1
|
Wang C, Feng GG, Takagi J, Fujiwara Y, Sano T, Note H. Catecholamines Attenuate LPS-Induced Inflammation through β2 Adrenergic Receptor Activation- and PKA Phosphorylation-Mediated TLR4 Downregulation in Macrophages. Curr Issues Mol Biol 2024; 46:11336-11348. [PMID: 39451555 PMCID: PMC11506017 DOI: 10.3390/cimb46100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammation is a tightly regulated process involving immune receptor recognition, immune cell migration, inflammatory mediator secretion, and pathogen elimination, all essential for combating infection and restoring damaged tissue. However, excessive inflammatory responses drive various human diseases. The autonomic nervous system (ANS) is known to regulate inflammatory responses; however, the detailed mechanisms underlying this regulation remain incompletely understood. Herein, we aimed to study the anti-inflammatory effects and mechanism of action of the ANS in RAW264.7 cells. Quantitative PCR and immunoblotting assays were used to assess lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) expression. The anti-inflammatory effects of catecholamines (adrenaline, noradrenaline, and dopamine) and acetylcholine were examined in LPS-treated cells to identify the receptors involved. Catecholamines inhibited LPS-induced TNFα expression by activating the β2 adrenergic receptor (β2-AR). β2-AR activation in turn downregulated the expression of Toll-like receptor 4 (TLR4) by stimulating protein kinase A (PKA) phosphorylation, resulting in the suppression of TNFα levels. Collectively, our findings reveal a novel mechanism underlying the inhibitory effect of catecholamines on LPS-induced inflammatory responses, whereby β2-AR activation and PKA phosphorylation downregulate TLR4 expression in macrophages. These findings could provide valuable insights for the treatment of inflammatory diseases and anti-inflammatory drug development.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Guo-Gang Feng
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Junko Takagi
- Division of Endocirnology and Metabolism, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| | - Yoshihiro Fujiwara
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, 3-6-10 Otobashi, Nakagawaku, Nagoya 454-8509, Aichi, Japan;
| | - Tsuyoshi Sano
- Department of Gastroenterological Surgery, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan; (C.W.); (T.S.)
| | - Hideaki Note
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute 480-1195, Aichi, Japan;
| |
Collapse
|
2
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
3
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Rana AK, Kumar Saraswati SS, Anang V, Singh A, Singh A, Verma C, Natarajan K. Butyrate induces oxidative burst mediated apoptosis via Glucose-6-Phosphate Dehydrogenase (G6PDH) in macrophages during mycobacterial infection. Microbes Infect 2024; 26:105271. [PMID: 38036036 DOI: 10.1016/j.micinf.2023.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Microorganisms present in the gut modulate host defence responses against infections in order to maintain immune homeostasis. This host-microbe crosstalk is regulated by gut metabolites. Butyrate is one such small chain fatty acid produced by gut microbes upon fermentation that has the potential to influence immune responses. Here we investigated the role of butyrate in macrophages during mycobacterial infection. Results demonstrate that butyrate significantly suppresses the growth kinetics of mycobacteria in culture medium as well as inhibits mycobacterial survival inside macrophages. Interestingly, butyrate alters the pentose phosphate pathway by inducing higher expression of Glucose-6-Phosphate Dehydrogenase (G6PDH) resulting in a higher oxidative burst via decreased Sod-2 and increased Nox-2 (NADPH oxidase-2) expression. Butyrate-induced G6PDH also mediated a decrease in mitochondrial membrane potential. This in turn lead to an induction of apoptosis as measured by lower expression of the anti-apoptotic protein Bcl-2 and a higher release of Cytochrome C as a result of induction of apoptosis. These results indicate that butyrate alters the metabolic status of macrophages and induces protective immune responses against mycobacterial infection.
