oil, on dextran sodium sulfate (DSS)-induced colitis in C57BL/6 mice. FAR significantly alleviated DSS-induced colitis and secondary liver injury, as shown by improved body weight, DAI, colon length, and pathology, as well as liver function and blood lipid indices. The mechanism involves FAR-mediated regulation of inflammatory cytokines, increased expression of tight junction protein genes, and decreased expression of lipid metabolism-related proteins. FAR also enhanced gut microbiota diversity, balancing harmful and probiotic bacteria. Fecal metabolome analysis indicated FAR's role in reversing metabolic disturbances related to inflammation and liver lipid metabolism. These findings support developing functional foods for IBD treatment using pomelo flower volatile oil.
Collapse
Affiliation(s)
- Ya Yuan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Dazuo Wu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Heping Chen
- The 3rd Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital,Chengdu 611730, PR China
| | - Zheng Ma
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xinyue Peng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Xiaodie Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Chuchu Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Linping Jiang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Jinping Liang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, Chengdu 610500, PR China.
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China.
| |
Collapse
|
3
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
4
|
Mintziori G, Veneti S, Poppe K, Goulis DG, Armeni E, Erel CT, Fistonić I, Hillard T, Hirschberg AL, Meczekalski B, Mendoza N, Mueck AO, Simoncini T, Stute P, van Dijken D, Rees M, Duntas L, Lambrinoudaki I. EMAS position statement: Thyroid disease and menopause. Maturitas 2024; 185:107991. [PMID: 38658290 DOI: 10.1016/j.maturitas.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Thyroid diseases are common in women in their late reproductive years; therefore, thyroid disease and menopause may co-exist. Both conditions may present with a wide range of symptoms, leading to diagnostic challenges and delayed diagnosis. Aim To construct the first European Menopause and Andropause Society (EMAS) statement on thyroid diseases and menopause. MATERIALS AND METHODS Literature review and consensus of expert opinion (EMAS executive board members/experts on menopause and thyroid disease). SUMMARY RECOMMENDATIONS This position paper highlights the diagnostic and therapeutic dilemmas in managing women with thyroid disease during the menopausal transition, aiming to increase healthcare professionals' awareness of thyroid disorders and menopause-related symptoms. Clinical decisions regarding the treatment of both conditions should be made with caution and attention to the specific characteristics of this age group while adopting a personalized patient approach. The latter must include the family history, involvement of the woman in the decision-making, and respect for her preferences, to achieve overall well-being.
Collapse
Affiliation(s)
- Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Stavroula Veneti
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Kris Poppe
- University Hospital CHU St-Pierre UMC, Université libre de Bruxelles (ULB), Belgium
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Eleni Armeni
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Greece and Royal Free Hospital, London, United Kingdom
| | - C Tamer Erel
- Istanbul-Cerrahpaşa University, Cerrahpaşa School of Medicine, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Ivan Fistonić
- Faculty for Health Studies, University of Rijeka, Rijeka, Croatia
| | - Timothy Hillard
- Department of Obstetrics and Gynaecology, University Hospitals Dorset, Poole, UK
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nicolás Mendoza
- Department of Obstetrics and Gynecology, University of Granada, Spain
| | - Alfred O Mueck
- Department of Women's Health, University Hospital Tuebingen, Germany; Beijing OB/GYN Hospital, Capital Medical University, China
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Clinic Inselspital, Bern, Switzerland
| | - Dorenda van Dijken
- Department of Obstetrics and Gynecology, OLVG Hospital, Amsterdam, The Netherlands
| | - Margaret Rees
- Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Leonidas Duntas
- Evgenideion Hospital, Unit of Endocrinology and Metabolism, National and Kapodistrian University, Athens, Greece
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
5
|
