1
|
Filippas-Ntekouan S, Dimou A, Dafopoulos P, Kostara C, Bairaktari E, Chasapi S, Spyroulias G, Koufakis T, Koutsovasilis A, Tsimihodimos V. Effect of dapagliflozin on the serum metabolome in patients with type 2 diabetes mellitus. J Diabetes Metab Disord 2025; 24:4. [PMID: 39697865 PMCID: PMC11649604 DOI: 10.1007/s40200-024-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Objectives SGLT-2 inhibitors have been shown to exert cardio- and renoprotective actions. We aimed to investigate the underlying mechanisms using 1H-NMR based metabolomics in patients with type-2 diabetes mellitus who received dapagliflozin. Methods 50 patients with type 2 diabetes mellitus, inadequately controlled on metformin monotherapy (HbA1c > 7%) received dapagliflozin for 3 months and 30 matched patients received insulin degludec for 3 months. Clinical and laboratory values, as well as 1H-NMR based metabolomics were assessed before treatment and after completion of 3 months of treatment. Results Dapagliflozin reduced weight, body mass index, systolic and diastolic blood pressure significantly. Using 1H-NMR based metabolomics, the dapagliflozin group showed a good separation with a degree of overlap before and after treatment initiation. Regarding targeted metabolomics, dapagliflozin increased serum ketone, citrate and tryptophan levels compared with insulin. On the other hand, serum taurine, threonine and mannose levels were significantly decreased following dapagliflozin administration. Conclusions Dapagliflozin led to a small, but significant change in serum metabolome. The observed changes may indicate improvement in energy metabolism, reduction in inflammatory activity and decreased insulin resistance which may provide further evidence of the agent's observed cardiac and renal protection. The study was registered with ClinicalTrials.gov (identifier: NCT02798757). Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01508-1.
Collapse
Affiliation(s)
| | - Aikaterini Dimou
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | - Christina Kostara
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, University of Ioannina, Ioannina, Greece
| | | | | | - Theoharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, 546 42 Greece
| | | | - Vasileios Tsimihodimos
- Department of Internal Medicine, University of Ioannina, Stavrou Niarchou Avenue, Ioannina, 45500 Greece
| |
Collapse
|
2
|
Zhao X, Lin T, Jiang W, Lin Y, Xiao L, Tian Y, Ma K, Zhang C, Ji F, Mahsa GC, Rui X, Li W. Lactobacillus helveticus LZ-R-5 Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39688942 DOI: 10.1021/acs.jafc.4c07895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Lactobacillus helveticus LZ-R-5 (R-5), a strain with high epithelial adhesion and bioactive exopolysaccharide production, was isolated from Tibetan kefir grains. This study investigated its potential to alleviate intestinal inflammation using a DSS-induced colitis model in BALB/c mice. We integrated microbial diversity and serological analyses to assess changes in gut flora and cytokines following the R-5 treatment. Pathological assessments showed that R-5 reduced crypt distortion in the proximal colon and mitigated hepatic immune challenges by enhancing gut barrier function. The increased relative expression of TGF-β1 and the downregulation of NLRP3-related inflammatory factors were conducive to preventing organ damage in the thymus and spleen of mice with colitis. Additionally, R-5 stimulated GPR43 expression and improved epithelial nutrition, promoting mucin production to prevent enterotoxin leakage. It also modulated the gut microbiota by suppressing Bacteroides and Erysipelatoclostridium, leading to a microbiota composition more akin to that of normal flora.
Collapse
Affiliation(s)
- Xiaogan Zhao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tao Lin
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, PR China
| | - Wenkai Jiang
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yihan Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjing 301617, PR China
| | - Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yufang Tian
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
- Jiangsu Biodep Biotechnology Co., Ltd, Jiangyin, Jiangsu 214400, PR China
| | - Ghahvechi Chaeipeima Mahsa
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
4
|
Fang C, Yu Y, Di S, Wang X, Jin Y. Untargeted metabolomic analysis reveals a time-course hepatic metabolism disorder induced by short-term 6PPD exposure in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177071. [PMID: 39437917 DOI: 10.1016/j.scitotenv.2024.177071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The tire antioxidant 6PPD has garnered extensive attention due to its widespread presence in the environment and the harmful effects of its transformation products on aquatic organisms. 6PPD has been detected in airborne dust, and it can enter mammals through inhalation exposure. While the toxic effects of 6PPD exposure have been reported in mammals, its effects on hepatic metabolism still remain poorly understood. Here, we collected the serum and liver samples at 1, 6, and 72 h following a single oral exposure of 100 mg/kg body weight (bw) 6PPD, respectively. We also investigated changes in serum and hepatic physiological indicators and metabolites, correspondingly. Results indicated that single time oral exposure a high dose of 6PPD did not significantly affect the physiological indexes of rats within a short time frame. However, untargeted metabolomics analysis of the metabolites in the liver at 1, 6, and 72 h revealed that the number of differential expression metabolites gradually increased over time and the most affected substances were lipids and lipid-like molecules. Interestingly, the KEGG pathway enrichment analysis indicated that 6PPD disrupted the riboflavin metabolism, leading to a significant decrease in FMN levels at all time points. In addition, the hepatic glucose metabolism was significantly affected at 6 and 72 h after oral administration. Taken together, short-term exposure to 6PPD disturbed lipid and riboflavin metabolism and gradually affected glucose metabolism in the liver of rats. These findings revealed the impacts of 6PPD on the hepatic metabolism in animals, and also offered some important insights into its toxicology and health risk.
Collapse
Affiliation(s)
- Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yundong Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
5
|
Babu AF, Palomurto S, Kärjä V, Käkelä P, Lehtonen M, Hanhineva K, Pihlajamäki J, Männistö V. Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients. Dig Liver Dis 2024; 56:2103-2110. [PMID: 38825414 DOI: 10.1016/j.dld.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Still, most patients with MASLD die from cardiovascular diseases indicating metabolic alterations related to both liver and cardiovascular pathology. AIMS AND METHODS The aim of this study was to assess biologic pathways behind MASLD progression from steatosis to metabolic dysfunction-associated steatohepatitis (MASH) using non-targeted liquid chromatography-mass spectrometry analysis in 106 severely obese individuals (78 women, mean age 47.7 7 ± 9.2 years, body mass index 41.8 ± 4.3 kg/m²) undergoing laparoscopic Roux-en-Y gastric bypass. RESULTS We identified several metabolites that are associated with MASLD progression. Most importantly, we observed a decrease of lysophosphatidylcholines LPC(18:2), LPC(18:3), and LPC(20:3) and increase of xanthine when comparing those with steatosis to those with MASH. We found that indole propionic acid and threonine were negatively correlated to fibrosis, but not with the metabolic disturbances associated with cardiovascular risk. Xanthine, ketoleucine, and tryptophan were positively correlated to lobular inflammation and ballooning but also with insulin resistance, and dyslipidemia, respectively. The results did not change when taking into account the most important genetic risk factors of MASLD. CONCLUSIONS Our findings suggest that there are several separate biological pathways, some of them independent of insulin resistance and dyslipidemia, associating with MASLD.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland
| | - Saana Palomurto
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Pirjo Käkelä
- Department of Surgery, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, 70211 Kuopio, Finland; LC-MS Metabolomics Center, Biocenter Kuopio, 70211 Kuopio, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, 70210 Kuopio, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, 20014 Turku, Finland
| | - Jussi Pihlajamäki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
6
|
Gu MJ, Ahn Y, Lee YR, Yoo G, Kim Y, Choi I, Ha SK, Kim D. Coriandrum sativum L. Leaf Extract Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulating the AMPK Pathway in High Fat-Fed C57BL/6 Mice. Nutrients 2024; 16:4165. [PMID: 39683561 DOI: 10.3390/nu16234165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) is a traditional medicine, although the preventive mechanism of CS extracts remains unclear. OBJECTIVE This study evaluated the preventive effects of CS in high-fat diet (HFD)-induced MASLD mice by oral administration of 100 or 200 mg/kg/day of CS extracts for 12 weeks. RESULTS The major CS extract compounds were chlorogenic acid, caffeic acid, rutin, and isoquercetin. The administration of CS extract suppressed HFD-induced weight gain, liver weight, and the liver/body weight ratio. It improved the mice's serum biological profiles and suppressed HFD-induced lipid droplet and lipid accumulation by inhibiting lipid accumulation-related gene expression in the liver. It modulated HFD-induced Ampk-Srebp1c pathways and suppressed HFD-induced NF-κB pathway activation in the liver. It regulated inflammation and the AMPK alpha signaling pathway in HFD-fed mice by reducing the accumulation of specific amino acids, leading to the amelioration of fatty liver. CONCLUSIONS The CS extract prevents HFD-induced MASLD and may help prevent or treat MASLD.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yu Ra Lee