Collapse
Affiliation(s)
- Ankush Kumar Rana
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aarti Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
6
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Boucher E, Plazy C, Le Gouellec A, Toussaint B, Hannani D. Inulin Prebiotic Protects against Lethal Pseudomonas aeruginosa Acute Infection via γδ T Cell Activation. Nutrients 2023; 15:3037. [PMID: 37447363 DOI: 10.3390/nu15133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) causes harmful lung infections, especially in immunocompromised patients. The immune system and Interleukin (IL)-17-producing γδ T cells (γδ T) are critical in controlling these infections in mice. The gut microbiota modulates host immunity in both cancer and infection contexts. Nutritional intervention is a powerful means of modulating both microbiota composition and functions, and subsequently the host's immune status. We have recently shown that inulin prebiotic supplementation triggers systemic γδ T activation in a cancer context. We hypothesized that prophylactic supplementation with inulin might protect mice from lethal P. aeruginosa acute lung infection in a γδ T-dependent manner. C57Bl/6 mice were supplemented with inulin for 15 days before the lethal P. aeruginosa lung infection, administered intranasally. We demonstrate that prophylactic inulin supplementation triggers a higher proportion of γδ T in the blood, accompanied by a higher infiltration of IL-17-producing γδ T within the lungs, and protects 33% of infected mice from death. This observation relies on γδ T, as in vivo γδ TcR blocking using a monoclonal antibody completely abrogates inulin-mediated protection. Overall, our data indicate that inulin supplementation triggers systemic γδ T activation, and could help resolve lung P. aeruginosa infections. Moreover, our data suggest that nutritional intervention might be a powerful way to prevent/reduce infection-related mortality, by reinforcing the microbiota-dependent immune system.
Collapse
Affiliation(s)
- Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Caroline Plazy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Audrey Le Gouellec
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Bertrand Toussaint
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Dalil Hannani
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
8
|
Deng Y, Wang R, Li X, Tan X, Zhang Y, Gooneratne R, Li J. Fish Oil Ameliorates Vibrio parahaemolyticus Infection in Mice by Restoring Colonic Microbiota, Metabolic Profiles, and Immune Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6920-6934. [PMID: 37126589 DOI: 10.1021/acs.jafc.2c08559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
9
|
Thoda C, Touraki M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. APPLIED SCIENCES 2023; 13:4726. [DOI: 10.3390/app13084726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune system modulation is an intriguing part of scientific research. It is well established that the immune system plays a crucial role in orchestrating cellular and molecular key mediators, thus establishing a powerful defense barrier against infectious pathogens. Gut microbiota represent a complex community of approximately a hundred trillion microorganisms that live in the mammalian gastrointestinal (GI) tract, contributing to the maintenance of gut homeostasis via regulation of the innate and adaptive immune responses. However, impairment in the crosstalk between intestinal immunity and gut microbiota may reflect on detrimental health issues. In this context, many studies have indicated that probiotics and their bioactive compounds, such as bacteriocins and short chain fatty acids (SCFAs), display distinct immunomodulatory properties through which they suppress inflammation and enhance the restoration of microbial diversity in pathological states. This review highlights the fundamental features of probiotics, bacteriocins, and SCFAs, which make them ideal therapeutic agents for the amelioration of inflammatory and autoimmune diseases. It also describes their underlying mechanisms on gut microbiota modulation and emphasizes how they influence the function of immune cells involved in regulating gut homeostasis. Finally, it discusses the future perspectives and challenges of their administration to individuals.
Collapse
Affiliation(s)
- Christina Thoda
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
10
|
Li D, You HJ, Hu GJ, Yao RY, Xie AM, Li XY. Mechanisms of the Ping-wei-san plus herbal decoction against Parkinson's disease: Multiomics analyses. Front Nutr 2023; 9:945356. [PMID: 36687704 PMCID: PMC9845696 DOI: 10.3389/fnut.2022.945356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Parkinson's disease is a neurodegenerative disorder involving loss of dopaminergic neurons. Multiple studies implicate the microbiota-gut-brain axis in Parkinson's disease pathophysiology. Ping-wei-san plus Herbal Decoction, a traditional Chinese medicine composition with beneficial effects in Parkinson's disease, may have a complex array of actions. Here we sought to determine whether gut microbiota and metabolic pathways are involved in Ping-wei-san plus herbal therapy for Parkinson's disease and to identify functional pathways to guide research. Methods and results The model of Parkinson's disease were induced with the rotenone. The Ping-wei-san plus group received the PWP herbal decoction for 90 days, after which all groups were analyzed experimentally. PWP herbal treatment improved motor behavior and emotional performance, balanced gut microbiota, and benefited dietary metabolism. Tandem Mass Tags mass spectrometry identified many differentially expressed proteins (DEPs) in the substantia nigra and duodenum in the PWP group, and these DEPs were enriched in pathways such as those involving cAMP signaling, glutamatergic synapses, dopaminergic synapses, and ribosome-rich functions in the gut. The PWP group showed increases in recombinant tissue inhibitors of metalloproteinase 3, and nucleotide-binding oligomerization domain, leucine rich repeat, and pyrin domain containing proteins 6 in the substantia nigra and decreased parkin, gasdermin D, recombinant tissue inhibitors of metalloproteinase 3, and nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing proteins 6 in the duodenum. Discussion In conclusion, this study combined gut microbiota, metabolomics, and proteomics to evaluate the mechanism of action of Ping-wei-san plus on Parkinson's disease and revealed that PWP herbal treatment modulated gut microbiota, altered metabolite biological pathways, and affected functional pathway protein expression in Parkinson's disease mice, resulting in therapeutic effects.