Liu Z, Dai J, Liu R, Shen Z, Huang A, Huang Y, Wang L, Chen P, Zhou Z, Xiao H, Chen X, Yang X. Complex insoluble dietary fiber alleviates obesity and liver steatosis, and modulates the gut microbiota in C57BL/6J mice fed a high-fat diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5462-5473. [PMID: 38348948 DOI: 10.1002/jsfa.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Obesity has been demonstrated as a risk factor that seriously affects health. Insoluble dietary fiber (IDF), as a major component of dietary fiber, has positive effects on obesity, inflammation and diabetes. RESULTS In this study, complex IDF was prepared using 50% enoki mushroom IDF, 40% carrot IDF, and 10% oat IDF. The effects and potential mechanism of complex IDF on obesity were investigated in C57BL/6 mice fed a high-fat diet. The results showed that feeding diets containing 5% complex IDF for 8 weeks significantly reduced mouse body weight, epididymal lipid index, and ectopic fat deposition, and improved mouse liver lipotoxicity (reduced serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), fatty liver, and short-chain fatty acid composition. High-throughput sequencing of 16S rRNA and analysis of fecal metabolomics showed that the intervention with complex IDF reversed the high-fat-diet-induced dysbiosis of gut microbiota, which is associated with obesity and intestinal inflammation, and affected metabolic pathways, such as primary bile acid biosynthesis, related to fat digestion and absorption. CONCLUSION Composite IDF intervention can effectively inhibit high-fat-diet-induced obesity and related symptoms and affect the gut microbiota and related metabolic pathways in obesity. Complex IDF has potential value in the prevention of obesity and metabolic syndrome. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zurui Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ruijia Liu
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Ai Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Zheng Zhou
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, People's Republic of China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Kochumon S, Malik MZ, Sindhu S, Arefanian H, Jacob T, Bahman F, Nizam R, Hasan A, Thomas R, Al-Rashed F, Shenouda S, Wilson A, Albeloushi S, Almansour N, Alhamar G, Al Madhoun A, Alzaid F, Thanaraj TA, Koistinen HA, Tuomilehto J, Al-Mulla F, Ahmad R. Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice. Nutrients 2024; 16:1929. [PMID: 38931284 PMCID: PMC11207001 DOI: 10.3390/nu16121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). RESULTS C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. CONCLUSION These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.
Collapse
Affiliation(s)
- Shihab Kochumon
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Md. Zubbair Malik
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Sardar Sindhu
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Hossein Arefanian
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Texy Jacob
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatemah Bahman
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Amal Hasan
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Reeby Thomas
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fatema Al-Rashed
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Steve Shenouda
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ajit Wilson
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Shaima Albeloushi
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Nourah Almansour
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ghadeer Alhamar
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Ashraf Al Madhoun
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Thangavel Alphonse Thanaraj
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Heikki A. Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland;
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
| | - Fahd Al-Mulla
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| | - Rasheed Ahmad
- Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (M.Z.M.); (S.S.); (H.A.); (T.J.); (F.B.); (R.N.); (A.H.); (R.T.); (F.A.-R.); (S.S.); (A.W.); (S.A.); (N.A.); (G.A.); (A.A.M.); (F.A.); (T.A.T.); (F.A.-M.)
| |
Collapse
|
7
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Reproductive toxic effects of chronic exposure to bisphenol A and its analogues in marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106927. [PMID: 38643640 DOI: 10.1016/j.aquatox.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17βhsd, 3βhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088 China.
