1
|
Zhang L, Xia J, Li B, Cao Z, Dong S. Multimodal integrated flexible neural probe for in situ monitoring of EEG and lactic acid. RSC Adv 2024; 14:35520-35528. [PMID: 39507693 PMCID: PMC11540061 DOI: 10.1039/d4ra06336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
In physiological activities, the brain's electroencephalogram (EEG) signal and chemical concentration change are crucial for diagnosing and treating neurological disorders. Despite the advantages of flexible neural probes, such as their flexibility and biocompatibility, it remains a challenge to achieve in situ monitoring of electrophysiological and chemical signals on a small scale simultaneously. This study developed a new method to construct an efficient dual-sided multimodal integrated flexible neural probe, which combines a density electrode array for EEG recordings and an electrochemical sensor for detecting lactic acid. The EEG electrode array includes a 6-channel recording electrode array with each electrode 30 × 50 μm in size, and the lactic acid sensor with overall contact is approximately 100 μm wide. The EEG electrodes have an average impedance of 2.57 kΩ at 1 kHz and remained stable after immersing in NS (normal saline) for 3 months. The lactic acid sensor showed a sensitivity of 52.8 nA mM-1. The in vivo experiments demonstrated that the probe can reliably monitor electrophysiological signals. The probe is able to be implanted into the desired site with the help of a guide port. This flexible neural probe can provide more comprehensive insights into brain activity in the field of neuroscience and clinical practices.
Collapse
Affiliation(s)
- Luxi Zhang
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Jie Xia
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Boyu Li
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhen Cao
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Shurong Dong
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
2
|
Li SY, Tseng HY, Chen BW, Lo YC, Shao HH, Wu YT, Li SJ, Chang CW, Liu TC, Hsieh FY, Yang Y, Lai YB, Chen PC, Chen YY. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. BIOSENSORS 2023; 13:280. [PMID: 36832046 PMCID: PMC9953957 DOI: 10.3390/bios13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.
Collapse
Affiliation(s)
- Szu-Ying Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Ta-Chung Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Fu-Yu Hsieh
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, Johns Hopkins University, No. 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Yan-Bo Lai
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Taipei 112304, Taiwan
- Franz Collection Inc., 13F, No. 167, Sec. 5, Ming Sheng E. Rd., Taipei 10589, Taiwan
| |
Collapse
|
3
|
Li H, Wang J, Fang Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. MICROSYSTEMS & NANOENGINEERING 2023; 9:4. [PMID: 36620392 PMCID: PMC9810608 DOI: 10.1038/s41378-022-00444-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Neural probes are among the most widely applied tools for studying neural circuit functions and treating neurological disorders. Given the complexity of the nervous system, it is highly desirable to monitor and modulate neural activities simultaneously at the cellular scale. In this review, we provide an overview of recent developments in multifunctional neural probes that allow simultaneous neural activity recording and modulation through different modalities, including chemical, electrical, and optical stimulation. We will focus on the material and structural design of multifunctional neural probes and their interfaces with neural tissues. Finally, future challenges and prospects of multifunctional neural probes will be discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
4
|
Ryu D, Lee Y, Lee Y, Lee Y, Hwang S, Kim YK, Jun SB, Lee HW, Ji CH. Silicon optrode array with monolithically integrated SU-8 waveguide and single LED light source. J Neural Eng 2022; 19. [PMID: 35797969 DOI: 10.1088/1741-2552/ac7f5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
This paper presents a conventional LED (light emitting diode) and polymer waveguide coupled silicon optrode array. Unique lens design at the waveguide inlet enables a high light coupling efficiency with a single LED light source, and provides small power consumption compatible with a wireless optogenetic neuromodulation system. To increase the light intensity at the waveguide tip, a lensed waveguide is fabricated with epoxy-based photoresist SU-8, which has a plano-convex lens shape at the waveguide inlet to focus the light in the horizontal direction. In addition, a cylindrical lens is assembled in front of the waveguide inlet to focus the source light in the vertical direction. The glass cylindrical lens and SU-8 plano-convex lens increased the light coupling efficiency by 6.7 dB and 6.6 dB, respectively. The fabricated 1×4 array of optrodes is assembled with a single LED with 465 nm wavelength, which produces a light intensity of approximately 2.7 mW/mm2 at the SU-8 waveguide outlet when 50 mA input current is applied to the LED. Each optrode has four recording electrodes at the SU-8 waveguide outlet. The average impedance of the iridium oxide (IrOx) electroplated recording electrodes is 43.6 kΩ. In-vivo experiment at the hippocampus region CA1 and CA2 demonstrated the capability of optical stimulation and neural signal recording through the LED and SU-8 waveguide coupled silicon optrode array.