Collapse
Affiliation(s)
- Ding Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hong-juan You
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Guo-jie Hu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ru-yong Yao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - An-mu Xie
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-yuan Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China,*Correspondence: Xiao-yuan Li,
| |
Collapse
|
11
|
Hu D, Tang Y, Wang C, Qi Y, Ente M, Li X, Zhang D, Li K, Chu H. The Role of Intestinal Microbial Metabolites in the Immunity of Equine Animals Infected With Horse Botflies. Front Vet Sci 2022; 9:832062. [PMID: 35812868 PMCID: PMC9257286 DOI: 10.3389/fvets.2022.832062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The microbiota and its metabolites play an important role in regulating the host metabolism and immunity. However, the underlying mechanism is still not well studied. Thus, we conducted the LC-MS/MS analysis and RNA-seq analysis on Equus przewalskii with and without horse botfly infestation to determine the metabolites produced by intestinal microbiota in feces and differentially expressed genes (DEGs) related to the immune response in blood and attempted to link them together. The results showed that parasite infection could change the composition of microbial metabolites. These identified metabolites could be divided into six categories, including compounds with biological roles, bioactive peptides, endocrine-disrupting compounds, pesticides, phytochemical compounds, and lipids. The three pathways involving most metabolites were lipid metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. The significant differences between the host with and without parasites were shown in 31 metabolites with known functions, which were related to physiological activities of the host. For the gene analysis, we found that parasite infection could alarm the host immune response. The gene of “cathepsin W” involved in innate and adaptive immune responses was upregulated. The two genes of the following functions were downregulated: “protein S100-A8” and “protein S100-A9-like isoform X2” involved in chemokine and cytokine production, the toll-like receptor signaling pathway, and immune and inflammatory responses. GO and KEGG analyses showed that immune-related functions of defense response and Th17 cell differentiation had significant differences between the host with and without parasites, respectively. Last, the relationship between metabolites and genes was determined in this study. The purine metabolism and pyrimidine metabolism contained the most altered metabolites and DEGs, which mainly influenced the conversion of ATP, ADP, AMP, GTP, GMP, GDP, UTP, UDP, UMP, dTTP, dTDP, dTMP, and RNA. Thus, it could be concluded that parasitic infection can change the intestinal microbial metabolic activity and enhance immune response of the host through the pathway of purine and pyrimidine metabolism. This results will be a valuable contribution to understanding the bidirectional association of the parasite, intestinal microbiota, and host.