| |
Collapse
|
8
|
Hasan M, Reyer H, Oster M, Trakooljul N, Ponsuksilli S, Magowan E, Fischer DC, Wimmers K. Exposure to artificial ultraviolet-B light mediates alterations on the hepatic transcriptome and vitamin D metabolism in pigs. J Steroid Biochem Mol Biol 2024; 236:106428. [PMID: 37984748 DOI: 10.1016/j.jsbmb.2023.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In the currently prevailing pig husbandry systems, the vitamin D status is almost exclusively dependent on dietary supply. Additional endogenous vitamin D production after exposure to ultraviolet-B (UVB) light might allow the animals to utilize minerals in a more efficient manner, as well as enable the production of functional vitamin D-enriched meat for human consumption. In this study, growing pigs (n = 16) were subjected to a control group or to a daily narrowband UVB exposure of 1 standard erythema dose (SED) for a period of 9 weeks until slaughter at a body weight of 105 kg. Transcriptomic profiling of liver with emphasis on the associated effects on vitamin D metabolism due to UVB exposure were evaluated via RNA sequencing. Serum was analyzed for vitamin D status and health parameters such as minerals and biochemical markers. The serum concentration of calcidiol, but not calcitriol, was significantly elevated in response to UVB exposure after 17 days on trial. No effects of UVB exposure were observed on growth performance and blood test results. At slaughter, the RNA sequencing analyses following daily UVB exposure revealed 703 differentially expressed genes (DEGs) in liver tissue (adjusted p-value < 0.01). Results showed that molecular pathways for vitamin D synthesis (CYP2R1) rather than cholesterol synthesis (DHCR7) were preferentially initiated in liver. Gene enrichment (p < 0.05) was observed for reduced cholesterol/steroid biosynthesis, SNARE interactions in vesicular transport, and CDC42 signaling. Taken together, dietary vitamin D supply can be complemented via endogenous production after UVB exposure in pig husbandry, which could be considered in the development of functional foods.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Elizabeth Magowan
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, Co Down, BT26 6DR, United Kingdom
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Medical Center, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Evangelista S, Vazakidou P, Koekkoek J, Heinzelmann MT, Lichtensteiger W, Schlumpf M, Tresguerres JAF, Linillos-Pradillo B, van Duursen MBM, Lamoree MH, Leonards PEG. High throughput LC-MS/MS method for steroid hormone analysis in rat liver and plasma - unraveling methodological challenges. Talanta 2024; 266:124981. [PMID: 37516072 DOI: 10.1016/j.talanta.2023.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Comprehensive reference data for steroid hormones are lacking in rat models, particularly for early developmental stages and unconventional matrices as the liver. Therefore, we developed and validated an enzymatic, solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify a panel of 23 steroid hormones in liver and plasma from adult and neonatal rats. Our approach tackles methodological challenges, focusing on undesired byproducts associated with specific enzymatic treatment, and enables a thorough assessment of potential interferences in complex matrices by utilizing unstripped plasma and liver. We propose an optimized enzymatic hydrolysis protocol using a recombinant β-glucuronidase/sulfatase mix (BGS mix) to efficiently deconjugate steroid phase II conjugates. The streamlined sample preparation and high-throughput solid phase extraction in a 96-well plate significantly accelerate sample processing for complex matrices and alarge number of samples. We were able to achieve the necessary sensitivity for accurately measuring the target analytes, particularly estrogens, in small sample sizes of 5-20 mg of liver tissue and 100 μL of plasma. Through the analysis of liver and plasma samples from adult and neonatal rats, including both sexes, our study showed a novel set of steroid hormone reference intervals. This study provides a reliable diagnostic tool for the quantification of steroids in rat models and gives insight in liver and plasma-related steroid hormone dynamics at early developmental stages. In addition, the method covers several pathway intermediates and extend the list of steroid hormones to be investigated.
