1
|
Wu X, Shao Y, Chen Y, Zhang W, Dai S, Wu Y, Jiang X, Song X, Shen H. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2025; 15:171-179. [PMID: 39324894 PMCID: PMC11515059 DOI: 10.4103/mgr.medgasres-d-24-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/27/2024] Open
Abstract
Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.
Collapse
Affiliation(s)
- Xinhe Wu
- Department of Hyperbaric Oxygen Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yanan Shao
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongmei Chen
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Zhang
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shirong Dai
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yajun Wu
- Department of Hyperbaric Oxygen Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xinjian Song
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hao Shen
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
MacLaughlin KJ, Barton GP, MacLaughlin JE, Lamers JJ, Marcou MD, O’Brien MJ, Braun RK, Eldridge MW. 100% oxygen mobilizes stem cells and up-regulates MIF and APRIL in humans: a new point on the hormetic dose curve. Front Cell Dev Biol 2025; 12:1377203. [PMID: 39974348 PMCID: PMC11836035 DOI: 10.3389/fcell.2024.1377203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025] Open
Abstract
Introduction The aim of the current study was to test normobaric 100% oxygen (NBO) (PiO2 = 713 mmHg) for stem cell mobilization and cytokine modulation. Although current oxygen therapy (PiO2 = 1,473-2,233 mmHg) is well known to mobilize stem cells and modulate cytokine, little is known about NBO and its place on the low dose stimulation phase of the hormetic dose curve of oxygen. We asked the question, will NBO mobilize stem cells and modulate cytokines. A positive outcome presents the potential to create and refine oxygen treatment protocols, expand access, and optimize patient outcomes. Methods Healthy 30-35-year-old volunteers were exposed to 100% normobaric oxygen for 60 min, M-F, for 10 exposures over 2 weeks. Venous blood samples were collected at four time points: 1) prior to the first exposure (serving as the control for each subject), 2) immediately after the first exposure (to measure the acute effect), 3) immediately before the ninth exposure (to measure the chronic effect), and 4) three days after the final exposure (to assess durability). Blinded scientists used flow cytometry to gate and quantify the Stem Progenitor Cells (SPCs). Results CD45dim/CD34+/CD133+ and CD45+/CD34+/CD133+ were significantly mobilized following nine daily one-hour exposures to normobaric 100% oxygen. Conversely CD45-/CD34+/CD133+, CD45-/CD34+/CD133- and CD45-/CD34-/CD133+ phenotypes were downregulated suggesting differentiation into more mature phenotypes. The CD133+ phenotype exhibited a maturing from CD45- to CD45dim stem cells. CD45-/CD34, CD45-/CD31 and CD45-/CD105 were downregulated with no changes in related CD45dim and CD45+ phenotypes. The cytokines "macrophage migration inhibitory factor" (MIF) and "a proliferation inducing ligand" (APRIL) were significantly upregulated. Conclusion This study demonstrates that 100% normobaric oxygen mobilizes stem cells and upregulates the expression of the inflammatory cytokines marking a new point on the low dose stimulation phase of the hormetic dose curve of oxygen.
Collapse
Affiliation(s)
- Kent J. MacLaughlin
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Gregory P. Barton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Julia E. MacLaughlin
- Medical Oxygen Hyperbaric Clinic, The American Center, Madison, WI, United States
| | - Jacob J. Lamers
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Marcou
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Matthew J. O’Brien
- University of Wisconsin School of Medicine and PublicHealth, Madison, WI, United States
| | - Rudolf K. Braun
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Marlowe W. Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Bosco G, Brizzolari A, Paganini M, Camporesi E, Vezzoli A, Mrakic-Sposta S. Oxy-inflammation in hyperbaric oxygen therapy applications. Eur J Transl Myol 2025. [PMID: 39834265 DOI: 10.4081/ejtm.2025.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 01/23/2025] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a non-invasive method of O2 delivery that induces systemic hyperoxia. Hyperbaric chamber consists of a pressure vessel and a compressed breathing gas supply, which can regulate internal pressure. The chamber delivers 100% O2 to patients according to predetermined protocols and is monitored by trained personnel. HBOT relies on increasing the inspired O2 fraction (fiO2) and elevating the partial pressure of O2 (pO2). O2 is typically administered at pressures between 1.5 and 3.0 ATA for 60 to 120 minutes, depending on the clinical presentation. Currently, there are 15 indications for HBOT approved by the Undersea and Hyperbaric Medicine Society, categorized into three groups: emergency medicine, wound healing acceleration, and antimicrobial effects. The present narrative review aims to elucidate the mechanisms action underlying HBOT, particularly oxy-inflammation, in various pathologies within these categories.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padua, Padua.