Collapse
Affiliation(s)
- Dini Hu
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yujun Tang
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Chen Wang
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Yingjie Qi
- Altay Management Station of Mt. Kalamaili Ungulate Nature Reserve, Altay, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Xuefeng Li
- Xinjiang Research Centre for Breeding Przewalski's Horse, Ürümqi, China
| | - Dong Zhang
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Kai Li
- Key Laboratory of Non-invasive Research Technology for Endangered Species, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Kai Li
| | - Hongjun Chu
- Institute of Forest Ecology, Xinjiang Academy of Forestry, Ürümqi, China
- Hongjun Chu
| |
Collapse
|
12
|
Hong Y, Zhou Z, Zhang N, He Q, Guo Z, Liu L, Song Y, Chen P, Wei Y, Xu Q, Li Y, Wang B, Qin X, Xu X, Duan Y. Association between plasma Vitamin B5 levels and all-cause mortality: A nested case-control study. J Clin Hypertens (Greenwich) 2022; 24:945-954. [PMID: 35699663 PMCID: PMC9278592 DOI: 10.1111/jch.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
We aimed to evaluate the prospective association of vitamin B5 with all‐cause mortality and explore its potential modifiers in Chinese adults with hypertension. A nested, case‐control study was conducted in the China Stroke Primary Prevention Trial, including 505 deaths of all causes and 505 matched controls. The median follow‐up duration was 4.5 years. The primary outcome measure in this investigation was all‐cause mortality, which encompassed deaths for any reason. The mean plasma vitamin B5 concentration for cases (43.7 ng/mL) was higher than that in controls (40.9 ng/mL) (p = .001). When vitamin B5 was further assessed as quintiles, compared with the reference group (Q1: < 33.0 ng/mL), the risk of all‐cause mortality increased by 29% (OR = 1.29, 95% CI: 0.83‐2.01) in Q2, 22% (OR = 1.22, 95% CI: 0.77‐1.94) in Q3, 62% (OR = 1.62, 95% CI: 1.00‐2.62) in Q4, and 77% (OR = 1.77, 95% CI: 1.06‐2.95) in Q5. The trend test was significant (p = .022). When Q4‐Q5 were combined, a significant 41% increment (OR = 1.41, 95% CI: 1.03‐1.95) in all‐cause death risk was found compared with Q1‐Q3. The adverse effects were more pronounced in those with normal folate levels (p‐interaction = .019) and older people (p‐interaction = .037). This study suggests that higher baseline levels of plasma vitamin B5 are a risk factor for all‐cause mortality among Chinese patients with hypertension, especially among older adults and those with adequate folate levels. The findings, if confirmed, may inform novel clinical and nutritional guidelines and interventions to optimize vitamin B5 levels.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Zhangyou Guo
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, People's Republic of China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiuyue Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ya Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Duan
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| |
Collapse
|
13
|
Wang N, Yang L, Shang L, Liang Z, Wang Y, Feng M, Yu S, Li X, Gao C, Li Z, Luo J. Altered Fecal Metabolomics and Potential Biomarkers of Psoriatic Arthritis Differing From Rheumatoid Arthritis. Front Immunol 2022; 13:812996. [PMID: 35296075 PMCID: PMC8919725 DOI: 10.3389/fimmu.2022.812996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory joint disease, and the diagnosis is quite difficult due to the unavailability of reliable clinical markers. This study aimed to investigate the fecal metabolites in PsA by comparison with rheumatoid arthritis (RA), and to identify potential diagnostic biomarkers for PsA. The metabolic profiles of the fecal samples from 27 PsA and 29 RA patients and also 36 healthy controls (HCs) were performed on ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). And differentially altered metabolites were screened and assessed using multivariate analysis for exploring the potential biomarkers of PsA. The results showed that 154 fecal metabolites were significantly altered in PsA patients when compared with HCs, and 45 metabolites were different when compared with RA patients. A total of 14 common differential metabolites could be defined as candidate biomarkers. Furthermore, a support vector machines (SVM) model was performed to distinguish PsA from RA patients and HCs, and 5 fecal metabolites, namely, α/β-turmerone, glycerol 1-hexadecanoate, dihydrosphingosine, pantothenic acid and glutamine, were determined as biomarkers for PsA. Through the metabolic pathways analysis, we found that the abnormality of amino acid metabolism, bile acid metabolism and lipid metabolism might contribute to the occurrence and development of PsA. In summary, our research provided ideas for the early diagnosis and treatment of PsA by identifying fecal biomarkers and analyzing metabolic pathways.