Collapse
Affiliation(s)
- Sara Evangelista
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paraskevi Vazakidou
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jesus A F Tresguerres
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Linillos-Pradillo
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
10
|
Sun C, Wu H, Xiao H, Nguepi Tsopmejio IS, Jin Z, Song H. Effect of dietary Flammulina velutipes (Curt.: Fr.) stem waste on ovarian follicles development in laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2178341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Chang Sun
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Haoyuan Wu
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Huanwei Xiao
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | | | - Zhouyu Jin
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
| | - Hui Song
- School of Life Science, Jilin Agricultural University, Jilin, P. R. China
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, P. R. China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Changchun, P. R. China
| |
Collapse
|
11
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
13
|
Martín-Grau M, Pardo-Tendero M, Casanova P, Dromant M, Marrachelli VG, Morales JM, Borrás C, Pisoni S, Maestrini S, Di Blasio AM, Monleon D. Altered Lipid Moieties and Carbonyls in a Wistar Rat Dietary Model of Subclinical Fatty Liver: Potential Sex-Specific Biomarkers of Early Fatty Liver Disease? Antioxidants (Basel) 2023; 12:1808. [PMID: 37891887 PMCID: PMC10604774 DOI: 10.3390/antiox12101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver. To date, there is a lack of knowledge about the subtype of lipid structures affected in the early stages of NAFLD. The aim of this study was to analyze serum and liver lipid moieties, specifically unsaturations and carbonyls, by nuclear magnetic resonance (NMR) in a subclinical Wistar rat model of NAFLD for detecting early alterations and potential sex dimorphisms. Twelve weeks of a high-fat diet (HFD) induced fat accumulation in the liver to a similar extent in male and female Wistar rats. In addition to total liver fat accumulation, Wistar rats showed a shift in lipid subtype composition. HFD rats displayed increased lipid carbonyls in both liver and serum, and decreased in unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), with a much stronger effect in male than female animals. Our results revealed that the change in fat was not only quantitative but also qualitative, with dramatic shifts in relevant lipid structures. Finally, we compared the results found in Wistar rats with an analysis in a human patient cohort of extreme obesity. For the first time to our knowledge, lipid carbonyl levels and lipoproteins profiles were analyzed in the context of subclinical NAFLD. The association found between lipid carbonyls and alanine aminotransferase (ALT) in a human cohort of extremely obese individuals further supports the potential role of lipid moieties as biomarkers of early NAFLD.
Collapse
Affiliation(s)
- María Martín-Grau
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mercedes Pardo-Tendero
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Pilar Casanova
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Mar Dromant
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Vannina G Marrachelli
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Jose Manuel Morales
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
| | - Consuelo Borrás
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Serena Pisoni
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sabrina Maestrini
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Anna M Di Blasio
- Laboratory of Molecular Genetics, Istituto Auxologico Italiano IRCCS, 20145 Milano, Italy
| | - Daniel Monleon
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- University Clinical Hospital of Valencia Research Foundation (INCLIVA), 46010 Valencia, Spain
- CIBERFES_ISCIII, 46010 Valencia, Spain
| |
Collapse
|
14
|
Golubeva JA, Sheptulina AF, Elkina AY, Liusina EO, Kiselev AR, Drapkina OM. Which Comes First, Nonalcoholic Fatty Liver Disease or Arterial Hypertension? Biomedicines 2023; 11:2465. [PMID: 37760906 PMCID: PMC10525922 DOI: 10.3390/biomedicines11092465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and arterial hypertension (AH) are widespread noncommunicable diseases in the global population. Since hypertension and NAFLD are diseases associated with metabolic syndrome, they are often comorbid. In fact, many contemporary published studies confirm the association of these diseases with each other, regardless of whether other metabolic factors, such as obesity, dyslipidemia, and type 2 diabetes mellites, are present. This narrative review considers the features of the association between NAFLD and AH, as well as possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Julia A. Golubeva
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna F. Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasia Yu. Elkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Intermediate Level Therapy, Saratov State Medical University, 410012 Saratov, Russia
| | - Ekaterina O. Liusina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- Coordinating Center for Fundamental Research, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
15
|
Russo D, Aleksunes LM, Goyak K, Qian H, Zhu H. Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12291-12301. [PMID: 37566783 PMCID: PMC10448720 DOI: 10.1021/acs.est.3c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Failure of animal models to predict hepatotoxicity in humans has created a push to develop biological pathway-based alternatives, such as those that use in vitro assays. Public screening programs (e.g., ToxCast/Tox21 programs) have tested thousands of chemicals using in vitro high-throughput screening (HTS) assays. Developing pathway-based models for simple biological pathways, such as endocrine disruption, has proven successful, but development remains a challenge for complex toxicities like hepatotoxicity, due to the many biological events involved. To this goal, we aimed to develop a computational strategy for developing pathway-based models for complex toxicities. Using a database of 2171 chemicals with human hepatotoxicity classifications, we identified 157 out of 1600+ ToxCast/Tox21 HTS assays to be associated with human hepatotoxicity. Then, a computational framework was used to group these assays by biological target or mechanisms into 52 key event (KE) models of hepatotoxicity. KE model output is a KE score summarizing chemical potency against a hepatotoxicity-relevant biological target or mechanism. Grouping hepatotoxic chemicals based on the chemical structure revealed chemical classes with high KE scores plausibly informing their hepatotoxicity mechanisms. Using KE scores and supervised learning to predict in vivo hepatotoxicity, including toxicokinetic information, improved the predictive performance. This new approach can be a universal computational toxicology strategy for various chemical toxicity evaluations.