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
7
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 PMCID: PMC11562643 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Wang C, Zhao M, Yue Y, Hu C, Zhou C, Zhang Z, He Y, Luo Y, Shen T, Dang S, Yang Y, Zhang Y. Protective Effect of Modified Suanmei-Tang on Metabolic-Associated Fatty Liver Disease: An Integrated Strategy of Network Pharmacology, Metabolomics, and Transcriptomics. Drug Des Devel Ther 2024; 18:5161-5182. [PMID: 39559790 PMCID: PMC11572505 DOI: 10.2147/dddt.s478072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Background Modified Suanmei-Tang (MST) comprises four plants common to both traditional Chinese medicine and culinary applications, and it can potentially alleviate metabolic-associated fatty liver disease (MAFLD) triggered by a high-fat diet (HFD). Purpose This research aims to investigate the impact and underlying mechanisms of MST in ameliorating MAFLD caused by an HFD. Methods UHPLC-Q-Orbitrap-MS/MS was used to determine the constituents of MST and to evaluate its effects on MAFLD mouse models. Transcriptomics, network pharmacology, and bioinformatics analysis (including Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis) were utilized to further clarify the mechanisms by which MST acts on MAFLD. The experimental methods included ELISA, real time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, molecular docking, and metabolomics. Transcriptomics was integrated with metabolomics to find correlations between differentially expressed genes and metabolites, and crucial genes were validated through RT-qPCR. Results A total of 23 components of MST were identified. The formulation was found to alleviate metabolic disorders, obesity, insulin resistance, inflammation, and oxidative stress in mice with MAFLD. The findings indicate that MST promoted autophagy by suppressing phosphorylation in the PI3K/AKT/mTOR pathway and enhancing lipid management in the livers of MAFLD mice. Conclusion MST could effectively improve lipid metabolism disorders and liver lipid deposition in MAFLD mice, and its mechanism might be related to regulating the PI3K/AKT/mTOR pathway to improve autophagy.
Collapse
Affiliation(s)
- Chao Wang
- Traditional Chinese Medicine Department, Qitai Hospital of the Sixth Division, Xinjiang, 831899, People’s Republic of China
| | - Mei Zhao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People’s Hospital, Chengdu, 610095, People’s Republic of China
| | - Chao Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chunqiu Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Zhongyi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Sijie Dang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| |
Collapse
|
9
|
Chen Y, Chen S, Xu C, Yu L, Chu S, Bao J, Wang J, Wang J. Identification of Diagnostic Biomarkers for Compensatory Liver Cirrhosis Based on Gut Microbiota and Urine Metabolomics Analyses. Mol Biotechnol 2024; 66:3164-3181. [PMID: 37875653 PMCID: PMC11549169 DOI: 10.1007/s12033-023-00922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomarkers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranulum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for the diagnosis and treatment of CLC.
Collapse
Affiliation(s)
- Yingjun Chen
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Shaoxian Chen
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Chandi Xu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Li Yu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Shanshan Chu
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Jianzhi Bao
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Jinwei Wang
- Department of General Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China
| | - Junwei Wang
- Department of Infectious Diseases, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, People's Republic of China.
| |
Collapse
|
10
|
Arto C, Rusu EC, Clavero-Mestres H, Barrientos-Riosalido A, Bertran L, Mahmoudian R, Aguilar C, Riesco D, Chicote JU, Parada D, Martínez S, Sabench F, Richart C, Auguet T. Metabolic profiling of tryptophan pathways: Implications for obesity and metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14279. [PMID: 38940215 DOI: 10.1111/eci.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND AIMS The rise in obesity highlights the need for improved therapeutic strategies, particularly in addressing metabolic dysfunction-associated steatotic liver disease (MASLD). We aim to assess the role of tryptophan metabolic pathways in the pathogenesis of obesity and in the different histological stages of MASLD. MATERIALS AND METHODS We used ultra-high performance liquid chromatography to quantify circulating levels of 15 tryptophan-related metabolites from the kynurenine, indole and serotonin pathways. A cohort of 76 subjects was analysed, comprising 18 subjects with normal weight and 58 with morbid obesity, these last being subclassified into normal liver (NL), simple steatosis (SS) and metabolic dysfunction-associated steatohepatitis (MASH). Then, we conducted gene expression analysis of hepatic IDO-1 and kynyrenine-3-monooxygenase (KMO). RESULTS Key findings in obesity revealed a distinct metabolic signature characterized by a higher concentration of different kynurenine-related metabolites, a decrease in indole-3-acetic acid and indole-3-propionic acid, and an alteration in the serotonin pathway. Elevated tryptophan levels were associated with MASLD presence (37.659 (32.577-39.823) μM of tryptophan in NL subjects; 41.522 (38.803-45.276) μM in patients with MASLD). Overall, pathway fluxes demonstrated an induction of tryptophan catabolism via the serotonin pathway in SS subjects and into the kynurenine pathway in MASH. We found decreased IDO-1 and KMO hepatic expression in NL compared to SS. CONCLUSIONS We identified a distinctive metabolic signature in obesity marked by changes in tryptophan catabolic pathways, discernible through altered metabolite profiles. We observed stage-specific alterations in tryptophan catabolism fluxes in MASLD, highlighting the potential utility of targeting these pathways in therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Arto
- Servei Medicina Interna, Hospital Sant Pau i Santa Tecla de Tarragona, Tarragona, Spain
| | - Elena Cristina Rusu
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Helena Clavero-Mestres
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Bertran
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Razieh Mahmoudian
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Carmen Aguilar
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - David Riesco
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Javier Ugarte Chicote
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - David Parada
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Sant Joan de Reus, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Salomé Martínez
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Fàtima Sabench
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Departament de Medicina i Cirurgia, Servei de Cirurgia, Hospital Sant Joan de Reus, URV, IISPV, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Teresa Auguet
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| |
Collapse
|
11
|
Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care 2024; 14:147. [PMID: 39298039 DOI: 10.1186/s13613-024-01377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Sepsis is a dysregulated immune response to an infection that leads to organ dysfunction. Sepsis-associated organ dysfunction involves multiple inflammatory mechanisms and complex metabolic reprogramming of cellular function. These mechanisms cooperate through multiple organs and systems according to a complex set of long-distance communications mediated by cellular pathways, solutes, and neurohormonal actions. In sepsis, the concept of organ crosstalk involves the dysregulation of one system, which triggers compensatory mechanisms in other systems that can induce further damage. Despite the abundance of studies published on organ crosstalk in the last decade, there is a need to formulate a more comprehensive framework involving all organs to create a more detailed picture of sepsis. In this paper, we review the literature published on organ crosstalk in the last 10 years and explore how these relationships affect the progression of organ failure in patients with septic shock. We explored these relationships in terms of the heart-kidney-lung, gut-microbiome-liver-brain, and adipose tissue-muscle-bone crosstalk in sepsis patients. A deep connection exists among these organs based on crosstalk. We also review how multiple therapeutic interventions administered in intensive care units, such as mechanical ventilation, antibiotics, anesthesia, nutrition, and proton pump inhibitors, affect these systems and must be carefully considered when managing septic patients. The progression to multiple organ dysfunction syndrome in sepsis patients is still one of the most frequent causes of death in critically ill patients. A better understanding and monitoring of the mechanics of organ crosstalk will enable the anticipation of organ damage and the development of individualized therapeutic strategies.