Collapse
Affiliation(s)
- Daeho Ryu
- Electrical and computer engineering, Seoul National University, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Youjin Lee
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yongseung Lee
- Department of Electrical and Computer Engineering, , Seoul National University, 301 Dong 1116 Ho, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Yena Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Seoyoung Hwang
- Department of Electronic and Electrical Engineering, Ewha Womans University, Asan Engineering Building, Seoul, 03760, Korea (the Republic of)
| | - Yong-Kweon Kim
- Department of Electrical and Computer Engineering, Graduate School of Engineering Practice, Seoul National University, Seoul National University, PO Box 34, Kwanak, Seoul 151-600, Korea, Gwanak-gu, Seoul, 08826, Korea (the Republic of)
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemungu, Seoul, 03760, Korea (the Republic of)
| | - Hyang Woon Lee
- Departments of Neurology, Medical Science, and Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Ewha Womans University Medical Center, Seoul, 03760, Korea (the Republic of)
| | - Chang-Hyeon Ji
- Department of Electronics and Electrical Engineering, Graduate Program in Smart Factory, Ewha Womans University, Asan Engineering Building #432, Seoul, Republic of Korea, Seoul, 03760, Korea (the Republic of)
| |
Collapse
|
5
|
Oldroyd P, Malliaras GG. Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomater 2022; 139:65-81. [PMID: 34020055 DOI: 10.1016/j.actbio.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Implantable electrodes that can reliably measure brain activity and deliver an electrical stimulus to a target tissue are increasingly employed to treat various neurological diseases and neuropsychiatric disorders. Flexible thin-film electrodes have gained attention over the past few years to minimise invasiveness and damage upon implantation. Research has previously focused on optimising the electrode's electrical and mechanical properties; however, their chronic stability must be validated to translate electrodes from a research to a clinical application. Neurostimulation electrodes, which actively inject charge, have yet to reliably demonstrate continuous functionality for ten years or more in vivo, the accepted metric for clinical viability. Long-term stability can only be achieved if the focus switches to investigating how and why such devices fail. Unfortunately, there is a field-wide reluctance to investigate device stability and failures, which hinders device optimisation. This review surveys thin-film electrode designs with a focus on adhesion between electrode layers and the interactions with the surrounding environment. A comprehensive summary of the abiotic failure modes faced by such electrodes is presented, and to encourage investigation, systematic methods for analysing their origin are recommended. Finally, approaches to reducing the likelihood of device failure are offered. STATEMENT OF SIGNIFICANCE: Neural electrodes that can deliver an electrical stimulus to a target tissue are widely used to treat various neurological diseases. Essential to the function of these electrodes is the ability to safely stimulate the target tissue for extended periods (> 10 years); however, this has not yet been clinically achieved. The key to achieving long-term stability is an increased understanding of electrode interactions with the surrounding tissue and subsequent systematic analysis of their failure modes. This review highlights the need for a change in the approach to investigating electrode failure, and in doing so summarizes the common ways in which neural electrodes fail, methods for identifying them and approaches to preventing them.