Collapse
Affiliation(s)
- Daniel
P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Lauren M. Aleksunes
- Department
of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Katy Goyak
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Hua Qian
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
16
|
Huang X, Liu X, Li X, Zhang Y, Gao J, Yang Y, Jiang Y, Gao H, Sun C, Xuan L, Zhao L, Song J, Bao H, Zhou Z, Li S, Zhang X, Lu Y, Zhong X, Yang B, Pan Z. Cullin-associated and neddylation-dissociated protein 1 (CAND1) alleviates NAFLD by reducing ubiquitinated degradation of ACAA2. Nat Commun 2023; 14:4620. [PMID: 37528093 PMCID: PMC10394019 DOI: 10.1038/s41467-023-40327-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder with high morbidity and mortality. The current study aims to explore the role of Cullin-associated and neddylation-dissociated protein 1 (CAND1) in the development of NAFLD and the underlying mechanisms. CAND1 is reduced in the liver of NAFLD male patients and high fat diet (HFD)-fed male mice. CAND1 alleviates palmitate (PA) induced lipid accumulation in vitro. Hepatocyte-specific knockout of CAND1 exacerbates HFD-induced liver injury in HFD-fed male mice, while hepatocyte-specific knockin of CAND1 ameliorates these pathological changes. Mechanistically, deficiency of CAND1 enhances the assembly of Cullin1, F-box only protein 42 (FBXO42) and acetyl-CoA acyltransferase 2 (ACAA2) complexes, and thus promotes the ubiquitinated degradation of ACAA2. ACAA2 overexpression abolishes the exacerbated effects of CAND1 deficiency on NAFLD. Additionally, androgen receptor binds to the -187 to -2000 promoter region of CAND1. Collectively, CAND1 mitigates NAFLD by inhibiting Cullin1/FBXO42 mediated ACAA2 degradation.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Xin Liu
- The Department of Histology and Embryology, Harbin Medical University, Harbin, 150086, China
| | - Xingda Li
- Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Yang Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Jianjun Gao
- The Department of Hepatopancreatobility, Surgery Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ying Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Yuan Jiang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haiyu Gao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Chongsong Sun
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Lina Xuan
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Lexin Zhao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Jiahui Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Hairong Bao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Zhiwen Zhou
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Shangxuan Li
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Xiaofang Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China.
| | - Xiangyu Zhong
- The Department of Hepatopancreatobility, Surgery Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, 150086, P. R. China.
- State Key Laboratory, Harbin Medical University, Harbin, 150086, China.
| | - Zhenwei Pan
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Disease, Key Laboratory of Cardiovascular Research. Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150086, P. R. China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, 150086, P. R. China.
- Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
17
|
Zhao R, Cheng W, Shen J, Liang W, Zhang Z, Sheng Y, Chai T, Chen X, Zhang Y, Huang X, Yang H, Song C, Pang L, Nan C, Zhang Y, Chen R, Mei J, Wei H, Fang X. Single-cell and spatiotemporal transcriptomic analyses reveal the effects of microorganisms on immunity and metabolism in the mouse liver. Comput Struct Biotechnol J 2023; 21:3466-3477. [PMID: 38152123 PMCID: PMC10751235 DOI: 10.1016/j.csbj.2023.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 12/29/2023] Open
Abstract
The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid metabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.