Collapse
Affiliation(s)
- André Borges
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal.
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal.
| | - Luís Bento
- Intensive Care Unit of Hospital de São José, Unidade de Urgência Médica, Rua José António Serrano, Lisbon, 1150-199, Portugal
- NOVA Medical School, Campo dos Mártires da Pátria 130, Lisbon, 1169-056, Portugal
| |
Collapse
|
12
|
Lin J, Zhang R, Liu H, Zhu Y, Dong N, Qu Q, Bi H, Zhang L, Luo O, Sun L, Ma M, You J. Multi-omics analysis of the biological mechanism of the pathogenesis of non-alcoholic fatty liver disease. Front Microbiol 2024; 15:1379064. [PMID: 39132138 PMCID: PMC11310135 DOI: 10.3389/fmicb.2024.1379064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a type of liver metabolic syndrome. Employing multi-omics analyses encompassing the microbiome, metabolome and transcriptome is crucial for comprehensively elucidating the biological processes underlying NAFLD. Methods Hepatic tissue, blood and fecal samples were obtained from 9 NAFLD model mice and 8 normal control mice. Total fecal microbiota DNA was extracted, and 16S rRNA was amplified, to analyze alterations in the gut microbiota (GM) induced by NAFLD. Subsequently, diagnostic strains for NAFLD were screened, and their functional aspects were examined. Differential metabolites and differentially expressed genes were also screened, followed by enrichment analysis. Correlations between the differential microbiota and metabolites, as well as between the DEGs and differential metabolites were studied. A collinear network involving key genes-, microbiota-and metabolites was constructed. Results Ileibacterium and Ruminococcaceae, both belonging to Firmicutes; Olsenella, Duncaniella and Paramuribaculum from Bacteroidota; and Bifidobacterium, Coriobacteriaceae_UCG_002 and Olsenella from Actinobacteriota were identified as characteristic strains associated with NAFLD. Additionally, differentially expressed metabolites were predominantly enriched in tryptophan, linoleic acid and methylhistidine metabolism pathways. The functions of 2,510 differentially expressed genes were found to be associated with disease occurrence. Furthermore, a network comprising 8 key strains, 14 key genes and 83 key metabolites was constructed. Conclusion Through this study, we conducted a comprehensive analysis of NAFLD alterations, exploring the gut microbiota, genes and metabolites of the results offer insights into the speculated biological mechanisms underlying NAFLD.
Collapse
Affiliation(s)
- Jie Lin
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruyi Zhang
- Department of Infectious Diseases and Hepatology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Huaie Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ningling Dong
- Department of Health Examination, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiu Qu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Bi
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ou Luo
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengjuan Ma
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing You
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
14
|
Wang W, Guo XL, Qiu XP, Yu YJ, Tu M. Systemic immune-inflammation index mediates the association between metabolic dysfunction-associated fatty liver disease and sub-clinical carotid atherosclerosis: a mediation analysis. Front Endocrinol (Lausanne) 2024; 15:1406793. [PMID: 38957443 PMCID: PMC11217321 DOI: 10.3389/fendo.2024.1406793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Background Limited research has been conducted to quantitatively assess the impact of systemic inflammation in metabolic dysfunction-associated fatty liver disease (MAFLD) and sub-clinical carotid atherosclerosis (SCAS). The systemic immune-inflammation index (SII), which integrates inflammatory cells, has emerged as a reliable measure of local immune response and systemic inflammation Therefore, this study aims to assess the mediating role of SII in the association between MAFLD and SCAS in type 2 diabetes mellitus (T2DM). Method This study prospectively recruited 830 participants with T2DM from two centers. Unenhanced abdominal CT scans were conducted to evaluate MAFLD, while B-mode carotid ultrasonography was performed to assess SCAS. Weighted binomial logistic regression analysis and restricted cubic splines (RCS) analyses were employed to analyze the association between the SII and the risk of MAFLD and SCAS. Mediation analysis was further carried out to explore the potential mediating effect of the SII on the association between MAFLD and SCAS. Results The prevalence of both MAFLD and SCAS significantly increased as the SII quartiles increased (P<0.05). MAFLD emerged as an independent factor for SCAS risk across three adjusted models, exhibiting odds ratios of 2.15 (95%CI: 1.31-3.53, P < 0.001). Additionally, increased SII quartiles and Ln (SII) displayed positive associations with the risk of MAFLD and SCAS (P < 0.05). Furthermore, a significant dose-response relationship was observed (P for trend <0.001). The RCS analyses revealed a linear correlation of Ln (SII) with SCAS and MAFLD risk (P for nonlinearity<0.05). Importantly, SII and ln (SII) acted as the mediators in the association between MAFLD and SCAS following adjustments for shared risk factors, demonstrating a proportion-mediated effect of 7.8% and 10.9%. Conclusion SII was independently correlated with MAFLD and SCAS risk, while also acting as a mediator in the relationship between MAFLD and SCAS.
Collapse
Affiliation(s)
- Wei Wang
- National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xiu Li Guo
- National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xiu Ping Qiu
- National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yun Jie Yu
- Fuqing City Hospital Affiliated with Fujian Medical University, Fuqin, Fujian, China
| | - Mei Tu
- National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| |
Collapse
|
15
|
Ballanti M, Antonetti L, Mavilio M, Casagrande V, Moscatelli A, Pietrucci D, Teofani A, Internò C, Cardellini M, Paoluzi O, Monteleone G, Lefebvre P, Staels B, Mingrone G, Menghini R, Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol Res 2024; 204:107207. [PMID: 38734193 DOI: 10.1016/j.phrs.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.
Collapse
Affiliation(s)
- Marta Ballanti
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Laboratory of Neuromotor Physiology, Santa Lucia Foundation IRCCS, Rome, 00179, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chiara Internò
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marina Cardellini
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Omero Paoluzi
- Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Via Oxford 81, 00133 Rome, Italy
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 EGID, Lille France
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; Diabetes and Nutritional Sciences, Hodgkin Building, Guy's Campus, King's College London, London WC2R 2LS, UK
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Massimo Federici
- Center for Atherosclerosis and Internal Medicine Unit, Policlinico Tor Vergata University Hospital, Via Oxford 81, Rome 00133, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
16
|
Qi Y, Qiu A, Wei X, Huang Y, Huang Q, Huang W. Effects of 6PPD-Quinone on Human Liver Cell Lines as Revealed with Cell Viability Assay and Metabolomics Analysis. TOXICS 2024; 12:389. [PMID: 38922069 PMCID: PMC11209231 DOI: 10.3390/toxics12060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
N-(1,3-Dimethyl butyl)-N'-phenyl-phenylenediamine-quinone (6PPD-Q) is a derivative of the widely used rubber tire antioxidant 6PPD, which was first found to be acutely toxic to coho salmon. Subsequent studies showed that 6PPD-Q had species-specific acute toxicity in fishes and potential hepatotoxicity in mice. In addition, 6PPD-Q has been reported in human urine, demonstrating the potential widespread exposure of humans to this chemical. However, whether 6PPD-Q poses a higher risk to humans than its parent compound, 6PPD, and could cause adverse effects in humans is still unclear. In this study, we utilized two human liver cell models (the human proto-hepatocyte model L02 and the human hepatocellular carcinoma cell line HepG2) to investigate the potentially differential effects of these two chemicals. Cell viability curve analysis showed that 6PPD-Q had lower IC50 values than 6PPD for both liver cell lines, suggesting higher toxicity of 6PPD-Q to human liver cells than 6PPD. In addition, L02 cells are more sensitive to 6PPD-Q exposure, which might be derived from its weaker metabolic transformation of 6PPD-Q, since significantly lower levels of phase I and phase II metabolites were detected in 6PPD-Q-exposed L02 cell culture medium. Furthermore, pathway analysis showed that 6PPD-Q exposure induced changes in phenylalanine, tyrosine, and tryptophan biosynthesis and tyrosine metabolism pathways in L02 cells, which might be the mechanism underlying its liver cell toxicity. Gene expression analysis revealed that exposure to 6PPD-Q induced excessive ROS production in L02 cells. Our results further supported the higher risk of 6PPD-Q than 6PPD and provided insights for understanding the effects of 6PPD-Q on human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
18
|
Baciu C, Ghosh S, Naimimohasses S, Rahmani A, Pasini E, Naghibzadeh M, Azhie A, Bhat M. Harnessing Metabolites as Serum Biomarkers for Liver Graft Pathology Prediction Using Machine Learning. Metabolites 2024; 14:254. [PMID: 38786731 PMCID: PMC11122840 DOI: 10.3390/metabo14050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy confirmed metabolic dysfunction-associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The model's efficacy was assessed through the Out-of-Bag (OOB) error estimate evaluation. Our ML model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6% for TCMR. The metabolites serine and serotonin emerged as the topmost predictors. When predicting binary outcomes using three models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR vs. rest); the AUCs were 0.882, 0.972 and 0.896, respectively. Our ML tool integrating serum metabolites with clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2C4, Canada; (C.B.); (S.G.); (S.N.); (A.R.); (E.P.); (M.N.); (A.A.)