Collapse
|
6
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Al Abed A, Amatoury J, Khraiche M. Finite Element Modeling of Magnitude and Location of Brain Micromotion Induced Strain for Intracortical Implants. Front Neurosci 2022; 15:727715. [PMID: 35069092 PMCID: PMC8770436 DOI: 10.3389/fnins.2021.727715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Micromotion-induced stress remains one of the main determinants of life of intracortical implants. This is due to high stress leading to tissue injury, which in turn leads to an immune response coupled with a significant reduction in the nearby neural population and subsequent isolation of the implant. In this work, we develop a finite element model of the intracortical probe-tissue interface to study the effect of implant micromotion, implant thickness, and material properties on the strain levels induced in brain tissue. Our results showed that for stiff implants, the strain magnitude is dependent on the magnitude of the motion, where a micromotion increase from 1 to 10 μm induced an increase in the strain by an order of magnitude. For higher displacement over 10 μm, the change in the strain was relatively smaller. We also showed that displacement magnitude has no impact on the location of maximum strain and addressed the conflicting results in the literature. Further, we explored the effect of different probe materials [i.e., silicon, polyimide (PI), and polyvinyl acetate nanocomposite (PVAc-NC)] on the magnitude, location, and distribution of strain. Finally, we showed that strain distribution across cortical implants was in line with published results on the size of the typical glial response to the neural probe, further reaffirming that strain can be a precursor to the glial response.
Collapse
Affiliation(s)
- Ali Al Abed
- Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon
| | - Jason Amatoury
- Sleep and Upper Airway Research Group, Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon
| | - Massoud Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Kang YN, Chou N, Jang JW, Choe HK, Kim S. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. MICROSYSTEMS & NANOENGINEERING 2021; 7:66. [PMID: 34567778 PMCID: PMC8433186 DOI: 10.1038/s41378-021-00295-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/11/2021] [Indexed: 05/23/2023]
Abstract
The demand for multifunctional neural interfaces has grown due to the need to provide a better understanding of biological mechanisms related to neurological diseases and neural networks. Direct intracerebral drug injection using microfluidic neural interfaces is an effective way to deliver drugs to the brain, and it expands the utility of drugs by bypassing the blood-brain barrier (BBB). In addition, uses of implantable neural interfacing devices have been challenging due to inevitable acute and chronic tissue responses around the electrodes, pointing to a critical issue still to be overcome. Although neural interfaces comprised of a collection of microneedles in an array have been used for various applications, it has been challenging to integrate microfluidic channels with them due to their characteristic three-dimensional structures, which differ from two-dimensionally fabricated shank-type neural probes. Here we present a method to provide such three-dimensional needle-type arrays with chemical delivery functionality. We fabricated a microfluidic interconnection cable (µFIC) and integrated it with a flexible penetrating microelectrode array (FPMA) that has a 3-dimensional structure comprised of silicon microneedle electrodes supported by a flexible array base. We successfully demonstrated chemical delivery through the developed device by recording neural signals acutely from in vivo brains before and after KCl injection. This suggests the potential of the developed microfluidic neural interface to contribute to neuroscience research by providing simultaneous signal recording and chemical delivery capabilities.
Collapse
Affiliation(s)
- Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery & Materials (KIMM), Daegu, Republic of Korea
| | - Namsun Chou
- Center for BioMicrosystems, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Won Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
9
|
Francoeur MJ, Tang T, Fakhraei L, Wu X, Hulyalkar S, Cramer J, Buscher N, Ramanathan DR. Chronic, Multi-Site Recordings Supported by Two Low-Cost, Stationary Probe Designs Optimized to Capture Either Single Unit or Local Field Potential Activity in Behaving Rats. Front Psychiatry 2021; 12:678103. [PMID: 34421671 PMCID: PMC8374626 DOI: 10.3389/fpsyt.2021.678103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Rodent models of cognitive behavior have greatly contributed to our understanding of human neuropsychiatric disorders. However, to elucidate the neurobiological underpinnings of such disorders or impairments, animal models are more useful when paired with methods for measuring brain function in awake, behaving animals. Standard tools used for systems-neuroscience level investigations are not optimized for large-scale and high-throughput behavioral battery testing due to various factors including cost, time, poor longevity, and selective targeting limited to measuring only a few brain regions at a time. Here we describe two different "user-friendly" methods for building extracellular electrophysiological probes that can be used to measure either single units or local field potentials in rats performing cognitive tasks. Both probe designs leverage several readily available, yet affordable, commercial products to facilitate ease of production and offer maximum flexibility in terms of brain-target locations that can be scalable (32-64 channels) based on experimental needs. Our approach allows neural activity to be recorded simultaneously with behavior and compared between micro (single unit) and more macro (local field potentials) levels of brain activity in order to gain a better understanding of how local brain regions and their connected networks support cognitive functions in rats. We believe our novel probe designs make collecting electrophysiology data easier and will begin to fill the gap in knowledge between basic and clinical research.
