1
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen N, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404685. [PMID: 39246195 PMCID: PMC11636114 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Huan Ming Xia
- School of Mechanical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
- School of Engineering and Built EnvironmentGriffith UniversityBrisbaneQLD4111Australia
| |
Collapse
|
2
|
Zhang C, Ning W, Nan D, Hao J, Shi W, Yang Y, Duan F, Jin W, Liu L, Zhao D. Embedded 3D Printing for Microchannel Fabrication in Epoxy-Based Microfluidic Devices. Polymers (Basel) 2024; 16:3320. [PMID: 39684065 DOI: 10.3390/polym16233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Microfluidic devices offer promising solutions for automating various biological and chemical procedures. Epoxy resin, known for its excellent mechanical properties, chemical resistance, and thermal stability, is widely used in high-performance microfluidic devices. However, the poor printability of epoxy has limited its application in 3D printing technologies for fabricating epoxy-based microfluidic devices. In this study, fumed silica is introduced into epoxy resin to formulate a yield-stress fluid suspension as a support bath for embedded 3D printing (e-3DP). The study demonstrates that increasing the fumed silica concentration from 3.0% to 9.0% (w/v) enhances the yield stress from 9.46 Pa to 56.41 Pa, the compressive modulus from 19.79 MPa to 36.34 MPa, and the fracture strength from 148.16 MPa to 168.78 MPa, while reducing the thixotropic time from 6.58 s to 1.32 s, albeit with a 61.3% decrease in the transparency ratio. The 6.0% (w/v) fumed silica-epoxy suspension is selected based on a balance between yield stress, transparency, and mechanical performance, enabling high-fidelity filament formation. Two representative microfluidic devices are successfully fabricated, demonstrating the feasibility of a fumed silica-epoxy suspension for the customizable e-3DP of epoxy-based microfluidic devices.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenyu Ning
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ding Nan
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangtao Hao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiliang Shi
- Zibo Vocational Institute, Zibo 255300, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou 251100, China
| | - Yang Yang
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fei Duan
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenbo Jin
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Liu
- 365th Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Mand M, Hahn O, Meyer J, Peters K, Seitz H. Investigation of the Effect of High Shear Stress on Mesenchymal Stem Cells Using a Rotational Rheometer in a Small-Angle Cone-Plate Configuration. Bioengineering (Basel) 2024; 11:1011. [PMID: 39451387 PMCID: PMC11504001 DOI: 10.3390/bioengineering11101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress. As MSCs play a central role in tissue regeneration by migrating into regenerating areas and driving regeneration through proliferation and tissue-specific differentiation, they are increasingly used in therapeutic applications. Consequently, there is a strong interest in investigating the effects of shear stress on MSCs. In this study, we present a set-up for applying high shear rates to cells based on a rotational rheometer with a small-angle cone-plate configuration. This set-up was used to investigate the effect of various shear stresses on human adipose-derived MSCs in suspension. The results of the study show that the viability of the cells remained unaffected up to 18.38 Pa for an exposure time of 5 min. However, it was observed that intense shear stress damaged the cells, with longer treatment durations increasing the percentage of cell debris.
Collapse
Affiliation(s)
- Mario Mand
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
| | | | - Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany; (O.H.); (K.P.)
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
4
|
Lenzen PS, Dingfelder F, Müller M, Arosio P. Portable Microfluidic Viscometer for Formulation Development and in Situ Quality Control of Protein and Antibody Solutions. Anal Chem 2024; 96:13185-13190. [PMID: 39093923 PMCID: PMC11325293 DOI: 10.1021/acs.analchem.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Viscosity of protein solutions is a critical product quality attribute for protein therapeutics such as monoclonal antibodies. Here we introduce a portable single-use analytical chip-based viscometer for determining the viscosity of protein solutions using low sample volumes of 10 μL. Through the combined use of a microfluidic viscometer, a smartphone camera for image capture, and an automated data processing algorithm for the calculation of the viscosity of fluids, we enable measurement of viscosity of multiple samples in parallel. We first validate the viscometer using glycerol-water mixtures and subsequently demonstrate the ability to perform rapid characterization of viscosity in four different monoclonal antibody formulations in a broad concentration (1 to 320 mg/mL) and viscosity (1 to 600 cP) range, showing excellent agreement with values obtained by a conventional cone-plate rheometer. Not only does the platform offer benefits of viscosity measurements using minimal sample volumes, but enables higher throughput compared to gold-standard methodologies owing to multiplexing of the measurement and single-use characteristics of the viscometer, thus showing great promise in developability studies. Additionally, as our platform has the capability of performing viscosity measurements at the point of sample collection, it offers the opportunity to employ viscosity measurement as an in situ quality control of therapeutic proteins and antibodies.
