1
|
Song SH, Kim S, Jang WJ, Ryu IS, Jeong CH, Lee S. Exploring the progression of drug dependence in a methamphetamine self-administration rat model through targeted and non-targeted metabolomics analyses. Sci Rep 2024; 14:22543. [PMID: 39343795 PMCID: PMC11439939 DOI: 10.1038/s41598-024-73247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Persistent neurochemical and biological disturbances resulting from repeated cycles of drug reward, withdrawal, and relapse contribute to drug dependence. Methamphetamine (MA) is a psychostimulant with substantial abuse potential and neurotoxic effects, primarily affecting monoamine neurotransmitter systems in the brain. In this study, we aimed to explore the progression of drug dependence in rat models of MA self-administration, extinction, and reinstatement through targeted and non-targeted metabolomics analyses. Metabolic profiles were examined in rat plasma during the following phases: after 16 days of MA self-administration (Group M); after 16 days of self-administration followed by 14 days of extinction (Group MS); and after self-administration and extinction followed by a reinstatement injection of MA (Group MSM). Each group of MA self-administration, extinction, and reinstatement induces distinct changes in the metabolic pathways, particularly those related to the TCA cycle, arginine and proline metabolism, and arginine biosynthesis. Additionally, the downregulation of glycerophospholipids and sphingomyelins in Group MSM suggests their potential role in MA reinstatement. These alterations may signify the progressive deterioration of these metabolic pathways, possibly contributing to drug dependence following repeated cycles of drug reward, withdrawal, and relapse. These results provide valuable insights into the metabolic changes associated with MA use at various stages, potentially facilitating the discovery of early diagnostic biomarkers and therapeutic targets for MA use disorders.
Collapse
Affiliation(s)
- Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Suji Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - In Soo Ryu
- Biorchestra Co., Ltd, Techno4-ro 17, Daejeon, 34013, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
2
|
Di Francesco G, Montesano C, Vincenti F, Bilel S, Corli G, Petrella G, Cicero DO, Gregori A, Marti M, Sergi M. Tackling new psychoactive substances through metabolomics: UHPLC-HRMS study on natural and synthetic opioids in male and female murine models. Sci Rep 2024; 14:9432. [PMID: 38658766 PMCID: PMC11043364 DOI: 10.1038/s41598-024-60045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Novel psychoactive substances (NPS) represent a broad class of drugs new to the illicit market that often allow passing drug-screening tests. They are characterized by a variety of structures, rapid transience on the drug scene and mostly unknown metabolic profiles, thus creating an ever-changing scenario with evolving analytical targets. The present study aims at developing an indirect screening strategy for NPS monitoring, and specifically for new synthetic opioids (NSOs), based on assessing changes in endogenous urinary metabolite levels as a consequence of the systemic response following their intake. The experimental design involved in-vivo mice models: 16 animals of both sex received a single administration of morphine or fentanyl. Urine was collected before and after administration at different time points; the samples were then analysed with an untargeted metabolomics LC-HRMS workflow. According to our results, the intake of opioids resulted in an elevated energy demand, that was more pronounced on male animals, as evidenced by the increase in medium and long chain acylcarnitines levels. It was also shown that opioid administration disrupted the pathways related to catecholamines biosynthesis. The observed alterations were common to both morphine and fentanyl: this evidence indicate that they are not related to the chemical structure of the drug, but rather on the drug class. The proposed strategy may reinforce existing NPS screening approaches, by identifying indirect markers of drug assumption.
Collapse
Affiliation(s)
| | - Camilla Montesano
- Department of Chemistry, University La Sapienza, 00185, Rome, Italy.
| | | | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191, Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| | - Manuel Sergi
- Department of Chemistry, University La Sapienza, 00185, Rome, Italy
| |
Collapse
|
3
|
Huang Y, Lu S, Chen Y, Feng Y, Lu W. Morphine induces HADHA succinylation, while HADHA desuccinylation alleviates morphine tolerance by influencing autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1589-1600. [PMID: 37688624 DOI: 10.1007/s00210-023-02697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Morphine tolerance is an important factor in unsatisfactory analgesia. HADHA is a crucial enzyme in fatty acid β-oxidation. In this study, we investigated the potential significance of HADHA in a mechanism that might cause morphine tolerance related to functional changes in energy metabolism and further explored the effect of HADHA desuccinylation on morphine tolerance. Rats received daily intrathecal injections of 10 µg of morphine for a duration of 7 consecutive days, and pain thresholds were measured using the mechanical withdrawal threshold (MWT) and thermal tail flick latency (TFL) tests. µ-Opioid receptor (MOR), LC3-I/II, and P62 expression and HADHA succinylation were assessed. HADHA succinylation was analyzed by liquid chromatography-tandem mass spectrometry (LC‒MS/MS) and parallel reaction monitoring (PRM). Morphine influenced the LC3II/LC3I ratio and P62 expression level, which are crucial indicators of autophagy, and stimulated HADHA succinylation. Additionally, HADHA was selectively bound by the desuccinylase SIRT5, and SIRT5 overexpression decreased HADHA succinylation, reduced P62 expression, and alleviated morphine tolerance.
Collapse
Affiliation(s)
- Yuanxin Huang
- Department of Pain, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Sihui Lu
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Chen
- Department of Pain, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyu Feng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Lu
- Department of Pain, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Greenberg JM, Winters AD, Zagorac B, Kracht DJ, Francescutti DM, Cannella N, Ciccocioppo R, Woods LCS, Mackle J, Hardiman GT, Kuhn BN, Kalivas PW, Kuhn DM, Angoa-Perez M. Long access heroin self-administration significantly alters gut microbiome composition and structure. Front Psychiatry 2024; 15:1369783. [PMID: 38476614 PMCID: PMC10927763 DOI: 10.3389/fpsyt.2024.1369783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and β-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of β-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M. Greenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Andrew D. Winters
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Branislava Zagorac
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Dina M. Francescutti
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Leah C. Solberg Woods
- Department of Molecular Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - James Mackle
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gary T. Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Brittany N. Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Donald M. Kuhn
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
6
|
Alasmari F, Alasmari MS, Assiri MA, Alswayyed M, Rizwan Ahamad S, Alhumaydhi AI, Arif BI, Aljumayi SR, AlAsmari AF, Ali N, Childers WE, Abou-Gharbia M, Sari Y. Liver Metabolomics and Inflammatory Profiles in Mouse Model of Fentanyl Overdose Treated with Beta-Lactams. Metabolites 2023; 13:965. [PMID: 37623908 PMCID: PMC10456707 DOI: 10.3390/metabo13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Fentanyl is a highly potent opioid analgesic that is approved medically to treat acute and chronic pain. There is a high potential for overdose-induced organ toxicities, including liver toxicity, and this might be due to the increase of recreational use of opioids. Several preclinical studies have demonstrated the efficacy of beta-lactams in modulating the expression of glutamate transporter-1 (GLT-1) in different body organs, including the liver. The upregulation of GLT-1 by beta-lactams is associated with the attenuation of hyperglutamatergic state, which is a characteristic feature of opioid use disorders. A novel experimental beta-lactam compound with no antimicrobial properties, MC-100093, has been developed to attenuate dysregulation of glutamate transport, in part by normalizing GLT-1 expression. A previous study showed that MC-100093 modulated hepatic GLT-1 expression with subsequent attenuation of alcohol-increased fat droplet content in the liver. In this study, we investigated the effects of fentanyl overdose on liver metabolites, and determined the effects of MC-100093 and ceftriaxone in the liver of a fentanyl overdose mouse model. Liver samples from control, fentanyl overdose, and fentanyl overdose ceftriaxone- or MC-100093-treated mice were analyzed for metabolomics using gas chromatography-mass spectrometry. Heatmap analysis revealed that both MC-100093 and ceftriaxone attenuated the effects of fentanyl overdose on several metabolites, and MC-100093 showed superior effects. Statistical analysis showed that MC-100093 reversed the effects of fentanyl overdose in some metabolites. Moreover, enrichment analysis revealed that the altered metabolites were strongly linked to the glucose-alanine cycle, the Warburg effect, gluconeogenesis, glutamate metabolism, lactose degradation, and ketone body metabolism. The changes in liver metabolites induced by fentanyl overdose were associated with liver inflammation, an effect attenuated with ceftriaxone pre-treatments. Ceftriaxone normalized fentanyl-overdose-induced changes in liver interleukin-6 and cytochrome CYP3A11 (mouse homolog of human CYP3A4) expression. Our data indicate that fentanyl overdose impaired liver metabolites, and MC-100093 restored certain metabolites.