Collapse
Affiliation(s)
- Miranda J. Francoeur
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tianzhi Tang
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Leila Fakhraei
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Xuanyu Wu
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Sidharth Hulyalkar
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Jessica Cramer
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Nathalie Buscher
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Dhakshin R. Ramanathan
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Lee Y, Shin H, Lee D, Choi S, Cho I, Seo J. A Lubricated Nonimmunogenic Neural Probe for Acute Insertion Trauma Minimization and Long-Term Signal Recording. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100231. [PMID: 34085402 PMCID: PMC8336494 DOI: 10.1002/advs.202100231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Indexed: 05/06/2023]
Abstract
Brain-machine interfaces (BMIs) that link the brain to a machine are promising for the treatment of neurological disorders through the bi-directional translation of neural information over extended periods. However, the longevity of such implanted devices remains limited by the deterioration of their signal sensitivity over time due to acute inflammation from insertion trauma and chronic inflammation caused by the foreign body reaction. To address this challenge, a lubricated surface is fabricated to minimize friction during insertion and avoid immunogenicity during neural signal recording. Reduced friction force leads to 86% less impulse on the brain tissue, and thus immediately increases the number of measured signal electrodes by 102% upon insertion. Furthermore, the signal measurable period increases from 8 to 16 weeks due to the prevention of gliosis. By significantly reducing insertion damage and the foreign body reaction, the lubricated immune-stealthy probe surface (LIPS) can maximize the longevity of implantable BMIs.
Collapse
Affiliation(s)
- Yeontaek Lee
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystemsBrain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Dongwon Lee
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungah Choi
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Il‐Joo Cho
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for BioMicrosystemsBrain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
11
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
12
|
Mobini S, Kuliasha CA, Siders ZA, Bohmann NA, Jamal SM, Judy JW, Schmidt CE, Brennan AB. Microtopographical patterns promote different responses in fibroblasts and Schwann cells: A possible feature for neural implants. J Biomed Mater Res A 2021; 109:64-76. [PMID: 32419308 PMCID: PMC8059778 DOI: 10.1002/jbm.a.37007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/28/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
The chronic reliability of bioelectronic neural interfaces has been challenged by foreign body reactions (FBRs) resulting in fibrotic encapsulation and poor integration with neural tissue. Engineered microtopographies could alleviate these challenges by manipulating cellular responses to the implanted device. Parallel microchannels have been shown to modulate neuronal cell alignment and axonal growth, and Sharklet™ microtopographies of targeted feature sizes can modulate bio-adhesion of an array of bacteria, marine organisms, and epithelial cells due to their unique geometry. We hypothesized that a Sharklet™ micropattern could be identified that inhibited fibroblasts partially responsible for FBR while promoting Schwann cell proliferation and alignment. in vitro cell assays were used to screen the effect of Sharklet™ and channel micropatterns of varying dimensions from 2 to 20 μm on fibroblast and Schwann cell metrics (e.g., morphology/alignment, nuclei count, metabolic activity), and a hierarchical analysis of variance was used to compare treatments. In general, Schwann cells were found to be more metabolically active and aligned than fibroblasts when compared between the same pattern. 20 μm wide channels spaced 2 μm apart were found to promote Schwann cell attachment and alignment while simultaneously inhibiting fibroblasts and warrant further in vivo study on neural interface devices. No statistically significant trends between cellular responses and geometrical parameters were identified because mammalian cells can change their morphology dependent on their environment in a manner dissimilar to bacteria. Our results showed although surface patterning is a strong physical tool for modulating cell behavior, responses to micropatterns are highly dependent on the cell type.