Collapse
Affiliation(s)
- Philippe S Lenzen
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| | - Fabian Dingfelder
- Janssen R&D, BTDS Analytical Development, 8200 Schaffhausen, Switzerland
| | - Marius Müller
- Janssen R&D, BTDS Analytical Development, 8200 Schaffhausen, Switzerland
| | - Paolo Arosio
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Fiscina JE, Darras A, Attinger D, Wagner C. Impact of anti-coagulant choice on blood elongational behavior. SOFT MATTER 2024; 20:4561-4566. [PMID: 38775063 DOI: 10.1039/d4sm00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Blood is a highly complex fluid with rheological properties that have a significant impact on various flow phenomena. In particular, it exhibits a non-Newtonian elongational viscosity that is comparable to polymer solutions. In this study, we investigate the effect of three different anticoagulants, namely EDTA (ethylene diamine tetraacetic acid), heparin, and citrate, on the elongational properties of both human and swine blood. We observe a unique two stage thinning process and a strong dependency of the characteristic relaxation time on the chosen anticoagulant, with the longest relaxation time and thus the highest elongational viscosity being found for the case of citrate. Our findings for the latter are consistent with the physiological values obtained from a dripping droplet of human blood without any anticoagulant. Furthermore, our study resolves the discrepancy found in the literature regarding the reported range of characteristic relaxation times, confirming that the elongational viscosity must be taken into account for a full rheological characterization of blood. These results have important implications for understanding blood flow in various physiological, pathological and technological conditions.
Collapse
Affiliation(s)
| | - Alexis Darras
- Saarland University, Physics Department, 66123 Saarbruecken, Germany
| | | | - Christian Wagner
- Saarland University, Physics Department, 66123 Saarbruecken, Germany
- University of Luxemburg, Physics and Materials Science Research Unit, 1511 Luxembourg, Luxembourg
| |
Collapse
|
6
|
Kavishvar D, Ramachandran A. Low yield stress measurements with a microfluidic rheometer. LAB ON A CHIP 2024; 24:3135-3148. [PMID: 38779813 DOI: 10.1039/d3lc01047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Yield stress, τy, is a key rheological property of complex materials such as gels, dense suspensions, and dense emulsions. While there is a range of established techniques to measure τy in the order of tens to thousands of pascals, the measurement of low τy, specifically below 1 Pa, remains underexplored. In this article, we present the measurement of low apparent τy using a Hele-Shaw microfluidic extensional flow device (MEFD). Using the MEFD, we observe a gradient in shear stress, τ, such that τ is lower near the center or stagnation point, and higher away from the stagnation point. For a yield stress fluid, we observe that, below a certain flow rate, τ exceeds τy only in the outer region, leading to stagnation or unyielding of the fluid in the inner region. We use scaling analysis based on a Hele-Shaw linear extensional flow to deduce τy by measuring the size of the unyielded region, S. We validate this scaling relationship using Carbopol solutions with concentrations ranging between 0.015 to 0.3%, measuring τy as low as ∼10 mPa to ∼1 Pa, and comparing it with τy measured using a standard rheometer. While the experimental lower limit of our technique is 5 mPa, modifying the geometry or improving the image analysis can reduce this limit to the order of 10-4 Pa. The MEFD facilitates rapid measurement of τy, allowing for its real-time assessment. We further report τy of human blood samples between 30 to 80 mPa with their hematocrit ranging between 14 to 63%. Additionally, we determine τy for a mucus simulant (∼0.7 Pa), and lactic drink (∼7 mPa) to demonstrate the versatility of the MEFD technique.