Collapse
Affiliation(s)
- Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiang Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chunqing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Li Pang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Cuoji Nan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| |
Collapse
|
18
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
19
|
Nikolic A, Fahlbusch P, Wahlers N, Riffelmann NK, Jacob S, Hartwig S, Kettel U, Dille M, Al-Hasani H, Kotzka J, Knebel B. Chronic stress targets mitochondrial respiratory efficiency in the skeletal muscle of C57BL/6 mice. Cell Mol Life Sci 2023; 80:108. [PMID: 36988756 PMCID: PMC10060325 DOI: 10.1007/s00018-023-04761-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.
Collapse
Affiliation(s)
- Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Natalie Wahlers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Nele-Kathrien Riffelmann
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Matthias Dille
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
- Medical Faculty Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225, Duesseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225, Duesseldorf, Germany.
| |
Collapse
|
20
|
Jaroenlapnopparat A, Charoenngam N, Ponvilawan B, Mariano M, Thongpiya J, Yingchoncharoen P. Menopause is associated with increased prevalence of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Menopause 2023; 30:348-354. [PMID: 36728528 DOI: 10.1097/gme.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE Data are inconsistent on whether menopause is a risk for nonalcoholic fatty liver disease (NAFLD). OBJECTIVE Using systematic review and meta-analysis, we aimed to collect all available data to determine the association between menopause and NAFLD. EVIDENCE REVIEW Potentially eligible studies were identified from EMBASE, MEDLINE, and Web of Science databases from inception to December 2021 using a search strategy that was composed of the terms for "NAFLD" and "menopause." Eligible study must contain two groups of participants: one group of postmenopausal women and another group of premenopausal women. Then, the study must report the association between menopause and prevalent NAFLD. We extracted such data from each study and calculated pooled odds ratio (OR) by combining effect estimates of each study using a random-effects model. Funnel plot was used to assess for the presence of publication bias. FINDINGS A total of 587 articles were identified. After two rounds of independent review by two investigators, 12 cross-sectional studies fulfilled the eligibility criteria. The meta-analysis of 12 studies revealed the significant association between menopause and NAFLD with a pooled OR of 2.37 (95% CI, 1.99-2.82; I2 = 73%). The association remained significant in a sensitivity meta-analysis of six studies that reported the association with adjustment for age and metabolic factors with a pooled OR of 2.19 (95% CI, 1.73-2.78; I2 = 74%). The funnel plot was fairly symmetric and was not suggestive of publication bias. CONCLUSIONS AND RELEVANCE The meta-analysis reveals that menopausal status was associated with approximately 2.4 times higher odds of NAFLD.
Collapse
Affiliation(s)
| | | | - Ben Ponvilawan
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | | | - Jerapas Thongpiya
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | | |
Collapse
|
21
|
Patil NY, Friedman JE, Joshi AD. Role of Hepatic Aryl Hydrocarbon Receptor in Non-Alcoholic Fatty Liver Disease. RECEPTORS (BASEL, SWITZERLAND) 2023; 2:1-15. [PMID: 37284280 PMCID: PMC10240927 DOI: 10.3390/receptors2010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease. This review provides a comprehensive account of studies describing both the beneficial and possible detrimental role of AhR in NAFLD. A plausible reconciliation for the paradox indicating AhR as a 'double-edged sword' in NAFLD is discussed. Finally, understanding AhR ligands and their signaling in NAFLD will facilitate us to probe AhR as a potential drug target to design innovative therapeutics against NAFLD in the near future.
Collapse
Affiliation(s)
- Nikhil Y. Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Aditya D. Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
22
|
Martin-Grau M, Monleon D. Sex dimorphism and metabolic profiles in management of metabolic-associated fatty liver disease. World J Clin Cases 2023; 11:1236-1244. [PMID: 36926130 PMCID: PMC10013124 DOI: 10.12998/wjcc.v11.i6.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.