| | | | - Matteo Paganini
- Department of Biomedical Sciences, University of Padua, Padua.
| | - Enrico Camporesi
- TEAM Health Anaesthesia, Tampa General Hospital, Tampa, Florida.
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Milan.
| | | |
Collapse
|
4
|
Ma H, Wei X, Lin E, Wang Y, Huang J, Wei H. Hyperbaric Oxygen Promotes Chronic Wound Healing in Sprague-Dawley Rats by Inhibiting Pyroptosis. Physiol Res 2024; 73:1049-1061. [PMID: 39903894 PMCID: PMC11835222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 02/06/2025] Open
Abstract
This study aimed to establish a rat model of chronic wounds to observe the effects of hyperbaric oxygen (HBO) on chronic wound repair and pyroptosis and explore the potential role of pyroptosis in the pathogenesis of chronic wounds. Sprague-Dawley (SD) rats were randomly divided into acute wound group (control group), chronic wound group (model group), chronic wound + HBO treatment group (HBO group), and chronic wound + VX-765 (IL-converting enzyme/Caspase-1 inhibitor) treatment group (VX-765 group). After 7 days of respective interventions, the wound healing status was observed, and wound tissue specimens were collected. Hematoxylin and eosin (HE) staining was used to observe the pathological changes in wound tissues. Transmission electron microscopy was used to observe the changes in cellular ultrastructure. Immunofluorescence was used to observe the expression and localization of vascular endothelial growth factor A (VEGF-A) and the N-terminal domain of gasdermin D (GSDMD-N). Western blot was conducted to detect the expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteine-requiring aspartate protease-1 (Caspase-1), VEGF-A, and GSDMD-N proteins in wound tissues. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of NLRP3, Caspase-1, and GSDMD genes. Enzyme-linked immunosorbent assay (ELISA) was performed to observe the expression of the inflammatory cytokines interleukin-1 beta (IL-1beta) and IL-18. The results showed that the HBO group had a faster wound healing rate and better pathology improvement compared to the model group. The expression level of VEGF-A was higher in the HBO group compared to the model group, while the expression levels of NLRP3, Caspase-1, GSDMD, IL-1beta, and IL-18 were lower than those in the model group. HBO can effectively promote the healing of chronic wounds, and the regulation of pyroptosis may be one of its mechanisms of action. Keywords: Hyperbaric oxygen, Pyroptosis, Chronic wounds, Inflammatory.
Collapse
Affiliation(s)
- H Ma
- Department of Hyperbaric Oxygen, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| | | | | | | | | | | |
Collapse
|
5
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, Ördög N, Zsiros C, Kiricsi Á, Pankotai-Bodó G, Kovács Á, Paróczai D, Botkáné AL, Kajtár B, Sükösd F, Lehoczki A, Polgár T, Letoha A, Pankotai T, Tiszlavicz L. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience 2024:10.1007/s11357-024-01398-4. [PMID: 39495479 DOI: 10.1007/s11357-024-01398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to severe acute respiratory syndrome, and while most individuals recover within weeks, approximately 30-40% experience persistent symptoms collectively known as Long COVID, post-COVID-19 syndrome, or post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC). These enduring symptoms, including fatigue, respiratory difficulties, body pain, short-term memory loss, concentration issues, and sleep disturbances, can persist for months. According to recent studies, SARS-CoV-2 infection causes prolonged disruptions in mitochondrial function, significantly altering cellular energy metabolism. Our research employed transmission electron microscopy to reveal distinct mitochondrial structural abnormalities in Long COVID patients, notably including significant swelling, disrupted cristae, and an overall irregular morphology, which collectively indicates severe mitochondrial distress. We noted increased levels of superoxide dismutase 1 which signals oxidative stress and elevated autophagy-related 4B cysteine peptidase levels, indicating disruptions in mitophagy. Importantly, our analysis also identified reduced levels of circulating cell-free mitochondrial DNA (ccf-mtDNA) in these patients, serving as a novel biomarker for the condition. These findings underscore the crucial role of persistent mitochondrial dysfunction in the pathogenesis of Long COVID. Further exploration of the cellular and molecular mechanisms underlying post-viral mitochondrial dysfunction is critical, particularly to understand the roles of autoimmune reactions and the reactivation of latent viruses in perpetuating these conditions. This comprehensive understanding could pave the way for targeted therapeutic interventions designed to alleviate the chronic impacts of Long COVID. By utilizing circulating ccf-mtDNA and other novel mitochondrial biomarkers, we can enhance our diagnostic capabilities and improve the management of this complex syndrome.