Collapse
Affiliation(s)
- Durgesh Kavishvar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Du J, Lee S, Sinha S, Solberg FS, Ho DLL, Sampson JP, Wang Q, Tam T, Skylar-Scott MA. A Visual, In-Expensive, and Wireless Capillary Rheometer for Characterizing Wholly-Cellular Bioinks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304778. [PMID: 38085139 PMCID: PMC11545891 DOI: 10.1002/smll.202304778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/14/2023] [Indexed: 08/15/2024]
Abstract
Rheological measurements with in situ visualization can elucidate the microstructural origin of complex flow behaviors of an ink. However, existing commercial rheometers suffer from high costs, the need for dedicated facilities for microfabrication, a lack of design flexibility, and cabling that complicates operation in sterile or enclosed environments. To address these limitations, a low-cost ($300) visual, in-expensive and wireless rheometer (VIEWR) using 3D-printed and off-the-shelf components is presented. VIEWR measurements are validated by steady-state and transient flow responses for different complex fluids, and microstructural flow profiles and evolution of yield-planes are revealed via particle image velocimetry. Using the VIEWR, a wholly-cellular bioink system comprised of compacted cell aggregates is characterized, and complex yield-stress and viscoelastic responses are captured via concomitantly visualizing the spatiotemporal evolution of aggregate morphology. A symmetric hyperbolic extensional-flow geometry is further constructed inside a capillary tube using digital light processing. Such geometries allow for measuring the extensional viscosity at varying deformation rates and further visualizing the alignment and stretching of aggregates under external flow. Synchronized but asymmetric evolution of aggregate orientation and strain through the neck is visualized. Using varying geometries, the jamming and viscoelastic deformation of aggregates are shown to contribute to the extensional viscosity of the wholly-cellular bioinks.
Collapse
Affiliation(s)
- Jianyi Du
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Stacey Lee
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Soham Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Fredrik S Solberg
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Debbie L L Ho
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Joshua P Sampson
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiuling Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Tony Tam
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark A Skylar-Scott
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Basic Science and Engineering Initiative, Children's Heart Center, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| |
Collapse
|
8
|
Mustafa A, Ertas Uslu M, Tanyeri M. Optimizing Sensitivity in a Fluid-Structure Interaction-Based Microfluidic Viscometer: A Multiphysics Simulation Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:9265. [PMID: 38005651 PMCID: PMC10675072 DOI: 10.3390/s23229265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Fluid-structure interactions (FSI) are used in a variety of sensors based on micro- and nanotechnology to detect and measure changes in pressure, flow, and viscosity of fluids. These sensors typically consist of a flexible structure that deforms in response to the fluid flow and generates an electrical, optical, or mechanical signal that can be measured. FSI-based sensors have recently been utilized in applications such as biomedical devices, environmental monitoring, and aerospace engineering, where the accurate measurement of fluid properties is critical to ensure performance and safety. In this work, multiphysics models are employed to identify and study parameters that affect the performance of an FSI-based microfluidic viscometer that measures the viscosity of Newtonian and non-Newtonian fluids using the deflection of flexible micropillars. Specifically, we studied the impact of geometric parameters such as pillar diameter and height, aspect ratio of the pillars, pillar spacing, and the distance between the pillars and the channel walls. Our study provides design guidelines to adjust the sensitivity of the viscometer toward specific applications. Overall, this highly sensitive microfluidic sensor can be integrated into complex systems and provide real-time monitoring of fluid viscosity.
Collapse
Affiliation(s)
- Adil Mustafa
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TW, UK;
| | - Merve Ertas Uslu
- Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Melikhan Tanyeri
- Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
9
|
Deshmukh K, Mitra K, Bit A. Influence of Non-Newtonian Viscosity on Flow Structures and Wall Deformation in Compliant Serpentine Microchannels: A Numerical Study. MICROMACHINES 2023; 14:1661. [PMID: 37763824 PMCID: PMC10536915 DOI: 10.3390/mi14091661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits. Hence, regenerated capillaries should be able to withstand such impacts. Consequently, there is a need to understand the flow physics of culture media through the lumen of the substrate as it is one of the vital promoting factors for vasculogenesis under optimal shear conditions at the endothelial lining of the regenerated vessel. Simultaneously, considering the diffusive role of capillaries for ion exchange with the surrounding tissue, capillaries have been found to reorient themselves in serpentine form for modulating the flow conditions while developing sustainable shear stress. In the current study, S-shaped (S1) and delta-shaped (S2) serpentine models of capillaries were considered to evaluate the shear stress distribution and the oscillatory shear index (OSI) and relative residual time (RRT) of the derivatives throughout the channel (due to the phenomena of near-wall stress fluctuation), along with the influence of culture media rheology on wall stress parameters. The non-Newtonian power-law formulation was implemented for defining rheological viscosity of the culture media. The flow actuation of the media was considered to be sinusoidal and physiological, realizing the pulsatile blood flow behavior in the circulatory network. A distinct difference in shear stress distributions was observed in both the serpentine models. The S1 model showed higher change in shear stress in comparison to the S2 model. Furthermore, the non-Newtonian viscosity formulation was found to produce more sustainable shear stress near the serpentine walls compared to the Newtonian formulation fluid, emphasizing the influence of rheology on stress generation. Further, cell viability improved in the bending regions of serpentine channels compared to the long run section of the same channel.