| |
Collapse
|
19
|
Zhu K, Zeng H, Yue L, Huang J, Ouyang J, Liu Z. The Protective Effects of L-Theanine against Epigallocatechin Gallate-Induced Acute Liver Injury in Mice. Foods 2024; 13:1121. [PMID: 38611425 PMCID: PMC11011850 DOI: 10.3390/foods13071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a main bioactive constituent in green tea. Being a redox-active polyphenol, high-dose EGCG exhibits pro-oxidative activity and could cause liver injury. L-theanine is a unique non-protein amino acid in green tea and could provide liver-protective effects. The purpose of this study was to investigate the hepatoprotective effects of L-theanine on EGCG-induced liver injury and the underlying mechanisms. A total of 300 mg/kg L-theanine was administrated to ICR mice for 7 days. Then, the acute liver injury model was established through intragastric administration of 1000 mg/kg EGCG. Pretreatment with L-theanine significantly alleviated the oxidative stress and inflammatory response caused by high-dose EGCG through modulation of Nrf2 signaling and glutathione homeostasis. Furthermore, metabolomic results revealed that L-theanine protects mice from EGCG-induced liver injury mainly through the regulation of amino acid metabolism, especially tryptophan metabolism. These findings could provide valuable insights into the potential therapeutic applications of L-theanine and highlight the importance of the interactions between dietary components.
Collapse
Affiliation(s)
- Kun Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Lin Yue
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jie Ouyang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| |
Collapse
|
20
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
21
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity 2024; 57:14-27. [PMID: 38198849 PMCID: PMC10795735 DOI: 10.1016/j.immuni.2023.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10021, USA.
| |
Collapse
|
23
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
24
|
Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL, Hanssen NMJ. Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis 2023; 387:117344. [PMID: 37945449 DOI: 10.1016/j.atherosclerosis.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) remains the largest cause of death globally due to various risk factors. One novel potential contributor to CVD might be the metabolism of the essential amino acid tryptophan (Trp), which through many pathways can produce immunomodulatory metabolites such as kynurenine, indole-3-propionate and serotonin. We aim to identify the metabolites with the strongest association with cardiovascular disease, utilizing a substantial and diverse cohort of individuals. In our pursuit of this aim, our primary focus is to validate and reinforce the findings from previous cross-sectional studies. METHODS We used the community-based EPIC-Norfolk cohort (46.3 % men, age 59.8 ± 9.0) with a median follow-up of 22.1 (17.6-23.3) years to study associations between the relative levels of Trp metabolites measured with untargeted metabolomics and incident development of CVD. Serum from n = 11,972 apparently healthy subjects was analysed, of which 6982 individuals had developed CVD at the end of follow-up. Cox proportional hazard models were used to study associations, adjusted for sex, age, conventional cardiovascular risk factors and CRP. All metabolites were Ln-normalised prior to analysis. RESULTS Higher levels of Trp were inversely associated with mortality (HR 0.73; CI 0.64-0.83) and fatal CVD (HR 0.76; CI 0.59-0.99). Higher levels of kynurenine (HR 1.33; CI 1.19-1.49) and the [Kynurenine]/[Tryptophan]-ratio (HR 1.24; CI 1.14-1.35) were associated with a higher incident development of CVD. Serotonin was not associated with overall CVD, but we did find associations for myocardial infarction and stroke. Adjustment for CRP did not yield any discernible differences in effect size. CONCLUSIONS Tryptophan levels were inversely correlated with CVD, while several of its major metabolites (especially kynurenine and serotonin) were positively correlated. These findings indicate that mechanistic studies are required to understand the role of Trp metabolism in CVD with the goal to identify new therapeutic targets.
Collapse
Affiliation(s)
- Charlotte J Teunis
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands.
| | - Erik S G Stroes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia; Department of Immunology, Monash University, Melbourne, 3004, Australia
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Hou Y, Li J, Ying S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023; 13:1166. [PMID: 37999261 PMCID: PMC10673612 DOI: 10.3390/metabo13111166] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Tryptophan metabolism and gut microbiota form an integrated regulatory axis that impacts immunity, metabolism, and cancer. This review consolidated current knowledge on the bidirectional interactions between microbial tryptophan processing and the host. We focused on how the gut microbiome controls tryptophan breakdown via the indole, kynurenine, and serotonin pathways. Dysbiosis of the gut microbiota induces disruptions in tryptophan catabolism which contribute to disorders like inflammatory conditions, neuropsychiatric diseases, metabolic syndromes, and cancer. These disruptions affect immune homeostasis, neurotransmission, and gut-brain communication. Elucidating the mechanisms of microbial tryptophan modulation could enable novel therapeutic approaches like psychobiotics and microbiome-targeted dietary interventions. Overall, further research on the microbiota-tryptophan axis has the potential to revolutionize personalized diagnostics and treatments for improving human health.
Collapse
Affiliation(s)
- Yingjian Hou
- Target Discovery Center, China Pharmaceutical University, Nanjing 211198, China;
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410000, China
| | - Shuhuan Ying
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Bocimed Pharmaceutical Research Co., Ltd., Shanghai 201203, China
| |
Collapse
|
26
|
Hsu CL, Schnabl B. The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol 2023; 21:719-733. [PMID: 37316582 PMCID: PMC10794111 DOI: 10.1038/s41579-023-00904-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
The trillions of microorganisms in the human intestine are important regulators of health, and disruptions in the gut microbial communities can cause disease. The gut, liver and immune system have a symbiotic relationship with these microorganisms. Environmental factors, such as high-fat diets and alcohol consumption, can disrupt and alter microbial communities. This dysbiosis can lead to dysfunction of the intestinal barrier, translocation of microbial components to the liver and development or progression of liver disease. Changes in metabolites produced by gut microorganisms can also contribute to liver disease. In this Review, we discuss the importance of the gut microbiota in maintenance of health and the alterations in microbial mediators that contribute to liver disease. We present strategies for modulation of the intestinal microbiota and/or their metabolites as potential treatments for liver disease.
