1
|
Nakanishi A, Yomogita M, Horimoto T. Evaluation of Cellular Responses by Chlamydomonas reinhardtii in Media Containing Dairy-Processing Residues Derived from Cheese as Nutrients by Analyzing Cell Growth Activity and Comprehensive Gene Transcription Levels. Microorganisms 2024; 12:715. [PMID: 38674659 PMCID: PMC11052199 DOI: 10.3390/microorganisms12040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Utilities of whey powder (WP) and whey protein concentrate 34% powder (WPC34) prepared as dairy-processing residues were evaluated using a green alga Chlamydomonas reinhardtii. Analysis of C. reinhardtii growth showed that the strain used WP and WPC34 as nitrogen sources. Its specific growth rate and maximum cell density in WP-containing medium were higher than those in WPC34-containing medium; growth with WPC34 was improved by adding KCl or K2HPO4, which content was decreased as a result of WPC34's preparation from WP. Although the lipid contents in media containing dairy-processing residues were 2.72 ± 0.31 wt% and 2.62 ± 0.20 wt% with no significant difference, the composition ratio of fatty acid C14 with WPC34 was higher than that with WP and the composition ratio of the sum of fatty acid-C16 and -C18 with WPC34 tended to be lower than that with WP. Additionally, analyses of gene transcription showed that the transcription level of acetyl-CoA carboxylase biotin carboxyl carrier protein in WPC34-containing medium was lower than that in WP-containing medium, possibly affecting the ratios of the chain lengths of fatty acids. The transcription of genes involved in glycolysis and the TCA cycle was outstandingly lower in algae grown in WPC34-containing medium when compared to those cultivated in the presence of WP, resulting in differences in energy production for cell proliferation.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan;
| | | |
Collapse
|
2
|
Agarwal A, Jeevanandham S, Sangam S, Chakraborty A, Mukherjee M. Exploring the Role of Carbon-Based Nanomaterials in Microalgae for the Sustainable Production of Bioactive Compounds and Beyond. ACS OMEGA 2022; 7:22061-22072. [PMID: 35811909 PMCID: PMC9260754 DOI: 10.1021/acsomega.2c01009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/03/2022] [Indexed: 05/05/2023]
Abstract
An enchanting yet challenging task is the development of higher productivity in plants to meet the ample food demands for the growing global population while harmonizing the ecosystem using front-line technologies. This has kindled the practice of green microalgae cultivation as a driver of key biostimulant products, targeting agronomic needs. To this end, a prodigious and economical strategy for producing bioactive compounds (sources of secondary metabolites) from microalgae using carbon-based nanomaterials (CNMs) as a platform can circumvent these hurdles. Recently, the nanobionics approach of incorporating CNMs with living systems has emerged as a promising technique to develop organelles with new and augmented functions. Herein, we discuss the importance of 2D carbon nanosheets (CNS) as an alternative carbon source for the phototrophic cultivation of microalgae. CNS not only aids in cost reduction for algal cultivation but also confers combinatorial innate or exogenous functions that enhance its programmed biosynthetic metabolism, proliferation, or tolerance to stress. Moreover, the inherent ability of CNS to act as efficient biocatalysts can enhance the rate of photosynthesis. The primary focus of this mini-review is the development of an economic route for enhanced yield of bioactive compounds while simultaneously serving as a heterogeneous platform for enhancing the sustainable production of biostimulants including bioactive compounds from algal biomass for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sampathkumar Jeevanandham
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Sujata Sangam
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
| | - Arnab Chakraborty
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
| | - Monalisa Mukherjee
- Molecular
Science and Engineering Laboratory, Amity Institute of Click Chemistry
Research and Studies, Amity University Uttar
Pradesh, Noida 201313, India
- Amity
Institute of Biotechnology, Amity University
Uttar Pradesh, Noida 201313, India
- . Tel: +91(0)-120-4392194
| |
Collapse
|
3
|
Polle JE, Calhoun S, McKie-Krisberg Z, Prochnik S, Neofotis P, Yim WC, Hathwaik LT, Jenkins J, Molina H, Bunkenborg J, Grigoriev IV, Barry K, Schmutz J, Jin E, Cushman JC, Magnusson JK. Genomic adaptations of the green alga Dunaliella salina to life under high salinity. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Wang B, Jia J. Photoprotection mechanisms of Nannochloropsis oceanica in response to light stress. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Fachet M, Witte C, Flassig RJ, Rihko-Struckmann LK, McKie-Krisberg Z, Polle JEW, Sundmacher K. Reconstruction and analysis of a carbon-core metabolic network for Dunaliella salina. BMC Bioinformatics 2020; 21:1. [PMID: 31898485 PMCID: PMC6941287 DOI: 10.1186/s12859-019-3325-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The green microalga Dunaliella salina accumulates a high proportion of β-carotene during abiotic stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published nuclear genome and its validation with experimental observations and literature data. RESULTS The reconstruction resulted in a network model with 221 reactions and 212 metabolites within three compartments: cytosol, chloroplast and mitochondrion. The network was implemented in the MATLAB toolbox CellNetAnalyzer and checked for feasibility. Furthermore, a flux balance analysis was carried out for different light and nutrient uptake rates. The comparison of the experimental knowledge with the model prediction revealed that the results of the stoichiometric network analysis are plausible and in good agreement with the observed behavior. Accordingly, our model provides an excellent tool for investigating the carbon core metabolism of D. salina. CONCLUSIONS The reconstructed metabolic network of D. salina presented in this work is able to predict the biological behavior under light and nutrient stress and will lead to an improved process understanding for the optimized production of high-value products in microalgae.