Collapse
Affiliation(s)
- Sahba Mobini
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Universidad Autónoma de Madrid, Spain
| | - Cary A. Kuliasha
- Nanoscience Institute for Medical and Engineering Technology, University of Florida, USA
| | - Zachary A. Siders
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, USA
| | - Nicole A. Bohmann
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Syed-Mustafa Jamal
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Jack W. Judy
- Nanoscience Institute for Medical and Engineering Technology, University of Florida, USA
| | - Christine E. Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
| | - Anthony B. Brennan
- Crayton Pruitt Family Department of Biomedical Engineering University of Florida, USA
- Materials Science and Engineering Department, University of Florida, USA
| |
Collapse
|
13
|
Ding D, Lu Y, Zhao R, Liu X, De-Eknamkul C, Ren C, Mehrsa A, Komiyama T, Kuzum D. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments. IEEE Trans Biomed Eng 2020; 67:3203-3210. [PMID: 32191878 PMCID: PMC8560430 DOI: 10.1109/tbme.2020.2979475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate chronic durability of transparent graphene electrodes fabricated on polyethylene terephthalate (PET) and SU-8 substrates for chronic in vivo studies. METHODS We perform systematic accelerated aging tests to understand the chronic reliability and failure modes of transparent graphene microelectrode arrays built on PET and SU-8 substrates. We employ graphene microelectrodes fabricated on PET substrate in chronic in vivo experiments with transgenic mice. RESULTS Our results show that graphene microelectrodes fabricated on PET substrate work reliably after 30 days accelerated aging test performed at 87 °C, equivalent to 960 days in vivo lifetime. We demonstrate stable chronic recordings of cortical potentials in multimodal imaging/recording experiments using transparent graphene microelectrodes fabricated on PET substrate. On the other hand, graphene microelectrode arrays built on SU-8 substrate exhibit extensive crack formation across microelectrode sites and wires after one to two weeks, resulting in total failure of recording capability for chronic studies. CONCLUSION PET shows superior reliability as a substrate for graphene microelectrode arrays for chronic in vivo experiments. SIGNIFICANCE Graphene is a unique neural interface material enabling cross-talk free integration of electrical and optical recording and stimulation techniques in the same experiment. To date, graphene-based microelectrode arrays have been demonstrated in various multi-modal acute experiments involving electrophysiological sensing or stimulation, optical imaging and optogenetics stimulation. Understanding chronic reliability of graphene-based transparent interfaces is very important to expand the use of this technology for long-term behavioral studies with animal models.
Collapse
|
14
|
Li H, Wang J, Fang Y. Bioinspired flexible electronics for seamless neural interfacing and chronic recording. NANOSCALE ADVANCES 2020; 2:3095-3102. [PMID: 36134275 PMCID: PMC9417495 DOI: 10.1039/d0na00323a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 05/27/2023]
Abstract
Implantable neural probes are among the most widely applied tools for the understanding of neural circuit functions and the treatment of neurological disorders. Despite remarkable progress in recent years, it is still challenging for conventional rigid probes to achieve stable neural recording over long periods of time. Recently, flexible electronics with biomimetic structures and mechanical properties have been demonstrated for the formation of seamless probe-neural interfaces, enabling long-term recording stability. In this review, we provide an overview of bioinspired flexible electronics, from their structural design to probe-brain interfaces and chronic neural recording applications. Opportunities of bioinspired flexible electronics in fundamental neuroscience and clinical studies are also discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
15
|
Garcia-Cortadella R, Schäfer N, Cisneros-Fernandez J, Ré L, Illa X, Schwesig G, Moya A, Santiago S, Guirado G, Villa R, Sirota A, Serra-Graells F, Garrido JA, Guimerà-Brunet A. Switchless Multiplexing of Graphene Active Sensor Arrays for Brain Mapping. NANO LETTERS 2020; 20:3528-3537. [PMID: 32223249 DOI: 10.1021/acs.nanolett.0c00467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensor arrays used to detect electrophysiological signals from the brain are paramount in neuroscience. However, the number of sensors that can be interfaced with macroscopic data acquisition systems currently limits their bandwidth. This bottleneck originates in the fact that, typically, sensors are addressed individually, requiring a connection for each of them. Herein, we present the concept of frequency-division multiplexing (FDM) of neural signals by graphene sensors. We demonstrate the high performance of graphene transistors as mixers to perform amplitude modulation (AM) of neural signals in situ, which is used to transmit multiple signals through a shared metal line. This technology eliminates the need for switches, remarkably simplifying the technical complexity of state-of-the-art multiplexed neural probes. Besides, the scalability of FDM graphene neural probes has been thoroughly evaluated and their sensitivity demonstrated in vivo. Using this technology, we envision a new generation of high-count conformal neural probes for high bandwidth brain machine interfaces.