Collapse
Affiliation(s)
- Titanilla Szögi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Barbara N Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Dejana Masic
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Bence Radics
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bella
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Bánfi
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csenge Zsiros
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino- Laryngology and Head-Neck Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ágnes Kovács
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Dóra Paróczai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lugosi Botkáné
- Pulmonology Clinic, Albert Szent-Györgyi Medical and Pharmaceutical Centre, University of Szeged, Szeged, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Tamás Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Annamária Letoha
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary.
| | - László Tiszlavicz
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Biagini D, Mrakic-Sposta S, Bondi D, Ghimenti S, Lenzi A, Vivaldi F, Santangelo C, Verratti V, Pietrangelo T, Vezzoli A, Giardini G, Oger C, Galano JM, Balas L, Durand T, D'Angelo G, Lomonaco T, Di Francesco F. A MEPS-UHPLC-MS/MS analytical platform to detect isoprostanoids and specialized pro-resolving mediators in the urinary extracellular vesicles of mountain ultramarathon runners. Talanta 2024; 279:126619. [PMID: 39067203 DOI: 10.1016/j.talanta.2024.126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Oxylipins are powerful signalling compounds derived from polyunsaturated fatty acids (PUFAs) and involved in regulating the immune system response. A mass spectrometry-based method was developed and validated for the targeted profiling of 52 oxylipins (e.g., isoprostanoids, prostaglandins, epoxy- and hydroxy-fatty acids, specialized pro-resolving mediators) and 4 PUFAs in small urinary extracellular vesicles (uEVs). Ultrasound-assisted extraction using a 50:50 v/v MeOH:H2O mixture ensured optimal analytical performances. Limits of detection ranged between 10 and 400 pg/mL for oxylipins and 0.10-3 ng/mL for PUFAs. Satisfactory recoveries (85-116 %) and good intra- and inter-day precisions (RSD ≤15 %) were obtained for all the analytes. The reliability of the procedure was tested in a real case scenario by monitoring ultramarathon runners during the world Tor des Géants® (TDG) race. Both F2- and E2-isoprostanes were detected in small uEVs of the ultramarathon runners, suggesting the onset of an oxidant insult. 5-F2t-IsoP exhibited significant pre- to post-race variations, thus potentially representing a non-invasive marker of in-vivo lipid peroxidation. The presence of specialized pro-resolving mediators suggests the activation of pro-resolution signalling cascade resolving inflammation. These outcomes may help manage post-exercise recovery and improve training.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy.