Collapse
Affiliation(s)
- Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
27
|
Abdelrahman BA, El-Khatib AS, Attia YM. Insights into the role of vitamin D in targeting the culprits of non-alcoholic fatty liver disease. Life Sci 2023; 332:122124. [PMID: 37742738 DOI: 10.1016/j.lfs.2023.122124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vitamin D (VD) is a secosteroid hormone that is renowned for its crucial role in phospho-calcium homeostasis upon binding to the nuclear vitamin D receptor (VDR). Over and above, the pleiotropic immunomodulatory, anti-inflammatory, and metabolic roles VD plays in different disease settings started to surface in the past few decades. On the other hand, a growing body of evidence suggests a correlation between non-alcoholic fatty liver disease (NAFLD) and its progressive inflammatory form non-alcoholic steatohepatitis (NASH) with vitamin D deficiency (VDD) owing to the former's ingrained link with obesity and metabolic syndrome. Accordingly, a better understanding of the contribution of disrupted VDR signalling to NAFLD incidence and progression would provide further insights into its diagnosis, treatment modalities, and prognosis. This is especially significant as, hitherto, no drug for NAFLD has been approved. This review, therefore, sought to set forth the likely contribution of VDR signalling in NAFLD and how it might influence its multiple drivers.
Collapse
Affiliation(s)
- Basma A Abdelrahman
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yasmeen M Attia
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
28
|
Xie Q, Gao S, Li Y, Xi W, Dong Z, Li Z, Lei M. Effects of 3021 meal replacement powder protect NAFLD via suppressing the ERS, oxidative stress and inflammatory responses. PeerJ 2023; 11:e16154. [PMID: 37868068 PMCID: PMC10586295 DOI: 10.7717/peerj.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To explore the specific protective mechanism of 3021 meal replacement powder (MRP) against non-alcoholic fatty liver disease (NAFLD). Materials and Methods C57BL/6J male mice were divided into four groups: control group, 3021 MRP group, model group and test group. The lipid accumulation and endoplasmic reticulum stress (ERS)-related proteins in hepatocytes of mice were detected by hematoxylin-eosin (HE) staining, oil red O staining and Western blotting. Results The expressions of GRP78, GRP94, p-PERK and p-IRE1α were significantly inhibited in test group compared with those in model group. The protein expressions of p-NF-κB, p-JNK, IL-1β, IL-18 and NOX4 in test group were also significantly lower than those in model group. In vivo and in vitro experiments revealed that the body weight and lipid droplet content, and the expressions of ERS-related proteins (including BIP and XBP-1) in liver tissues all significantly declined in model group compared with those in 3021 MRP group. Conclusion In conclusion, 3021 MRP can greatly reduce lipid accumulation by inhibiting ERS, oxidative stress and inflammatory response in NAFLD.
Collapse
Affiliation(s)
- Qi Xie
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuqing Gao
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanjudi Li
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Weifang Xi
- Xinchen Biotechnology (Guandong) Company Limited, Dongguan, China
| | - Zhiyun Dong
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Zengning Li
- The First Hospital of Hebei Medical University, Hebei Province Key Laboratory of Nutrition and Health, Shijiazhuang, China
| | - Min Lei
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Ni Y, Wang X, Wu Q, Yao Y, Xu Y, Li Y, Feng Q, Zhou M, Gou X. Qushi Huayu decoction ameliorates non-alcoholic fatty liver disease in rats by modulating gut microbiota and serum lipids. Front Endocrinol (Lausanne) 2023; 14:1272214. [PMID: 37900123 PMCID: PMC10600383 DOI: 10.3389/fendo.2023.1272214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. As a clinical empirical prescription of traditional Chinese medicine, Qushi Huayu decoction (QHD) has attracted considerable attention for its advantages in multi-target treatment of NAFLD. However, the intervention mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has not been reported. Methods Therefore, we verified the therapeutic effect of QHD on high-fat diet (HFD)-induced NAFLD in rats by physiological parameters and histopathological examination. In addition, studies on gut microbiota and serum lipidomics based on 16S rRNA sequencing and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic mechanism of NAFLD in QHD. Results The changes in gut microbiota in NAFLD rats are mainly reflected in their diversity and composition, while QHD treated rats restored these changes. The genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides were predominant in the NAFLD group, whereas, Turicibacter, Blautia, Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses, including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS), lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly different between the NAFLD and the control groups, while QHD treatment significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally, Spearman's correlation analysis showed that NAFLD related differential lipid molecules were mainly associated with the genera of Bacteroides, Blautia, Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were also significantly correlated with the biological parameters of NAFLD. Discussion Taken together, QHD may exert beneficial effects by regulating the gut microbiota and thus intervening in serum lipids.
Collapse
Affiliation(s)
- Yiming Ni
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xu
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
32
|
Xu R, Vatsalya V, He L, Ma X, Feng W, McClain CJ, Zhang X. Altered urinary tryptophan metabolites in alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1665-1676. [PMID: 37431708 PMCID: PMC10782820 DOI: 10.1111/acer.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) leads to millions of deaths worldwide annually. A few potential biomarkers of ALD have been discovered through metabolomic or proteomic analysis. Tryptophan (Trp), one of nine essential amino acids, has been extensively studied and shown to play significant roles in many mammalian physiological processes. However, Trp metabolism changes in ALD are not yet fully understood. Whereas urine is an abundant and non-invasive source for disease biomarker discovery the current study investigated whether the abundance of Trp metabolites in the urine of ALD patients differs from that of healthy subjects. We also examined whether, if present in ALD, changes in urinary Trp metabolites can serve as markers for differentiating between mild/moderate and severe ALD. METHODS We quantified the concentration of Trp and its metabolites in urine samples of healthy controls (n = 18), patients with mild or moderate alcohol-related liver injury (non-severe ALD; n = 21), and patients with severe alcohol-associated hepatitis (severe AH; n = 25) using both untargeted and targeted metabolomics. RESULTS Eighteen Trp metabolites were identified and quantified from the untargeted metabolomics data. We developed a targeted metabolomics method to quantify the Trp and its metabolites and quantified 17 metabolites from the human urine samples. The data acquired in the untargeted and targeted platforms agreed and showed that the Trp concentration is not affected by the severity of ALD. However, the abundance of 10 Trp metabolites was correlated with the model for end-stage liver disease (MELD) score, with the abundance of nine metabolites significantly different between the healthy control and ALD patient groups. CONCLUSION We found that Trp metabolism differs between ALD patients and healthy controls even though the concentration of Trp was not affected. Two Trp metabolites, quinolinic acid and indoxyl sulfate, correlate highly with the severity of ALD.
Collapse
Affiliation(s)
- Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Vatsalya Vatsalya
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Medicine, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
- Robley Rex Louisville VAMC, Louisville, KY 40292, U.S.A
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, U.S.A
- University of Louisville Hepatobiology & Toxicology Center of Biomedical Research Excellence, University of Louisville, Louisville, KY 40208, U.S.A
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40208, U.S.A
| |
Collapse
|
33
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Zafirovska M, Zafirovski A, Rotovnik Kozjek N. Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients 2023; 15:3169. [PMID: 37513587 PMCID: PMC10385050 DOI: 10.3390/nu15143169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal failure-associated liver disease (IFALD) is a spectrum of liver disease including cholestasis, biliary cirrhosis, steatohepatitis, and gallbladder disease in patients with intestinal failure (IF). The prevalence of IFALD varies considerably, with ranges of 40-60% in the pediatric population, up to 85% in neonates, and between 15-40% in the adult population. IFALD has a complex and multifactorial etiology; the risk factors can be parenteral nutrition-related or patient-related. Because of this, the approach to managing IFALD is multidisciplinary and tailored to each patient based on the etiology. This review summarizes the current knowledge on the etiology and pathophysiology of IFALD and examines the latest evidence regarding preventative measures, diagnostic approaches, and treatment strategies for IFALD and its associated complications.