Collapse
Affiliation(s)
- Khemraj Deshmukh
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL 32901, USA
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| |
Collapse
|
10
|
Tsai HF, Podder S, Chen PY. Microsystem Advances through Integration with Artificial Intelligence. MICROMACHINES 2023; 14:826. [PMID: 37421059 PMCID: PMC10141994 DOI: 10.3390/mi14040826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications. Recent advances in artificial intelligence (AI) have brought innovation to microfluidics from design, simulation, automation, and optimization to bioanalysis and data analytics. In microfluidics, the Navier-Stokes equations, which are partial differential equations describing viscous fluid motion that in complete form are known to not have a general analytical solution, can be simplified and have fair performance through numerical approximation due to low inertia and laminar flow. Approximation using neural networks trained by rules of physical knowledge introduces a new possibility to predict the physicochemical nature. The combination of microfluidics and automation can produce large amounts of data, where features and patterns that are difficult to discern by a human can be extracted by machine learning. Therefore, integration with AI introduces the potential to revolutionize the microfluidic workflow by enabling the precision control and automation of data analysis. Deployment of smart microfluidics may be tremendously beneficial in various applications in the future, including high-throughput drug discovery, rapid point-of-care-testing (POCT), and personalized medicine. In this review, we summarize key microfluidic advances integrated with AI and discuss the outlook and possibilities of combining AI and microfluidics.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Soumyajit Podder
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Pin-Yuan Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan
| |
Collapse
|
11
|
Kang YJ. Quantification of Blood Viscoelasticity under Microcapillary Blood Flow. MICROMACHINES 2023; 14:814. [PMID: 37421047 PMCID: PMC10146691 DOI: 10.3390/mi14040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 07/09/2023]
Abstract
Blood elasticity is quantified using a single compliance model by analyzing pulsatile blood flow. However, one compliance coefficient is influenced substantially by the microfluidic system (i.e., soft microfluidic channels and flexible tubing). The novelty of the present method comes from the assessment of two distinct compliance coefficients, one for the sample and one for the microfluidic system. With two compliance coefficients, the viscoelasticity measurement can be disentangled from the influence of the measurement device. In this study, a coflowing microfluidic channel was used to estimate blood viscoelasticity. Two compliance coefficients were suggested to denote the effects of the polydimethylsiloxane (PDMS) channel and flexible tubing (C1), as well as those of the RBC (red blood cell) elasticity (C2), in a microfluidic system. On the basis of the fluidic circuit modeling technique, a governing equation for the interface in the coflowing was derived, and its analytical solution was obtained by solving the second-order differential equation. Using the analytic solution, two compliance coefficients were obtained via a nonlinear curve fitting technique. According to the experimental results, C2/C1 is estimated to be approximately 10.9-20.4 with respect to channel depth (h = 4, 10, and 20 µm). The PDMS channel depth contributed simultaneously to the increase in the two compliance coefficients, whereas the outlet tubing caused a decrease in C1. The two compliance coefficients and blood viscosity varied substantially with respect to homogeneous hardened RBCs or heterogeneous hardened RBCs. In conclusion, the proposed method can be used to effectively detect changes in blood or microfluidic systems. In future studies, the present method can contribute to the detection of subpopulations of RBCs in the patient's blood.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
12