Collapse
Affiliation(s)
- Nan Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linjiao Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Lili Shang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaojun Liang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanlin Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Feng
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuting Yu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Xiaoying Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
de Zawadzki A, Thiele M, Suvitaival T, Wretlind A, Kim M, Ali M, Bjerre AF, Stahr K, Mattila I, Hansen T, Krag A, Legido-Quigley C. High-Throughput UHPLC-MS to Screen Metabolites in Feces for Gut Metabolic Health. Metabolites 2022; 12:metabo12030211. [PMID: 35323654 PMCID: PMC8950041 DOI: 10.3390/metabo12030211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Feces are the product of our diets and have been linked to diseases of the gut, including Chron’s disease and metabolic diseases such as diabetes. For screening metabolites in heterogeneous samples such as feces, it is necessary to use fast and reproducible analytical methods that maximize metabolite detection. As sample preparation is crucial to obtain high quality data in MS-based clinical metabolomics, we developed a novel, efficient and robust method for preparing fecal samples for analysis with a focus in reducing aliquoting and detecting both polar and non-polar metabolites. Fecal samples (n = 475) from patients with alcohol-related liver disease and healthy controls were prepared according to the proposed method and analyzed in an UHPLC-QQQ targeted platform in order to obtain a quantitative profile of compounds that impact liver-gut axis metabolism. MS analyses of the prepared fecal samples have shown reproducibility and coverage of n = 28 metabolites, mostly comprising bile acids and amino acids. We report metabolite-wise relative standard deviation (RSD) in quality control samples, inter-day repeatability, LOD (limit of detection), LOQ (limit of quantification), range of linearity and method recovery. The average concentrations for 135 healthy participants are reported here for clinical applications. Our high-throughput method provides a novel tool for investigating gut-liver axis metabolism in liver-related diseases using a noninvasive collected sample.
Collapse
Affiliation(s)
- Andressa de Zawadzki
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Tommi Suvitaival
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Asger Wretlind
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Min Kim
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Mina Ali
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Annette F. Bjerre
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Karin Stahr
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Ismo Mattila
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, 5000 Odense, Denmark; (M.T.); (A.K.)
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark; (A.d.Z.); (T.S.); (A.W.); (M.K.); (M.A.); (A.F.B.); (K.S.); (I.M.)
- Institute of Pharmaceutical Science, King’s College London, London SE19NH, UK
- Correspondence:
| |
Collapse
|
15
|
Gut Microbial Metabolite-Mediated Regulation of the Intestinal Barrier in the Pathogenesis of Inflammatory Bowel Disease. Nutrients 2021; 13:nu13124259. [PMID: 34959809 PMCID: PMC8704337 DOI: 10.3390/nu13124259] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease. The disease has a multifactorial aetiology, involving genetic, microbial as well as environmental factors. The disease pathogenesis operates at the host-microbe interface in the gut. The intestinal epithelium plays a central role in IBD disease pathogenesis. Apart from being a physical barrier, the epithelium acts as a node that integrates environmental, dietary, and microbial cues to calibrate host immune response and maintain homeostasis in the gut. IBD patients display microbial dysbiosis in the gut, combined with an increased barrier permeability that contributes to disease pathogenesis. Metabolites produced by microbes in the gut are dynamic indicators of diet, host, and microbial interplay in the gut. Microbial metabolites are actively absorbed or diffused across the intestinal lining to affect the host response in the intestine as well as at systemic sites via the engagement of cognate receptors. In this review, we summarize insights from metabolomics studies, uncovering the dynamic changes in gut metabolite profiles in IBD and their importance as potential diagnostic and prognostic biomarkers of disease. We focus on gut microbial metabolites as key regulators of the intestinal barrier and their role in the pathogenesis of IBD.
Collapse
|
16
|
Bishai JD, Palm NW. Small Molecule Metabolites at the Host-Microbiota Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1725-1733. [PMID: 34544815 PMCID: PMC8500551 DOI: 10.4049/jimmunol.2100528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
The trillions of bacteria that constitutively colonize the human gut collectively generate thousands of unique small molecules. These microbial metabolites can accumulate both locally and systemically and potentially influence nearly all aspects of mammalian biology, including immunity, metabolism, and even mood and behavior. In this review, we briefly summarize recent work identifying bioactive microbiota metabolites, the means through which they are synthesized, and their effects on host physiology. Rather than offering an exhaustive list of all known bioactive microbial small molecules, we select a few examples from each key class of metabolites to illustrate the diverse impacts of microbiota-derived compounds on the host. In addition, we attempt to address the microbial logic behind specific biotransformations. Finally, we outline current and emerging strategies for identifying previously undiscovered bioactive microbiota metabolites that may shape human health and disease.
Collapse
Affiliation(s)
- Jason D Bishai
- Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, CT; and
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| |
Collapse
|