Collapse
Affiliation(s)
- Marija Zafirovska
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Association of General Practice/Family Medicine of South-East Europe (AGP/FM SEE), St. Vladimir Komarov No. 40/6, 1000 Skopje, North Macedonia
| | - Aleksandar Zafirovski
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- General Hospital Jesenice, Cesta Maršala Tita 112, 4270 Jesenice, Slovenia
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Nada Rotovnik Kozjek
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Department for Clinical Nutrition, Institute of Oncology Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Theel WB, Boxma-de Klerk BM, Dirksmeier-Harinck F, van Rossum EF, Kanhai DA, Apers JA, van Dalen BM, De Knegt RJ, Neecke B, van der Zwan EM, Grobbee DE, Hankemeier T, Wiebolt J, Castro Cabezas M. Effect of bariatric surgery on NAFLD/NASH: a single-centre observational prospective cohort study. BMJ Open 2023; 13:e070431. [PMID: 37400234 DOI: 10.1136/bmjopen-2022-070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION The prevalence of non-alcoholic fatty liver disease (NAFLD) ranges from 25% in the general population to 90% in patients with obesity scheduled for bariatric surgery. NAFLD can progress towards non-alcoholic steatohepatitis (NASH) associated with complications such as cirrhosis, hepatocellular carcinoma and cardiovascular disease. To date, losing weight and lifestyle modifications are the best known treatments for NASH. Bariatric surgery significantly improves NAFLD/NASH in the short term. However, the extent of this improvement is not yet clear and long-term data on the natural course of NAFLD/NASH after bariatric surgery are lacking. The factors involved in NAFLD/NASH regression after bariatric surgery have not been elucidated. METHODS AND ANALYSIS This is an observational prospective cohort study including patients scheduled for bariatric surgery. Extensive metabolic and cardiovascular analyses will be carried out including measurements of carotid intima media thickness and pulse wave velocity. Genomic, proteomic, lipidomic and metabolomic studies will be done. Microbioma analyses before and 1 year after surgery will be done. Transient elastography measurements will be performed before and at 1, 3 and 5 years after surgery. For those with an elevated preoperative transient elastography measurement by Fibroscan, a laparoscopic liver biopsy will be performed during surgery. Primary outcome measures are the change of steatosis and liver fibrosis 5 years after surgery. Secondary outcome measure is the comparison of the transient elastography measurements with the NAFLD Activity Score from the biopsies. ETHICS AND DISSEMINATION The protocol has been approved by the Medical Research Ethics Committees United, Nieuwegein, on 1 March 2022 (registration code R21.103/NL79423.100.21). The study results will be submitted for publication in peer-reviewed journals and data will be presented at scientific meetings. TRIAL REGISTRATION NUMBER NCT05499949.
Collapse
Affiliation(s)
- Willy B Theel
- Internal Medicine, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
- Centrum Gezond Gewicht, Rotterdam, The Netherlands
- Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Bianca M Boxma-de Klerk
- Statistics and Education, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Elisabeth Fc van Rossum
- Centrum Gezond Gewicht, Rotterdam, The Netherlands
- Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Danny A Kanhai
- Pediatrics, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Jan A Apers
- Bariatric Surgery, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Cardiology, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Gastroenterology and Hepatology, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands
| | - Bojou Neecke
- Pathology, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Ellen M van der Zwan
- Clinical Chemistry, Franciscus Gasthuis en Vlietland, Rotterdam, The Netherlands
| | - Diederick E Grobbee
- Julius Global Health, Julius Centrum for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | | - Manuel Castro Cabezas
- Endocrinology, Erasmus MC, Rotterdam, The Netherlands
- Internal Medicine, Franciscus Gasthuis & Vlietland Berkel, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
37
|
Zhang W, Mackay CR, Gershwin ME. Immunomodulatory Effects of Microbiota-Derived Short-Chain Fatty Acids in Autoimmune Liver Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1629-1639. [PMID: 37186939 PMCID: PMC10188201 DOI: 10.4049/jimmunol.2300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 05/17/2023]
Abstract
Nonpathogenic commensal microbiota and their metabolites and components are essential to maintain a tolerogenic environment and promote beneficial health effects. The metabolic environment critically impacts the outcome of immune responses and likely impacts autoimmune and allergic responses. Short-chain fatty acids (SCFAs) are the main metabolites produced by microbial fermentation in the gut. Given the high concentration of SCFAs in the gut and portal vein and their broad immune regulatory functions, SCFAs significantly influence immune tolerance and gut-liver immunity. Alterations of SCFA-producing bacteria and SCFAs have been identified in a multitude of inflammatory diseases. These data have particular significance in primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis because of the close proximity of the liver to the gut. In this focused review, we provide an update on the immunologic consequences of SCFA-producing microbiota and in particular on three dominant SCFAs in autoimmune liver diseases.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
38
|
Lopez-Escalera S, Lund ML, Hermes GDA, Choi BSY, Sakamoto K, Wellejus A. In Vitro Screening for Probiotic Properties of Lactobacillus and Bifidobacterium Strains in Assays Relevant for Non-Alcoholic Fatty Liver Disease Prevention. Nutrients 2023; 15:nu15102361. [PMID: 37242245 DOI: 10.3390/nu15102361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that poses health challenges worldwide and is expected to continue to rise dramatically. NAFLD is associated with metabolic syndrome, type 2 diabetes mellitus, and impaired gut health. Increased gut permeability, caused by disturbance of tight junction proteins, allows passage of damaging microbial components that, upon reaching the liver, have been proposed to trigger the release of inflammatory cytokines and generate cellular stress. A growing body of research has suggested the utilization of targeted probiotic supplements as a preventive therapy to improve gut barrier function and tight junctions. Furthermore, specific microbial interactions and metabolites induce the secretion of hormones such as GLP-1, resulting in beneficial effects on liver health. To increase the likelihood of finding beneficial probiotic strains, we set up a novel screening platform consisting of multiple in vitro and ex vivo assays for the screening of 42 bacterial strains. Analysis of transepithelial electrical resistance response via co-incubation of the 42 bacterial strains with human colonic cells (Caco-2) revealed improved barrier integrity. Then, strain-individual metabolome profiling was performed revealing species-specific clusters. GLP-1 secretion assay with intestinal secretin tumor cell line (STC-1) found at least seven of the strains tested capable of enhancing GLP-1 secretion in vitro. Gene expression profiling in human biopsy-derived intestinal organoids was performed using next generation sequencing transcriptomics post bacterial co-incubation. Here, different degrees of immunomodulation by the increase in certain cytokine and chemokine transcripts were found. Treatment of mouse primary hepatocytes with selected highly produced bacterial metabolites revealed that indole metabolites robustly inhibited de novo lipogenesis. Collectively, through our comprehensive bacterial screening pipeline, not previously ascribed strains from both Lactobacillus and Bifidobacterium genera were proposed as potential probiotics based on their ability to increase epithelial barrier integrity and immunity, promote GLP-1 secretion, and produce metabolites relevant to liver health.