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (IFC-CNR), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy; Società Italiana Medicina di Montagna, SIMeM, 35138, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Pescara, Chieti, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Pescara, Chieti, Italy
| | - Vittore Verratti
- Società Italiana Medicina di Montagna, SIMeM, 35138, Padova, Italy; Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti, Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Pescara, Chieti, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (IFC-CNR), Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Guido Giardini
- Mountain Medicine Center Valle d'Aosta Regional Hospital Umberto Parini, Aosta, Italy
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCN, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCN, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCN, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCN, France
| | - Gennaro D'Angelo
- Department of Clinical and Experimental Medicine, University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, Pisa, Italy
| |
Collapse
|
8
|
Mrakic-Sposta S, Brizzolari A, Vezzoli A, Graci C, Cimmino A, Giacon TA, Dellanoce C, Barassi A, Sesana G, Bosco G. Decompression Illness After Technical Diving Session in Mediterranean Sea: Oxidative Stress, Inflammation, and HBO Therapy. Int J Mol Sci 2024; 25:11367. [PMID: 39518919 PMCID: PMC11546868 DOI: 10.3390/ijms252111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
SCUBA diving poses risks due to pressure changes during descent (compression) and ascent (decompression). Decompression sickness (DCS) occurs due to gas bubble formation as the pressure decreases, causing joint pain, numbness, dizziness, or even paralysis and death. Immediate treatment involves 100% oxygen to help eliminate inert gases and hyperbaric oxygen therapy (HBOT), which is essential to reduce gas emboli formation and inflammation, thus improving symptoms. We evaluated oxy-inflammation biomarkers in the saliva and urine of nine subjects pre- and post-technical dive on the Haven wreck (GE, Italy). A case of DCS occurred during the dive. The injured diver was treated immediately with O2 and transported to the hyperbaric center of "ASST Ospedale Ca Granda" in Milan. He was treated following the U.S. Navy Treatment Table 5 at 2.8 ATA and the day after with Table 15 at 2.4 ATA. Venous blood and urine samples were collected before and after each HBO treatment. Our study shows that dive increased oxy-inflammation biomarkers (ROS +126%; lipid peroxidation +23%; interleukins-6 +81%, -1β +19%, and TNFα +84%) and nitric oxide metabolites levels (+36%). HBOT after a DCS episode reduced oxidative stress, lowering the very high marker of lipid peroxidation (8-iso-PGF2α), and inhibited inflammatory interleukins. Overall, HBOT improved physiological responses in the diver affected by DCS.
Collapse
Affiliation(s)
- Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Carmela Graci
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Attilio Cimmino
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (A.V.); (C.D.)
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Alessandra Barassi
- Department of Health Sciences, Università degli Studi of Milan, 20142 Milan, Italy;
| | - Giovanni Sesana
- ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20142 Milan, Italy; (C.G.); (A.C.); (G.S.)
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (T.A.G.)
| |
Collapse
|
9
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
10
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
11
|
Bosco G, Vezzoli A, Brizzolari A, Paganini M, Giacon TA, Savini F, Gussoni M, Montorsi M, Dellanoce C, Mrakic-Sposta S. Consumption of Sylimarin, Pyrroloquinoline Quinone Sodium Salt and Myricetin: Effects on Alcohol Levels and Markers of Oxidative Stress-A Pilot Study. Nutrients 2024; 16:2965. [PMID: 39275279 PMCID: PMC11397684 DOI: 10.3390/nu16172965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. METHODS Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial (ClinicalTrials.gov. Identifier: NCT06548503; Ethical Committee of the University of Padova (HEC-DSB/12-2023) to evaluate the effect of the intake of a product containing silymarin, pyrroloquinoline quinone sodium salt, and myricetin (referred to as Si.Pi.Mi. for this project) on blood alcohol, ethyl glucuronide (EtG: marker for alcohol consumption) and markers of oxidative stress levels (Reactive Oxygen Species-ROS, Total Antioxidant Capacity-TAC, CoQ10, thiols redox status, 8-isoprostane, NO metabolites, neopterin, and uric acid). The effects of the treatment versus placebo were evaluated acutely and after 1 week of supplementation in blood and/or saliva and urine samples. RESULTS Si.Pi.Mi intake reduced circulating ethanol after 120 min (-33%). Changes in oxidative stress biomarkers, particularly a TAC (range +9-12%) increase and an 8-isoprostane (marker of lipidic peroxidation) decrease (range -22-27%), were observed too. CONCLUSION After the administration of Si.Pi.Mi, the data seemed to suggest a better alcohol metabolism and oxidative balance in response to wine intake. Further verification is requested.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Alessandra Vezzoli
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | | | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", 65100 Pescara, Italy
| | - Maristella Gussoni
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Michela Montorsi
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| |
Collapse
|
12
|