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Kang YJ. Biosensing of Haemorheological Properties Using Microblood Flow Manipulation and Quantification. SENSORS (BASEL, SWITZERLAND) 2022; 23:408. [PMID: 36617006 PMCID: PMC9823650 DOI: 10.3390/s23010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The biomechanical properties of blood have been used to detect haematological diseases and disorders. The simultaneous measurement of multiple haemorheological properties has been considered an important aspect for separating the individual contributions of red blood cells (RBCs) and plasma. In this study, three haemorheological properties (viscosity, time constant, and RBC aggregation) were obtained by analysing blood flow, which was set to a square-wave profile (steady and transient flow). Based on a simplified differential equation derived using a discrete circuit model, the time constant for viscoelasticity was obtained by solving the governing equation rather than using the curve-fitting technique. The time constant (λ) varies linearly with respect to the interface in the coflowing channel (β). Two parameters (i.e., average value: <λ>, linear slope: dλdβ) were newly suggested to effectively represent linearly varying time constant. <λ> exhibited more consistent results than dλdβ. To detect variations in the haematocrit in blood, we observed that the blood viscosity (i.e., steady flow) is better than the time constant (i.e., transient flow). The blood viscosity and time constant exhibited significant differences for the hardened RBCs. The present method was then successfully employed to detect continuously varying haematocrit resulting from RBC sedimentation in a driving syringe. The present method can consistently detect variations in blood in terms of the three haemorheological properties.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
14
|
Nazari N, Kovscek AR. A micro-scale rheometer to study foam texture and flow resistance in planar fractures. LAB ON A CHIP 2022; 22:3489-3498. [PMID: 35959658 DOI: 10.1039/d2lc00595f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We designed and fabricated a new microfluidic device to better enable study of foam microstructure and rheology in planar fractures. The design phase included stress-strain finite element analysis to enhance the pressure tolerance of the device. The optimized design is a 2 cm wide by 7.75 cm long rough fracture that includes 25 posts to anchor the glass cover plate. The posts simulate asperities and provide structural support during bonding of a glass cover plate to the device. Importantly, the new design illustrates improved ability to sustain large differential pressure compared to previous designs in the literature. The rheometer permits study of the relationship among foam bubble morphology, pressure drop, and flow rates. Our findings validated the previous, sparse microvisual studies mentioned in the literature and confirmed that small quality foam, ranging from 20 to 50% gas by volume, contains dispersed bubbles separated by liquid lenses. In this range, the distribution of bubble sizes was roughly 80-90% small uniform bubbles and only 10-20% of larger and more elongated bubbles. Additionally, our studies reveal that foam apparent viscosity is a strong function of foam quality, velocity, and texture (i.e., bubble size). Apparent viscosity of foam ranged from 100 to 600 cP for the conditions studied. High quality foams in fractures are independent of gas flow rates but very sensitive to liquid flow rates. On the other hand, low quality foams are sensitive to gas flow rates but independent of liquid flow rates.
Collapse
Affiliation(s)
- Negar Nazari
- Stanford University, Energy Sciences and Engineering, 367 Panama St, room 50, Stanford, California, USA.
| | - Anthony R Kovscek
- Stanford University, Energy Sciences and Engineering, 367 Panama St, room 50, Stanford, California, USA.
| |
Collapse
|
15
|
Pryazhnikov MI, Yakimov AS, Denisov IA, Pryazhnikov AI, Minakov AV, Belobrov PI. Fluid Viscosity Measurement by Means of Secondary Flow in a Curved Channel. MICROMACHINES 2022; 13:1452. [PMID: 36144075 PMCID: PMC9502554 DOI: 10.3390/mi13091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
This article presents a new approach to determining the viscosity of Newtonian fluid. The approach is based on the analysis of the secondary Dean flow in a curved channel. The study of the flow patterns of water and aqueous solutions of glycerin in a microfluidic chip with a U-microchannel was carried out. The advantages of a microfluidic viscometer based on a secondary Dean flow are its simplicity, quickness, and high accuracy in determining the viscosity coefficient of a liquid. A viscosity image in a short movie represents fluid properties. It is revealed that the viscosity coefficient can be determined by the dependence of the recirculation angle of the secondary Dean flow. The article provides a correlation between the Dean number and the flow recirculation angle. The results of the field experiment, presented in the article, correlate with the data obtained using computational fluid dynamics and allow for selecting parameters to create microfluidic viscometers with a U-shaped microchannel.