Collapse
Affiliation(s)
- Silvia Lopez-Escalera
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
- Fakultät für Biowissenschaften, Friedrich-Schiller Universität Jena, Bachstraβe 18K, 07743 Jena, Germany
| | - Mari L Lund
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Gerben D A Hermes
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| | - Béatrice S-Y Choi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Wellejus
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
39
|
Puljiz Z, Kumric M, Vrdoljak J, Martinovic D, Ticinovic Kurir T, Krnic MO, Urlic H, Puljiz Z, Zucko J, Dumanic P, Mikolasevic I, Bozic J. Obesity, Gut Microbiota, and Metabolome: From Pathophysiology to Nutritional Interventions. Nutrients 2023; 15:nu15102236. [PMID: 37242119 DOI: 10.3390/nu15102236] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a disorder identified by an inappropriate increase in weight in relation to height and is considered by many international health institutions to be a major pandemic of the 21st century. The gut microbial ecosystem impacts obesity in multiple ways that yield downstream metabolic consequences, such as affecting systemic inflammation, immune response, and energy harvest, but also the gut-host interface. Metabolomics, a systematized study of low-molecular-weight molecules that take part in metabolic pathways, represents a serviceable method for elucidation of the crosstalk between hosts' metabolism and gut microbiota. In the present review, we confer about clinical and preclinical studies exploring the association of obesity and related metabolic disorders with various gut microbiome profiles, and the effects of several dietary interventions on gut microbiome composition and the metabolome. It is well established that various nutritional interventions may serve as an efficient therapeutic approach to support weight loss in obese individuals, yet no agreement exists in regard to the most effective dietary protocol, both in the short and long term. However, metabolite profiling and the gut microbiota composition might represent an opportunity to methodically establish predictors for obesity control that are relatively simple to measure in comparison to traditional approaches, and it may also present a tool to determine the optimal nutritional intervention to ameliorate obesity in an individual. Nevertheless, a lack of adequately powered randomized trials impedes the application of observations to clinical practice.
Collapse
Affiliation(s)
- Zivana Puljiz
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Marin Ozren Krnic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Zeljko Puljiz
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Dumanic
- Medical Laboratory Diagnostic Division, University Hospital of Split, 21000 Split, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology and Hepatology, University Hospital Centre Rijeka, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
40
|
Baptista LC, Zumbro EL, Graham ZA, Hernandez AR, Buchanan T, Sun Y, Yang Y, Banerjee A, Verma A, Li Q, Carter CS, Buford TW. Multiomics profiling of the impact of an angiotensin (1-7)-expressing probiotic combined with exercise training in aged male rats. J Appl Physiol (1985) 2023; 134:1135-1153. [PMID: 36892893 PMCID: PMC10125028 DOI: 10.1152/japplphysiol.00508.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Angiotensin (1-7) [Ang (1-7)] is an active heptapeptide of the noncanonical arm of the renin-angiotensin system that modulates molecular signaling pathways associated with vascular and cellular inflammation, vasoconstriction, and fibrosis. Preclinical evidence suggests that Ang (1-7) is a promising therapeutic target that may ameliorate physical and cognitive function in late life. However, treatment pharmacodynamics limits its clinical applicability. Therefore, this study explored the underlying mechanisms altered by a genetically modified probiotic (GMP) that expresses Ang (1-7) combined with and without exercise training in an aging male rat model as a potential adjunct strategy to exercise training to counteract the decline of physical and cognitive function. We evaluated cross-tissue (prefrontal cortex, hippocampus, colon, liver, and skeletal muscle) multi-omics responses. After 12 wk of intervention, the 16S mRNA microbiome analysis revealed a main effect of probiotic treatment within- and between groups. The probiotic treatment enhanced α diversity (Inverse Simpson (F[2,56] = 4.44; P = 0.02); Shannon-Wiener (F[2,56] = 4.27; P = 0.02)) and β-diversity (F[2,56] = 2.66; P = 0.01) among rats receiving our GMP. The analysis of microbes' composition revealed three genera altered by our GMP (Enterorhabdus, Muribaculaceae unclassified, and Faecalitalea). The mRNA multi-tissue data analysis showed that our combined intervention upregulated neuroremodeling pathways on prefrontal cortex (i.e., 140 genes), inflammation gene expression in the liver (i.e., 63 genes), and circadian rhythm signaling on skeletal muscle. Finally, the integrative network analysis detected different communities of tightly (|r| > 0.8 and P < 0.05) correlated metabolites, genera, and genes in these tissues.NEW & NOTEWORTHY This manuscript uses a multiomics approach (i.e., microbiome, metabolomics, and transcriptomics) to explore the underlying mechanisms driven by a genetically modified probiotic (GMP) designed to express angiotensin (1-7) combined with moderate exercise training in an aged male rat model. After 12 wk of intervention, our findings suggest that our GMP enhanced gut microbial diversity while exercise training altered the transcriptional response in relevant neuroremodeling genes, inflammation, and circadian rhythm signaling pathways in an aging animal model.
Collapse
Affiliation(s)
- Liliana C Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Research Center for Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Emily L Zumbro
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Research Service, Birmingham Veterans Affair Medical Center, Birmingham, Alabama, United States
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Taylor Buchanan
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - YouFeng Yang
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amrisha Verma
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
41
|
MacCann R, Landay AL, Mallon PWG. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway. Curr Opin HIV AIDS 2023; 18:102-110. [PMID: 36722199 PMCID: PMC7614535 DOI: 10.1097/coh.0000000000000782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review alterations in microbiota composition, diversity, and functional features in the context of chronic inflammation and comorbidities associated with HIV infection. RECENT FINDINGS The gut microbiome is an important mediator of host immunity, and disruption of gut homeostasis can contribute to both systemic inflammation and immune activation. Ageing and HIV share features of intestinal damage, microbial translocation and alterations in bacterial composition that contribute to a proinflammatory state and development of age-related comorbidities. One such inflammatory pathway reviewed is the nicotinamide adenine dinucleotide (NAD+) producing kynurenine pathway (KP). Kynurenine metabolites regulate many biological processes including host-microbiome communication, immunity and oxidative stress and the KP in turn is influenced by the microbiome environment. Age-associated decline in NAD+ is implicated as a driving factor in many age-associated diseases, including those seen in people with HIV (PWH). Recent studies have shown that KP can influence metabolic changes in PWH, including increased abdominal adiposity and cardiovascular disease. Furthermore, KP activity increases with age in the general population, but it is elevated in PWH at all ages compared to age-matched controls. Host or microbiome-mediated targeting of this pathway has merits to increase healthy longevity and has potential therapeutic applications in PWH. SUMMARY As a growing proportion of PWH age, many face increased risks of developing age-related comorbidities. Chronic inflammation, a pillar of geroscience, the science of ageing and of age-related disease, is influenced by the gut microbiome and its metabolites. Combined, these contribute to a systemic inflammatory signature. Advances in geroscience-based approaches and therapeutics offer a novel paradigm for addressing age-related diseases and chronic inflammation in HIV infection. Whether targeted inhibition of KP activity alleviates pathological conditions or promotes successful ageing in PWH remains to be determined.
Collapse
Affiliation(s)
- Rachel MacCann
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
42
|
Yang Z, Su H, Lv Y, Tao H, Jiang Y, Ni Z, Peng L, Chen X. Inulin intervention attenuates hepatic steatosis in rats via modulating gut microbiota and maintaining intestinal barrier function. Food Res Int 2023; 163:112309. [PMID: 36596207 DOI: 10.1016/j.foodres.2022.112309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Increasing evidence has suggested the mitigatory efficacy of prebiotic inulin on nonalcoholic fatty liver disease (NAFLD), nevertheless, its action mechanisms remain elusive. Herein, inulin consumption effectively ameliorated high-sucrose diet-induced hepatic steatosis and inflammation, and rehabilitated liver lipogenesis regulators, including carbohydrate response element-binding protein, stearoyl-CoA desaturase-1 and peroxisome proliferator-activated receptor alpha. Furthermore, inulin supplementation restored the intestinal barrier integrity and function by up-regulating expressions of tight junction proteins (zonula occludens-1, claudin-1 and occludin). High-throughput sequencing demonstrated that inulin administration regulated the gut microbiota composition, wherein abundance of short-chain fatty acid (SCFA)-producers, including Bifidobacterium, Phascolarctobacterium and Blautia, was significantly enhanced in the inulin-treated rats, conversely, opportunistic pathogens, such as Acinetobacter and Corynebacterium_1, were suppressed. SCFA quantitative analysis showed that dietary inulin suppressed faecal acetate levels, but improved propionate and butyrate concentrations in rats with NAFLD. Functional prediction showed that tryptophan metabolism was one of the key metabolic pathways affected by gut microbiota changes. A targeted metabolomics profiling of tryptophan metabolism demonstrated that inulin intervention up-regulated faecal contents of indole-3-acetic acid and kynurenic acid, whereas down-regulated levels of kynurenine and 5-hydoxyindoleacetic acid in NAFLD rats. Therefore, this study demonstrated that inulin intake alleviated hepatic steatosis likely by regulating the gut microbiota composition and function and restoring the intestinal barrier integrity, which may provide a novel notion for the prevention and treatment of NAFLD in future.