Chowdhury MMH, Fontaine MN, Lord SE, Quenum AJI, Limoges MA, Rioux-Perreault C, Lucier JF, Cliche DO, Levesque D, Boisvert FM, Cantin AM, Allard-Chamard H, Menendez A, Ilangumaran S, Piché A, Dionne IJ, Ramanathan S. Impact of a tailored exercise regimen on physical capacity and plasma proteome profile in post-COVID-19 condition. Front Physiol 2024; 15:1416639. [PMID: 39234310 PMCID: PMC11371593 DOI: 10.3389/fphys.2024.1416639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Background Individuals affected by the post-covid condition (PCC) show an increased fatigue and the so-called post-exertion malaise (PEM) that led health professionals to advise against exercise although accumulating evidence indicates the contrary. The goal of this study is to determine the impact of a closely monitored 8-week mixed exercise program on physical capacity, symptoms, fatigue, systemic oxidative stress and plasma proteomic profiles of PCC cases. Methods Twenty-five women and men with PCC were assigned sequentially to exercise (n = 15) and non-exercise (n = 10) groups. Individuals with no PCC served as a control group. The exercise program included cardiovascular and resistance exercises. Physical capacity, physical activity level and the presence of common PCC symptoms were measured before and after the intervention. Fatigue was measured the day following each exercise session. Plasma and PBMC samples were collected at the beginning and end of the training program. Glutathione and deoxyguanosine levels in PBMC and plasma proteomic profiles were evaluated. Results Bicep Curl (+15% vs 4%; p = 0.040) and Sit-to-Stand test (STS-30 (+31% vs +11%; p = 0.043)) showed improvement in the exercise group when compared to the non-exercise group. An interaction effect was also observed for the level of physical activity (p =0.007) with a positive effect of the program on their daily functioning and without any adverse effects on general or post-effort fatigue. After exercise, glutathione levels in PBMCs increased in women but remained unchanged in men. Discernable changes were observed in the plasma proteomics profile with certain proteins involved in inflammatory response decreasing in the exercise group. Conclusions Supervised exercise adapted to the level of fatigue and ability is safe and effective in PCC patients in improving their general physical capacity and wellbeing. Systemic molecular markers that accompany physical improvement can be monitored by analyzing plasma proteomics and markers of oxidative stress. Large-scale studies will help identify promising molecular markers to objectively monitor patient improvement.
Collapse
Affiliation(s)
- Mohammad Mobarak H Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Noelle Fontaine
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, Affiliated with CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Sarah-Eve Lord
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, Affiliated with CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Akouavi Julite Irmine Quenum
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Rioux-Perreault
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-François Lucier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominic O Cliche
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Levesque
- Research Centre on Aging, Affiliated with CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André M Cantin
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugues Allard-Chamard
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Piché
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle J Dionne
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, Affiliated with CIUSSS de L'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Liu X, Xu X, Lei Q, Jin X, Deng X, Xie H. Efficacy of hyperbaric oxygen therapy in treating sudden sensorineural hearing loss: an umbrella review. Front Neurol 2024; 15:1453055. [PMID: 39193144 PMCID: PMC11347443 DOI: 10.3389/fneur.2024.1453055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Our objective was to explore the efficacy of hyperbaric oxygen in the treatment of sudden sensorineural hearing loss by conducting an umbrella review of all existing evidence. Methods We conducted an umbrella review, searching for related articles in the PubMed, Web of Science, Embase, and Scopus databases. The search period covered from the inception of each database until April 2024. We extracted authors, country of publication, time of publication, number of included studies and participants, interventions, summary of results, P-values, I 2, relative risk (95% CI), and outcome measures. The methodological quality, evidence quality, and overlap rate of the included articles were assessed using AMSTAR 2, GRADE, and OVErviews (GROOVE). Results Methodological quality was assessed using AMSTAR 2. Of the nine included articles, two were assessed as "high," three as "moderate," two as "low," and the remaining two as "very low." The quality of evidence was assessed using the GRADE system. It was found that the quality of evidence in most of the studies was unsatisfactory. It was found that there was a slight overlap among the included articles. Six studies reported positive results (OR 1.37; 95% CI, 1.17-1.61; P = 0.04), with high heterogeneity observed (I 2 = 63%). Egger's test indicated bias (P = 0.000101). Three studies reported negative results (MD 1.49; 95% CI, -0.32 to 3.29; P = 0.43; I 2 = 0%), with no significant bias detected (P = 0.106) according to Egger's test. Conclusion HBO therapy is shown to be an effective treatment for SSNHL with fewer side effects. However, the methodological quality and evidence of the systematic reviews and meta-analysis included in this study were generally low. Therefore, more high-quality, large-scale, multi-center randomized controlled trials are needed in the future to verify the efficacy of HBO therapy for SSNHL. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier [CRD42024523651].