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Alhumaydhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar I. Arif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sahar R. Aljumayi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
7
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
8
|
Cheng Z, Peng Y, Wen J, Chen W, Pan W, Xu X, Lu X, Cai Q, Ge F, Fan Y, Wang J, Guan X. Sex-specific metabolic signatures in methamphetamine addicts. Addict Biol 2023; 28:e13255. [PMID: 36577725 DOI: 10.1111/adb.13255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
Abstract
Methamphetamine (METH) is a commonly abused addictive psychostimulant, and METH-induced neurotoxic and behavioural deficits are in a sex-specific manner. However, there is lack of biomarkers to evaluate METH addiction in clinical practice, especially for gender differences. We utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to detect the serum metabolomics in METH addicts and controls, specially exploring the sex-specific metabolic alterations by METH abuse. We found that many differently expressed metabolites in METH addicts related to metabolisms of amino acid, energy, vitamin and neurological disorders. Further, METH abuse caused different patterns of metabolomics in a sex-specific manner. As to amino acid metabolism, L-phenylalanine, L-tryptophan and L-histidine in serum of male addicts and betaine in serum of female addicts were significantly changed by METH use. In addition, it seemed that purine and pyrimidine-related metabolites (e.g., xanthosine and adenosine 5'-monophosphate) in male and the metabolites of hormone (e.g., cortisol) and folate biosynthesis (e.g., 7,8-dihydrobiopterin and 4-hydroxybenzoic acid) in female were more sensitive to METH addiction. Our findings revealed that L-glutamic acid, L-aspartic acid, alpha-ketoglutarate acid and citric acid may be potential biomarkers for monitoring METH addiction in clinic. Considering sex-specific toxicity by METH, the metabolites of purine and pyrimidine metabolism in male and those of stress-related hormones in female may be used to facilitate the accurate diagnosis and treatment for METH addicts of different genders.
Collapse
Affiliation(s)
- Zhen Cheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Wen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenwen Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Sheng W, Sun R, Zhang R, Xu P, Wang Y, Xu H, Aa J, Wang G, Xie Y. Identification of Biomarkers for Methamphetamine Exposure Time Prediction in Mice Using Metabolomics and Machine Learning Approaches. Metabolites 2022; 12:metabo12121250. [PMID: 36557288 PMCID: PMC9780981 DOI: 10.3390/metabo12121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) abuse has become a global public health and safety problem. More information is needed to identify the time of drug abuse. In this study, methamphetamine was administered to male C57BL/6J mice with increasing doses from 5 to 30 mg kg-1 (once a day, i.p.) for 20 days. Serum and urine samples were collected for metabolomics studies using gas chromatography-mass spectrometry (GC-MS). Six machine learning models were used to infer the time of drug abuse and the best model was selected to predict administration time preliminarily. The metabolic changes caused by methamphetamine were explored. As results, the metabolic patterns of methamphetamine exposure mice were quite different from the control group and changed over time. Specifically, serum metabolomics showed enhanced amino acid metabolism and increased fatty acid consumption, while urine metabolomics showed slowed metabolism of the tricarboxylic acid (TCA) cycle, increased organic acid excretion, and abnormal purine metabolism. Phenylalanine in serum and glutamine in urine increased, while palmitic acid, 5-HT, and monopalmitin in serum and gamma-aminobutyric acid in urine decreased significantly. Among the six machine learning models, the random forest model was the best to predict the exposure time (serum: MAE = 1.482, RMSE = 1.69, R squared = 0.981; urine: MAE = 2.369, RMSE = 1.926, R squared = 0.946). The potential biomarker set containing four metabolites in the serum (palmitic acid, 5-hydroxytryptamine, monopalmitin, and phenylalanine) facilitated the identification of methamphetamine exposure. The random forest model helped predict the methamphetamine exposure time based on these potential biomarkers.
Collapse
Affiliation(s)
- Wei Sheng
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| |
Collapse
|