Collapse
Affiliation(s)
- Zhandong Yang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huihui Su
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Guangdong Engineering Research Center for Sugar Technology, Guangzhou 510316, China
| | - Yunjuan Lv
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Heqing Tao
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yonghong Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ziyan Ni
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liang Peng
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Xueqing Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
43
|
Koning M, Herrema H, Nieuwdorp M, Meijnikman AS. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies. Gut Microbes 2023; 15:2226922. [PMID: 37610978 PMCID: PMC10305510 DOI: 10.1080/19490976.2023.2226922] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Humans possess abundant amounts of microorganisms, including bacteria, fungi, viruses, and archaea, in their gut. Patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in their gut microbiome and an impaired gut barrier function. Preclinical studies emphasize the significance of the gut microbiome in the pathogenesis of NAFLD. In this overview, we explore how adjusting the gut microbiome could serve as an innovative therapeutic strategy for NAFLD. We provide a summary of current information on untargeted techniques such as probiotics and fecal microbiota transplantation, as well as targeted microbiome-focused therapies including engineered bacteria, prebiotics, postbiotics, and phages for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mijra Koning
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Su M, Tang Y, Kong W, Zhang S, Zhu T. Genetically supported causality between gut microbiota, gut metabolites and low back pain: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1157451. [PMID: 37125171 PMCID: PMC10140346 DOI: 10.3389/fmicb.2023.1157451] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Background Previous studies have implicated a vital association between gut microbiota/gut microbial metabolites and low back pain (LBP), but their causal relationship is still unclear. Therefore, we aim to comprehensively investigate their causal relationship and identify the effect of gut microbiota/gut microbial metabolites on risk of LBP using a two-sample Mendelian randomization (MR) study. Methods Summary data from genome-wide association studies (GWAS) of gut microbiota (18,340 participants), gut microbial metabolites (2,076 participants) and LBP (FinnGen biobank) were separately obtained. The inverse variance-weighted (IVW) method was used as the main MR analysis. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were conducted to evaluate the horizontal pleiotropy and to eliminate outlier single-nucleotide polymorphisms (SNPs). Cochran's Q-test was applied for heterogeneity detection. Besides, leave-one-out analysis was conducted to determine whether the causal association signals were driven by any single SNP. Finally, a reverse MR was performed to evaluate the possibility of reverse causation. Results We discovered that 20 gut microbial taxa and 2 gut microbial metabolites were causally related to LBP (p < 0.05). Among them, the lower level of family Ruminococcaceae (OR: 0.771, 95% CI: 0.652-0.913, FDR-corrected p = 0.045) and Lactobacillaceae (OR: 0.875, 95% CI: 0.801-0.955, FDR-corrected p = 0.045) retained a strong causal relationship with higher risk of LBP after the Benjamini-Hochberg Corrected test. The Cochrane's Q test revealed no Heterogeneity (p > 0.05). Besides, MR-Egger and MR-PRESSO tests showed no significant horizontal pleiotropy (p > 0.05). Furthermore, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the 17 gut microbial taxa exposure-outcome effect were significantly attenuated and tended to be null. Conclusion Our findings confirm the the potential causal effect of specific gut microbiota and gut microbial metabolites on LBP, which offers new insights into the gut microbiota-mediated mechanism of LBP and provides the theoretical basis for further explorations of targeted prevention strategies.
Collapse
Affiliation(s)
- Mengchan Su
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yidan Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| | - Weishuang Kong
- Department of Surgery, Xuanwei Hospital of Traditional Chinese Medicine, Xuanwei, China
| | - Shuangyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yidan Tang, ; Tao Zhu,
| |
Collapse
|
45
|
Zeng Y, Song J, Zhang Y, Huang Y, Zhang F, Suo H. Promoting Effect and Potential Mechanism of Lactobacillus pentosus LPQ1-Produced Active Compounds on the Secretion of 5-Hydroxytryptophan. Foods 2022; 11:foods11233895. [PMID: 36496703 PMCID: PMC9740157 DOI: 10.3390/foods11233895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
5-hydroxytryptophan (5-HTP) is an important substance thought to improve depression. It has been shown that Lactobacillus can promote the secretion of 5-HTP in the body and thus ameliorate depression-like behavior in mice. However, the mechanism by which Lactobacillus promotes the secretion of 5-HTP is unclear. In this study, we investigated the promoting effect and mechanism of Lactobacillus, isolated from Chinese fermented foods, on the secretion of 5-HTP. The results showed that Lactobacillus (L.) pentosus LPQ1 exhibited the strongest 5-HTP secretion-promoting effect ((9.44 ± 0.69)-fold), which was dependent on the mixture of compounds secreted by L. pentosus LPQ1 (termed SLPQ1). In addition, the results of the RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that SLPQ1 alters the TNF and oxidative phosphorylation signaling pathways. Moreover, the SLPQ1 ultrafiltration fraction (>10 kDa) showed a similar 5-HTP promoting effect as SLPQ1. Furthermore, reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) identified 29 compounds of >10 kDa in SLPQ1, including DUF488 domain-containing protein, BspA family leucine-rich repeat surface protein, and 30S ribosomal protein S5, which together accounted for up to 62.51%. This study reports new findings on the mechanism by which L. pentosus LPQ1 promotes 5-HTP production in some cell lines in vitro.
Collapse
Affiliation(s)
- Yixiu Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Feng Zhang
- Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
46
|
Protective Effect of Shengmaiyin in Myocardial Hypertrophy-Induced Rats: A Genomic Analysis by 16S rDNA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3188292. [PMID: 36118100 PMCID: PMC9473885 DOI: 10.1155/2022/3188292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Background The gut-cardiac axis theory provides new insights into the complex mechanisms of cardiac hypertrophy and provides new therapeutic targets. Cardiac hypertrophy is a risk factor for heart failure. Shengmaiyin (SMY) is a traditional Chinese medicine formula with clear effects in the treatment and prevention of cardiac hypertrophy, but the mechanism by which it improves cardiac hypertrophy is still unclear. Therefore, this study aimed to investigate the protective effect and mechanism of SMY on isoproterenol (ISO)-induced myocardial hypertrophy in rats. Methods First, various pharmacodynamic methods were used to evaluate the therapeutic effect of SMY on ISO-induced myocardial hypertrophy in rats. Then, 16S rDNA amplicon sequencing technology was used to study the effect of SMY on the intestinal flora of rats with myocardial hypertrophy. Finally, the mechanism underlying the effect of SMY on cardiac hypertrophy was predicted by bioinformatics network analysis and verified by Western blotting. Results SMY increased ejection fraction (EF%) and left ventricular fractional shortening (FS%), ameliorated myocardial cell injury and fibrosis, regulated blood lipids and energy metabolism, and decreased cardiac hypertrophy marker gene expression. The gut microbiota of ISO-induced myocardial hypertrophy rats were significantly changed, while SMY effectively ameliorated the dysbiosis of the intestinal flora in rats with myocardial hypertrophy, especially Prevotella 9, Lactobacillus, and Clostridium. Mechanistic studies have shown that the anticardiac hypertrophy effect of SMY is related to the inhibition of the expression of HIF1α/PPAR signalling pathway-related proteins. Conclusion SMY significantly improves cardiac function, relieves myocardial cell fibrosis and necrosis, resists cardiac hypertrophy, improves blood lipid metabolism and energy metabolism, regulates intestinal microbial disturbance, and protects the heart.
Collapse
|
47
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|