Collapse
Affiliation(s)
- Maxim I. Pryazhnikov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Heat Exchange Control in Phase and Chemical Transformations, Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia
| | - Anton S. Yakimov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Ivan A. Denisov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Andrey I. Pryazhnikov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Andrey V. Minakov
- Laboratory of Physical and Chemical Technologies for the Development of Hard-to-Recover Hydrocarbon Reserves, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Heat Exchange Control in Phase and Chemical Transformations, Kutateladze Institute of Thermophysics, 630090 Novosibirsk, Russia
| | - Peter I. Belobrov
- Department of Biophysics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
16
|
Peddireddy KR, Clairmont R, Neill P, McGorty R, Robertson-Anderson RM. Optical-Tweezers-integrating-Differential-Dynamic-Microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites. Nat Commun 2022; 13:5180. [PMID: 36056012 PMCID: PMC9440072 DOI: 10.1038/s41467-022-32876-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map the deformation fields that arise in macromolecular materials, we present Optical-Tweezers-integrating-Differential -Dynamic-Microscopy (OpTiDMM) that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover an unexpected resonant response, in which strain alignment, superdiffusivity, and elasticity are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic storage, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally relax induced stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics-critical to commercial applications and cell mechanics alike.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan Clairmont
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | - Ryan McGorty
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, 92110, USA
| | | |
Collapse
|
17
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
18
|
Kang YJ. Assessment of Blood Biophysical Properties Using Pressure Sensing with Micropump and Microfluidic Comparator. MICROMACHINES 2022; 13:438. [PMID: 35334730 PMCID: PMC8949505 DOI: 10.3390/mi13030438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/04/2022]
Abstract
To identify the biophysical properties of blood samples consistently, macroscopic pumps have been used to maintain constant flow rates in a microfluidic comparator. In this study, the bulk-sized and expensive pump is replaced with a cheap and portable micropump. A specific reference fluid (i.e., glycerin solution [40%]) with a small volume of red blood cell (RBC) (i.e., 1% volume fraction) as fluid tracers is supplied into the microfluidic comparator. An averaged velocity () obtained with micro-particle image velocimetry is converted into the flow rate of reference fluid (Qr) (i.e., Qr = CQ × Ac × , Ac: cross-sectional area, CQ = 1.156). Two control variables of the micropump (i.e., frequency: 400 Hz and volt: 150 au) are selected to guarantee a consistent flow rate (i.e., COV < 1%). Simultaneously, the blood sample is supplied into the microfluidic channel under specific flow patterns (i.e., constant, sinusoidal, and periodic on-off fashion). By monitoring the interface in the comparator as well as Qr, three biophysical properties (i.e., viscosity, junction pressure, and pressure-induced work) are obtained using analytical expressions derived with a discrete fluidic circuit model. According to the quantitative comparison results between the present method (i.e., micropump) and the previous method (i.e., syringe pump), the micropump provides consistent results when compared with the syringe pump. Thereafter, representative biophysical properties, including the RBC aggregation, are consistently obtained for specific blood samples prepared with dextran solutions ranging from 0 to 40 mg/mL. In conclusion, the present method could be considered as an effective method for quantifying the physical properties of blood samples, where the reference fluid is supplied with a cheap and portable micropump.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
19
|
Del Giudice F, Barnes C. Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer. Anal Chem 2022; 94:3617-3628. [PMID: 35167252 DOI: 10.1021/acs.analchem.1c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer's. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Department of Chemical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science, Swansea University Fabian Way, Swansea, SA1 8EN, United Kingdom
| | - Claire Barnes
- Department of Biomedical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science, Swansea University Fabian Way, Swansea, SA1 8EN, United Kingdom
| |
Collapse
|
20
|
Faroughi SA, Del Giudice F. Microfluidic Rheometry and Particle Settling: Characterizing the Effect of Polymer Solution Elasticity. Polymers (Basel) 2022; 14:657. [PMID: 35215569 PMCID: PMC8875193 DOI: 10.3390/polym14040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
The efficient transport of solid particles using polymeric fluids is an important step in many industrial operations. Different viscoelastic fluids have been designed for this purpose, however, the effects of elasticity have not been fully integrated in examining the particle-carrying capacity of the fluids. In this work, two elastic fluid formulations were employed to experimentally clarify the effect of elasticity on the particle drag coefficient as a proxy model for measuring carrying capacity. Fluids were designed to have a constant shear viscosity within a specific range of shear rates, γ˙<50(1/s), while possessing distinct (longest) relaxation times to investigate the influence of elasticity. It is shown that for dilute polymeric solutions, microfluidic rheometry must be practiced to obtain a reliable relaxation time (as one of the measures of viscoelasticity), which is on the order of milliseconds. A calibrated experimental setup, furnished with two advanced particle velocity measurement techniques and spheres with different characteristics, was used to quantify the effect of elasticity on the drag coefficient. These experiments led to a unique dataset in moderate levels of Weissenberg numbers, 01). The experimental results were then compared with direct numerical simulation predictions yielding R2=0.982. These evaluations endorse the numerically quantified behaviors for the drag coefficient to be used to compare the particle-carrying capacity of different polymeric fluids under different flow conditions.
Collapse
Affiliation(s)
- Salah A. Faroughi
- Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Francesco Del Giudice
- Department of Chemical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK;
| |
Collapse
|