Collapse
Affiliation(s)
- Maria Martin-Grau
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
23
|
Arefhosseini S, Ebrahimi-Mameghani M, Najafipour F, Tutunchi H. Non-alcoholic fatty liver disease across endocrinopathies: Interaction with sex hormones. Front Endocrinol (Lausanne) 2022; 13:1032361. [PMID: 36419770 PMCID: PMC9676462 DOI: 10.3389/fendo.2022.1032361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most frequent chronic liver disease globally. NAFLD is strongly associated with metabolic syndrome and it has been recently suggested that to rename NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). NAFLD has been studied in different endocrine axes and accumulating body of clinical and experimental studies have suggested that NAFLD is associated with polycystic ovarian syndrome (PCOS), hypopituitarism, growth hormone deficiency (GHD), hypogonadism and other endocrine disorders. In fact, endocrine dysfunction may be considered as the major contributor for the development, progression, and severity of NAFLD. In the present comprehensive review, we discussed the epidemiological and clinical evidence on the epidemiology, pathophysiology, and management of NAFLD in endocrine disorders, with an emphasis on the effects of sex-specific hormones/conditions as well as molecular basis of NAFLD development in these endocrine diseases.
Collapse
Affiliation(s)
- Sara Arefhosseini
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Oo T, Sasaki N, Ikenaka Y, Ichise T, Nagata N, Yokoyama N, Sasaoka K, Morishita K, Nakamura K, Takiguchi M. Serum steroid profiling of hepatocellular carcinoma associated with hyperadrenocorticism in dogs: A preliminary study. Front Vet Sci 2022; 9:1014792. [PMID: 36246328 PMCID: PMC9554308 DOI: 10.3389/fvets.2022.1014792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common primary liver tumors in humans and dogs. Excessive adrenocortical hormone exposure may cause steroid hepatopathy, which may develop into HCC. In our previous study, hyperadrenocorticism (HAC) was a highly concurrent disease in dogs with HCC. Therefore, this study hypothesized that adrenal steroid alterations might be involved in hepatocarcinogenesis and aimed to specify the relationship between HAC and HCC in dogs. Materials and methods This study included 46 dogs brought to the Hokkaido University Veterinary Teaching Hospital between March 2019 and December 2020. Owners gave their signed consent for blood collection on their first visit. A total of 19 steroids (14 steroids and 5 metabolites) in the baseline serum of 15 dogs with HCC, 15 dogs with HAC, and 10 dogs with both diseases were quantitatively measured using the developed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) method. Results In each group, 11 steroids were detected higher than 50%. The detection rate of steroid hormones did not significantly differ between the groups (p > 0.05). Principle component analysis (PCA) showed that the steroid profiles of the three groups were comparable. Median steroid hormone concentrations were not significantly different between the study diseases (p > 0.05). Conclusion The developed LC/MS/MS was useful for measuring steroid hormones. Although it was clear that HAC was concurrent in dogs with HCC, none of the serum steroids was suggested to be involved in HCC.
Collapse
Affiliation(s)
- Thandar Oo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Nagata
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuyoshi Sasaoka
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Mitsuyoshi Takiguchi
| |
Collapse
|
25
|
Jiang H, Bao J, Xing Y, Cao G, Li X, Chen Q. Metabolomic and metagenomic analyses of the Chinese mitten crab Eriocheir sinensis after challenge with Metschnikowia bicuspidata. Front Microbiol 2022; 13:990737. [PMID: 36212869 PMCID: PMC9538530 DOI: 10.3389/fmicb.2022.990737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Milky disease caused by Metschnikowia bicuspidata fungus has significantly harmed the Chinese mitten crab Eriocheir sinensis aquaculture industry. However, the effect of M. bicuspidata infection on the metabolism and intestinal flora of the crab remains unclear. In this study, we aimed to explore the changes in the metabolism and intestinal flora E. sinensis after 48 h of infection with M. bicuspidata, using metabolomic and metagenomic analyses. Metabolomic analysis results revealed 420 significantly different metabolites between the infected and control groups, and these metabolites were enriched in 58 metabolic pathways. M. bicuspidata infection decreased the levels of metabolites related to amino acid biosynthesis, the tricarboxylic acid cycle, as well as lysine, histidine, linolenic, arachidonic, and linoleic acid metabolism. These results indicated that M. bicuspidata infection significantly affected the energy metabolism, growth, and immunity of E. sinensis. The results of metagenomic analysis showed that the anaerobes and ascomycetes populations significantly increased and decreased, respectively, after M. bicuspidata infection. These changes in intestinal flora significantly upregulated metabolic and synthetic pathways while downregulating immunity-related pathways. The results of integrated metabolomic and metagenomic analyses showed that 55 differentially expressed genes and 28 operational taxonomic units were correlated with 420 differential metabolites. Thus, the intestinal flora changes caused by M. bicuspidata infection also affected the metabolites. This study provides novel insights into the metabolic-and intestinal microflora-based effects of M. bicuspidata infection in E. sinensis, as well as a theoretical basis for the interaction between fungi and crustaceans.