Collapse
Affiliation(s)
- Ramon Garcia-Cortadella
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Nathan Schäfer
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jose Cisneros-Fernandez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
| | - Lucia Ré
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
- Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red en Bioingeniería, 08193 Madrid, Spain
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
- Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red en Bioingeniería, 08193 Madrid, Spain
| | - Gerrit Schwesig
- Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany, 80539
| | - Ana Moya
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
| | - Sara Santiago
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
- Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red en Bioingeniería, 08193 Madrid, Spain
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany, 80539
| | - Francesc Serra-Graells
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Anton Guimerà-Brunet
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, 08193 Bellaterra, Spain
- Biomateriales y Nanomedicina (CIBER-BBN), Centro de Investigación Biomédica en Red en Bioingeniería, 08193 Madrid, Spain
| |
Collapse
|
16
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5659682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis, structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the structure-property relationship and the corresponding functional applications of the conducting polymer-based composites. Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.
Collapse
|
18
|
Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol 2019; 37:1007-1012. [PMID: 31477925 PMCID: PMC6741780 DOI: 10.1038/s41587-019-0234-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Periodically throughout history developments from adjacent fields of science and technology reach a tipping point where together they produce unparalleled advances, such as the Allen Brain Atlas and the Human Genome Project. Today, research focused at the interface between the nervous system and electronics is not only leading to advances in fundamental neuroscience, but also unlocking the potential of implants capable of cellular-level therapeutic targeting. Ultimately, these personalized electronic therapies will provide new treatment modalities for neurodegenerative and neuropsychiatric illness; powerful control of prosthetics for restorative function in degenerative diseases, trauma and amputation; and even augmentation of human cognition. Overall, we believe that emerging advances in tissue-like electronics will enable minimally invasive devices capable of establishing a stable long-term cellular neural interface and providing long-term treatment for chronic neurological conditions.
Collapse
Affiliation(s)
- Shaun R Patel
- McCance Center for Brain Health, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Center for Brain Science, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Ulyanova AV, Cottone C, Adam CD, Gagnon KG, Cullen DK, Holtzman T, Jamieson BG, Koch PF, Chen HI, Johnson VE, Wolf JA. Multichannel Silicon Probes for Awake Hippocampal Recordings in Large Animals. Front Neurosci 2019; 13:397. [PMID: 31080400 PMCID: PMC6497800 DOI: 10.3389/fnins.2019.00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Decoding laminar information across deep brain structures and cortical regions is necessary in order to understand the neuronal ensembles that represent cognition and memory. Large animal models are essential for translational research due to their gyrencephalic neuroanatomy and significant white matter composition. A lack of long-length probes with appropriate stiffness allowing penetration to deeper structures with minimal damage to the neural interface is one of the major technical limitations to applying the approaches currently utilized in lower order animals to large animals. We therefore tested the performance of multichannel silicon probes of various solutions and designs that were developed specifically for large animal electrophysiology. Neurophysiological signals from dorsal hippocampus were recorded in chronically implanted awake behaving Yucatan pigs. Single units and local field potentials were analyzed to evaluate performance of given silicon probes over time. EDGE-style probes had the highest yields during intra-hippocampal recordings in pigs, making them the most suitable for chronic implantations and awake behavioral experimentation. In addition, the cross-sectional area of silicon probes was found to be a crucial determinant of silicon probe performance over time, potentially due to reduction of damage to the neural interface. Novel 64-channel EDGE-style probes tested acutely produced an optimal single unit separation and a denser sampling of the laminar structure, identifying these research silicon probes as potential candidates for chronic implantations. This study provides an analysis of multichannel silicon probes designed for large animal electrophysiology of deep laminar brain structures, and suggests that current designs are reaching the physical thresholds necessary for long-term (∼1 month) recordings with single-unit resolution.