Collapse
Affiliation(s)
- Melanie Fachet
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany
| | - Carina Witte
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany
| | - Robert J Flassig
- Brandenburg University of Applied Sciences, Department of Engineering, Magdeburger Str. 50, Brandenburg an der Havel, 14770, Germany
| | - Liisa K Rihko-Struckmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany.
| | - Zaid McKie-Krisberg
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, New York, NY 11210, USA
| | - Jürgen E W Polle
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, New York, NY 11210, USA
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany.,Otto von Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
6
|
Carotenoids Overproduction in Dunaliella Sp.: Transcriptional Changes and New Insights through Lycopene β Cyclase Regulation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dunaliella is a green microalga known for its ability to produce high levels of carotenoids under well-defined growing conditions. Molecular responses to the simultaneous effect of increasing salinity, light intensity and decrease of nitrogen availability were investigated in terms of their effect on different metabolic pathways (isoprenoids synthesis, glycolysis, carbohydrate use, etc.) by following the transcriptional regulation of enolase (ENO), 1-deoxy-D-xylulose 5-phosphate synthase (DXS), lycopene β-cyclase (LCYB), carotene globule protein (CGP), chloroplast-localized heat shock protein (HSP70), and chloroplast ribulose phosphate-3-epimerase (RPE) genes. The intracellular production of carotenoid was increased five times in stressed Dunaliella cells compared to those grown in an unstressed condition. At transcriptional levels, ENO implicated in glycolysis, and revealing about polysaccharides degradation, showed a two-stage response during the first 72 h. Genes directly involved in β-carotene accumulation, namely, CGP and LCYB, revealed the most important increase by about 54 and 10 folds, respectively. In silico sequence analysis, along with 3D modeling studies, were performed to identify possible posttranslational modifications of CGP and LCYB proteins. Our results described, for the first time, their probable regulation by sumoylation covalent attachment as well as the presence of expressed SUMO (small ubiquitin-related modifier) protein in Dunaliella sp.
Collapse
|
7
|
Cao H, Zhou Y, Chang Y, Zhang X, Li C, Ren D. Comparative phosphoproteomic analysis of developing maize seeds suggests a pivotal role for enolase in promoting starch synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110243. [PMID: 31623796 DOI: 10.1016/j.plantsci.2019.110243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Maize (Zea mays) seeds are the major source of starch all over the world and the excellent model for researching starch synthesis. Seed starch content is a typical quantitative phenotype and many reports revealed that the glycolytic enzymes are involved in regulating starch synthesis, however the regulatory mechanism is still unclear. Here, we present a comparative phosphoproteomic study of three maize inbred lines with different seed starch content. It reveals that abundances of 62 proteins and 63 phosphoproteins were regulated during maize seed development. Dynamics of 17 enzymes related to glycolysis and starch synthesis were used to construct a phosphorylation regulatory network of starch synthesis. It shows that starch synthesis and glycolysis in maize seeds utilize the same hexose phosphates pool coming from sorbitol and sucrose as carbon source, and phosphorylation of ZmENO1 are suggested to contribute to increase starch content, because it is positively related to seed starch content in different developmental stages and different lines, and the phosphor-mimic mutant (ZmENO1S43D) damaged its enzyme activity which is vital in glycolysis. Our results provide a new sight into regulatory process of seed starch synthesis and can be used in maize breeding for high starch content.