Collapse
Affiliation(s)
- Hongbo Jiang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gangnan Cao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Qijun Chen,
| |
Collapse
|
26
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:ijms231810654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
- Correspondence:
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
27
|
Insight into Potential Interactions of Thyroid Hormones, Sex Hormones and Their Stimulating Hormones in the Development of Non-Alcoholic Fatty Liver Disease. Metabolites 2022; 12:metabo12080718. [PMID: 36005590 PMCID: PMC9414490 DOI: 10.3390/metabo12080718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common manifestation of metabolic syndrome. In addition to lifestyle, endocrine hormones play a role in the dysregulation of hepatic metabolism. The most common endocrine hormones contributing to metabolic syndrome are alterations in the levels of thyroid hormones (THs, predominantly in subclinical hypothyroidism) and of sex hormones (in menopause). These hormonal changes influence hepatic lipid and glucose metabolism and may increase hepatic fat accumulation. This review compares the effects of sex hormones, THs and the respective stimulating hormones, Thyroid-Stimulating Hormone (TSH) and Follicle-Stimulating Hormone (FSH), on the development of hepatosteatosis. TSH and FSH may be more relevant to the dysregulation of hepatic metabolism than the peripheral hormones because metabolic changes were identified when only levels of the stimulating hormones were abnormal and the peripheral hormones were still in the reference range. Increased TSH and FSH levels appear to have additive effects on the development of NAFLD and to act independently from each other.
Collapse
|
28
|
Ahmed E, Elmaghraby D, Salem F. Persea americana attenuates inflammatory response associated with hyperlipidemia in ovariectomized and irradiated rats by regulating MMP-3/TIMP-1 levels. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021; 9:biomedicines9101405. [PMID: 34680522 PMCID: PMC8533451 DOI: 10.3390/biomedicines9101405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and is characterized by exaggerated lipid accumulation, inflammation and even fibrosis. It has been shown that NAFLD increases the risk of other chronic diseases, particularly chronic kidney disease (CKD). Lipid in excess could lead to liver and kidney lesions and even end-stage disease through diverse pathways. Dysregulation of lipid uptake, oxidation or de novo lipogenesis contributes to the toxic effects of ectopic lipids which promotes the development and progression of NAFLD and CKD via triggering oxidative stress, apoptosis, pro-inflammatory and profibrotic responses. Importantly, dyslipidemia and release of pro-inflammatory cytokines caused by NAFLD (specifically, nonalcoholic steatohepatitis) are considered to play important roles in the pathological progression of CKD. Growing evidence of similarities between the pathogenic mechanisms of NAFLD and those of CKD has attracted attention and urged researchers to discover their common therapeutic targets. Here, we summarize the current understanding of molecular aberrations underlying the lipid metabolism of NAFLD and CKD and clinical evidence that suggests the relevance of these pathways in humans. This review also highlights the orchestrated inter-organ cross-talk in lipid disorders, as well as therapeutic options and opportunities to counteract NAFLD and CKD.
Collapse
|