Collapse
Affiliation(s)
- Alexandra V. Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher D. Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly G. Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | | | - Brian G. Jamieson
- Scientific & Biomedical Microsystems, Glen Burnie, MD, United States
| | - Paul F. Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Victoria E. Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
20
|
Xi Y, Ji B, Guo Z, Li W, Liu J. Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI. MICROMACHINES 2019; 10:mi10040242. [PMID: 30979081 PMCID: PMC6523908 DOI: 10.3390/mi10040242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Signal recording and stimulation with high spatial and temporal resolution are of increasing interest with the development of implantable brain-computer interfaces (BCIs). However, implantable BCI technology still faces challenges in the biocompatibility and long-term stability of devices after implantation. Due to the cone structure, needle electrodes have advantages in the biocompatibility and stability as nerve recording electrodes. This paper develops the fabrication of Ag needle micro/nano electrodes with a laser-assisted pulling method and modifies the electrode surface by electrochemical oxidation. A significant impedance reduction of the modified Ag/AgCl electrodes compared to the Ag electrodes is demonstrated by the electrochemical impedance spectrum (EIS). Furthermore, the stability of modified Ag/AgCl electrodes is confirmed by cyclic voltammogram (CV) scanning. These findings suggest that these micro/nano electrodes have a great application prospect in neural interfaces.
Collapse
Affiliation(s)
- Ye Xi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bowen Ji
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wen Li
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48823, USA.
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Kook G, Jeong S, Kim SH, Kim MK, Lee S, Cho IJ, Choi N, Lee HJ. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:115-124. [PMID: 30480426 DOI: 10.1021/acsami.8b13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Silk fibroin is an excellent candidate for biomedical implantable devices because of its biocompatibility, controllable biodegradability, solution processability, flexibility, and transparency. Thus, fibroin has been widely explored in biomedical applications as biodegradable films as well as functional microstructures. Although there exists a large number of patterning methods for fibroin thin films, multilayer micropatterning of fibroin films interleaved with metal layers still remains a challenge. Herein, we report a new wafer-scale multilayer microfabrication process named aluminum hard mask on silk fibroin (AMoS), which is capable of micropatterning multiple layers composed of both fibroin and inorganic materials (e.g., metal and dielectrics) with high-precision microscale alignment. To the best of our knowledge, our AMoS process is the first demonstration of wafer-scale multilayer processing of both silk fibroin and metal micropatterns. In the AMoS process, aluminum deposited on fibroin is first micropatterned using conventional ultraviolet (UV) photolithography, and the patterned aluminum layer is then used as a mask to pattern fibroin underneath. We demonstrate the versatility of our fabrication process by fabricating fibroin microstructures with different dimensions, passive electronic components composed of both fibroin and metal layers, and functional fibroin microstructures for drug delivery. Furthermore, because one of the crucial advantages of fibroin is biocompatibility, we assess the biocompatibility of our fabrication process through the culture of highly susceptible primary neurons. Because the AMoS process utilizes conventional UV photolithography, the principal advantages of our process are multilayer fabrication with high-precision alignment, high resolution, wafer-scale large area processing, no requirement for chemical modification of the protein, and high throughput and thus low cost, all of which have not been feasible with silk fibroin. Therefore, the proposed fabrication method is a promising candidate for batch fabrication of functional fibroin microelectronics (e.g., memristors and organic thin film transistors) for next-generation implantable biomedical applications.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sohyeon Jeong
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - So Hyun Kim
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- SK Biopharmaceuticals Co., Ltd. , 221 Pangyoyeok-ro , Bundang-gu, Seongnam-si , Gyeonggi-do 13494 , Republic of Korea
| | - Mi Kyung Kim
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Sungwoo Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute , Korea Institute of Science and Technology (KIST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , 5 Hwarang-ro 14 gil , Seongbuk-gu, Seoul 02792 , Republic of Korea