Collapse
Affiliation(s)
- Xinghong Liu
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianpeng Xu
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiulian Lei
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Jin
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinxing Deng
- Department of Otorhinolaryngology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Xie
- Department of Otorhinolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Li Y, Lin J, Gao J, Tang L, Liu Y, Zhang Z. Efficacy and safety of hyperbaric oxygen therapy for long COVID: a protocol for systematic review and meta-analysis. BMJ Open 2024; 14:e083868. [PMID: 38806438 PMCID: PMC11138265 DOI: 10.1136/bmjopen-2024-083868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION There is still a lack of therapeutic options for long COVID. Several studies have shown the benefit of hyperbaric oxygen therapy (HBOT) on long COVID. However, the efficacy and safety of HBOT for long COVID remain unclear. Therefore, we will conduct this systematic review to assess the feasibility of HBOT as a primary or complemental therapy for long COVID. METHODS AND ANALYSIS Databases such as Web of Science, PubMed, Embase, Cochrane Database of Systematic Reviews, ClinicalTrials.gov, International Clinical Trials Registry Platform, Wanfang Database, China National Knowledge Infrastructure, SINOMED, VIP Database and the Chinese Clinical Trial Registry will be searched systematically from the establishment to 9 December 2023. All articles will be reviewed by two independent reviewers. Cochrane risk of bias tool will be used to assess the risk of bias in the study. We will evaluate heterogeneity using a visual inspection of the funnel plot. If an available number of studies are identified, we will perform a meta-analysis. ETHICS AND DISSEMINATION No ethical approval is required since this study is based on published articles. The findings will be published in a peer-reviewed journal or disseminated through conference presentations. PROSPERO REGISTRATION NUMBER CRD42023482523.
Collapse
Affiliation(s)
- Yuxin Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingnan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhu Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Tang
- Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuntao Liu
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Balestra C, Lévêque C, Mrakic-Sposta S, Vezzoli A, Wauthy P, Germonpré P, Tillmans F, Guerrero F, Lafère P. Physiology of deep closed circuit rebreather mixed gas diving: vascular gas emboli and biological changes during a week-long liveaboard safari. Front Physiol 2024; 15:1395846. [PMID: 38660539 PMCID: PMC11040087 DOI: 10.3389/fphys.2024.1395846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Diving decompression theory hypothesizes inflammatory processes as a source of micronuclei which could increase related risks. Therefore, we tested 10 healthy, male divers. They performed 6-8 dives with a maximum of two dives per day at depths ranging from 21 to 122 msw with CCR mixed gas diving. Methods: Post-dive VGE were counted by echocardiography. Saliva and urine samples were taken before and after each dive to evaluate inflammation: ROS production, lipid peroxidation (8-iso-PGF2), DNA damage (8-OH-dG), cytokines (TNF-α, IL-6, and neopterin). Results: VGE exhibits a progressive reduction followed by an increase (p < 0.0001) which parallels inflammation responses. Indeed, ROS, 8-iso-PGF2, IL-6 and neopterin increases from 0.19 ± 0.02 to 1.13 ± 0.09 μmol.min-1 (p < 0.001); 199.8 ± 55.9 to 632.7 ± 73.3 ng.mg-1 creatinine (p < 0.0001); 2.35 ± 0.54 to 19.5 ± 2.96 pg.mL-1 (p < 0.001); and 93.7 ± 11.2 to 299 ± 25.9 μmol·mol-1 creatinine (p = 0.005), respectively. The variation after each dive was held constant around 158.3% ± 6.9% (p = 0.021); 151.4% ± 5.7% (p < 0.0001); 176.3% ± 11.9% (p < 0.0001); and 160.1% ± 5.6% (p < 0.001), respectively. Discussion: When oxy-inflammation reaches a certain level, it exceeds hormetic coping mechanisms allowing second-generation micronuclei substantiated by an increase of VGE after an initial continuous decrease consistent with a depletion of "first generation" pre-existing micronuclei.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
| | - Clément Lévêque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Pierre Wauthy
- Department of Cardiac Surgery, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Centre for Hyperbaric Oxygen Therapy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | | | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), Brussels, Belgium
- Laboratoire ORPHY EA 4324, University Brest, Brest, France
| |
Collapse
|
16
|