Collapse
Affiliation(s)
- Hanwei Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuwei Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Chang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Kang NK, Kim EK, Sung MG, Kim YU, Jeong BR, Chang YK. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol Bioeng 2019; 116:555-568. [PMID: 30536876 PMCID: PMC6590115 DOI: 10.1002/bit.26894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Microalgae are promising feedstocks for sustainable and eco-friendly production of biomaterials, which can be improved by genetic engineering. It is also necessary to optimize the processes to produce biomaterials from engineered microalgae. We previously reported that genetic improvements of an industrial microalga Nannochloropsis salina by overexpressing a basic helix-loop-helix transcription factor (NsbHLH2). These transformants showed an improved growth and lipid production particularly during the early phase of culture under batch culture. However, they had faster uptake of nutrients, resulting in earlier starvation and reduced growth during the later stages. We attempted to optimize the growth and lipid production by growing one of the transformants in continuous culture with variable dilution rate and feed nitrogen concentration. Relative to wild-type, NsbHLH2 transformant consumed more nitrate at a high dilution rate (0.5 day -1 ), and had greater biomass production. Subsequently, nitrogen limitation at continuous cultivation led to an increased fatty acid methyl ester production by 83.6 mg l -1 day -1 . To elucidate genetic mechanisms, we identified the genes containing E-boxes, known as binding sites for bHLH transcription factors. Among these, we selected 18 genes involved in the growth and lipid metabolism, and revealed their positive contribution to the phenotypes via quantitative real-time polymerase chain reaction. These results provide proof-of-concept that NsbHLH2 can be used to produce biomass and lipids.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Min-Gyu Sung
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Young Uk Kim
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea
| | - Byeong-Ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, Yuseong-gu, Daejeon, Republic of Korea.,Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Wu H, Sun M, Peng Q, Li A. Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. PHOTOSYNTHESIS RESEARCH 2018; 138:73-102. [PMID: 30039359 DOI: 10.1007/s11120-018-0549-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N-) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N- group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N-). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N-, 3 vs. 9 days and 9 days, N+ vs. N-). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Wu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingzhe Sun
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qianqian Peng
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Aifen Li
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
10
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Morales-Sánchez D, Kim Y, Terng EL, Peterson L, Cerutti H. A multidomain enzyme, with glycerol-3-phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1079-1092. [PMID: 28273364 DOI: 10.1111/tpj.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 05/20/2023]
Abstract
Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes.
Collapse
Affiliation(s)
- Daniela Morales-Sánchez
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yeongho Kim
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ee Leng Terng
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laura Peterson
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
12
|
Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 2017; 7:45732. [PMID: 28378827 PMCID: PMC5381106 DOI: 10.1038/srep45732] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with concomitant reduction in carbon flux towards carbohydrate, protein and chlorophyll biosynthesis. The proteomics-based investigations identified the down-regulation of enzymes involved in chlorophyll biosynthesis (porphobilinogen deaminase) and photosynthetic carbon fixation (sedoheptulose-1,7 bisphosphate and phosphoribulokinase). Profound up-regulation of hydroxyacyl-ACP dehydrogenase and enoyl-ACP reductase ascertained lipid accumulation. The carbon skeletons to be integrated into lipid precursors were regenerated by glycolysis, β-oxidation and TCA cycle. The enhanced expression of glycolysis and pentose phosphate pathway enzymes indicates heightened energy needs of FC2 cells for the sustenance of N-starvation. FC2 cells strategically reserved nitrogen by incorporating it into the TCA-cycle intermediates to form amino acids; particularly the enzymes involved in the biosynthesis of glutamate, aspartate and arginine were up-regulated. Regulation of arginine, superoxide dismutase, thioredoxin-peroxiredoxin, lipocalin, serine-hydroxymethyltransferase, cysteine synthase, and octanoyltransferase play a critical role in maintaining cellular homeostasis during N-starvation. These findings may provide a rationale for genetic engineering of microalgae, which may enable synchronized biomass and lipid synthesis.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mayuri N. Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| |
Collapse
|
13
|
Sharma T, Chauhan RS. Comparative transcriptomics reveals molecular components associated with differential lipid accumulation between microalgal sp., Scenedesmus dimorphus and Scenedesmus quadricauda. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Wang LH, Chen HK, Jhu CS, Cheng JO, Fang LS, Chen CS. Different strategies of energy storage in cultured and freshly isolated Symbiodinium sp. JOURNAL OF PHYCOLOGY 2015; 51:1127-1136. [PMID: 26987007 DOI: 10.1111/jpy.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly-isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral-associated Symbiodinium had higher protein content than did cultured and sea anemone-associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone-associated Symbiodinium had a distinct pattern compared coral-associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral-associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.
Collapse
Affiliation(s)
- Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Hung-Kai Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 704, Taiwan
| | - Chu-Sian Jhu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Jing-O Cheng
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
| | - Lee-Shing Fang
- Department of Sports, Health and Leisure, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, 974, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 704, Taiwan
| |
Collapse
|