Wu BQ, Liu DY, Shen TC, Lai YR, Yu TL, Hsu HL, Lee HM, Liao WC, Hsia TC. Effects of Hyperbaric Oxygen Therapy on Long COVID: A Systematic Review. Life (Basel) 2024; 14:438. [PMID: 38672710 PMCID: PMC11051078 DOI: 10.3390/life14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease (COVID-19) pandemic has resulted in an increasing population that is experiencing a wide range of long-lasting symptoms after recovery from the acute infection. Long COVID refers to this specific condition and is associated with diverse symptoms, such as fatigue, myalgias, dyspnea, headache, cognitive impairment, neurodegenerative symptoms, anxiety, depression, and a sense of despair. The potential of hyperbaric oxygen therapy (HBOT) to improve chronic fatigue, cognitive impairments, and neurological disorders has been established; therefore, the use of HBOT to treat long COVID has also been studied. We conducted a literature search between 1 January 2019 and 30 October 2023, focusing on the clinical efficacy and utility of HBOT for treating long COVID and found ten clinical studies that fit the review topic, including one case report, five one-group pretest-posttest design studies, one safety report from a randomized controlled trial (RCT), and three complete reports of RCTs. Most studies found that HBOT can improve quality of life, fatigue, cognition, neuropsychiatric symptoms, and cardiopulmonary function. Although HBOT has shown some benefits for long COVID symptoms, further rigorous large-scale RCTs are required to establish precise indications, protocols, and post-treatment evaluations.
Collapse
Affiliation(s)
- Bing-Qi Wu
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan (D.-Y.L.); (H.-L.H.)
| | - De-Yi Liu
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan (D.-Y.L.); (H.-L.H.)
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
| | - Te-Chun Shen
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung 404, Taiwan
- Division of Critical Care Medicine, Chu Shang Show Chwan Hospital, Nantou 557, Taiwan
| | - Yu-Ru Lai
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
| | - Tsai-Ling Yu
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
| | - Hsiang-Li Hsu
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan (D.-Y.L.); (H.-L.H.)
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
| | - Hsiu-Ming Lee
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan (D.-Y.L.); (H.-L.H.)
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
| | - Wei-Chih Liao
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Te-Chun Hsia
- School of Medicine, China Medical University, Taichung 404, Taiwan; (Y.-R.L.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
17
|
Katz AA, Wainwright S, Kelly MP, Albert P, Byrne R. Hyperbaric oxygen effectively addresses the pathophysiology of long COVID: clinical review. Front Med (Lausanne) 2024; 11:1354088. [PMID: 38449882 PMCID: PMC10916685 DOI: 10.3389/fmed.2024.1354088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background The World Health Organization defines long COVID as "the continuation or development of new symptoms 3 months after the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other explanation." Estimations of approximately 50 million individuals suffer from long COVID, reporting low health-related quality of life. Patients develop ongoing persistent symptoms that continue for more than 12 weeks that are not explained by another alternative diagnosis. To date, no current therapeutics are effective in treating the underlying pathophysiology of long COVID. Discussion A comprehensive literature search using PubMed and Google Scholar was conducted and all available articles from November 2021 to January 2024 containing keywords long covid and hyperbaric oxygen were reviewed. These published studies, including case series and randomized trials, demonstrate that utilizing Hyperbaric Oxygen Therapy (HBO) provided significant improvement in patients with long COVID. Conclusion A large cohort of patients suffer from long COVID or post-COVID-19 syndrome after recovery from their acute infection with no effective treatment options. HBO is a safe treatment and may provide benefit for this population and should continue to be researched for adjunctive treatment of long COVID.
Collapse
Affiliation(s)
- Alan A. Katz
- Hyperbaric Medical Solutions, New York, NY, United States
- Orlando College of Osteopathic Medicine, Winter Garden, FL, United States
| | - Sandra Wainwright
- Greenwich Hospital, Yale New Haven Health System, New Haven, CT, United States
| | - Matthew P. Kelly
- University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, United States
| | - Pradeep Albert
- Orlando College of Osteopathic Medicine, Winter Garden, FL, United States
| | - Rosemary Byrne
- Hyperbaric Medical Solutions, New York, NY, United States
| |
Collapse
|