| | - Hyunjoo J Lee
- School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea
| |
Collapse
|
22
|
Hawker MJ, Guo C, Omenetto FG, Kaplan DL. Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS APPLIED BIO MATERIALS 2018; 1:1677-1686. [PMID: 34996217 PMCID: PMC11047755 DOI: 10.1021/acsabm.8b00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Implantable electronics hold enormous clinical potential for diagnosis and treatment of neurodegenerative and cardiac diseases and abnormalities. Transient devices are attractive alternatives to conventional silicon electrodes, as they can provide short-term electrical stimulation/recording followed by complete device degradation, mitigating the need for removal surgeries. Packaging transient metals is inherently challenging as they degrade upon contact with aqueous conditions. Development of new transient metal packaging strategies is a critical step toward transient device development. In this fundamental work, a solvent-free compression molding approach to encapsulate magnesium, a resorbable metal, in silk fibroin protein is reported. Silk fibroin was selected because of its processing versatility, desirable mechanical properties, compatibility with biological environments, and controllable degradation behavior in aqueous environments. The silk/magnesium composites were fabricated via compression molding, followed by water annealing to modify the secondary structure of the silk protein matrix to tune physical properties. Transient composite properties as a function of water annealing time are presented, which elucidate synergies between silk physical properties and degradation kinetics of the encapsulated magnesium, information useful in the design of multifunctional, transient metal-based constructs.
Collapse
Affiliation(s)
- Morgan J Hawker
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Neto JP, Baião P, Lopes G, Frazão J, Nogueira J, Fortunato E, Barquinha P, Kampff AR. Does Impedance Matter When Recording Spikes With Polytrodes? Front Neurosci 2018; 12:715. [PMID: 30349453 PMCID: PMC6188074 DOI: 10.3389/fnins.2018.00715] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022] Open
Abstract
Extracellular microelectrodes have been widely used to measure brain activity, yet there are still basic questions about the requirements for a good extracellular microelectrode. One common source of confusion is how much an electrode's impedance affects the amplitude of extracellular spikes and background noise. Here we quantify the effect of an electrode's impedance on data quality in extracellular recordings, which is crucial for both the detection of spikes and their assignment to the correct neurons. This study employs commercial polytrodes containing 32 electrodes (177 μm2) arranged in a dense array. This allowed us to directly compare, side-by-side, the same extracellular signals measured by modified low impedance (∼100 kΩ) microelectrodes with unmodified high impedance (∼1 MΩ) microelectrodes. We begin with an evaluation of existing protocols to lower the impedance of the electrodes. The poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) electrodeposition protocol is a simple, stable, and reliable method for decreasing the impedance of a microelectrode up to 10-fold. We next record in vivo using polytrodes that are modified in a 'chess board' pattern, such that the signal of one neuron is detected by multiple coated and non-coated electrodes. The performance of the coated and non-coated electrodes is then compared on measures of background noise and amplitude of the detected action potentials. If the proper recording system is used, then the impedance of a microelectrode within the range of standard polytrodes (∼0.1 to 2 MΩ) does not greatly affect data quality and spike sorting. This study should encourage neuroscientists to stop worrying about one more unknown.
Collapse
Affiliation(s)
- Joana P. Neto
- CENIMAT/I3N and CEMOP/Uninova, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Pedro Baião
- CENIMAT/I3N and CEMOP/Uninova, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gonçalo Lopes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Frazão
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana Nogueira
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Elvira Fortunato
- CENIMAT/I3N and CEMOP/Uninova, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro Barquinha
- CENIMAT/I3N and CEMOP/Uninova, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Adam R. Kampff
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
24
|
Schander A, Stemmann H, Kreiter AK, Lang W. Silicon-Based Microfabrication of Free-Floating Neural Probes and Insertion Tool for Chronic Applications. MICROMACHINES 2018; 9:E131. [PMID: 30424065 PMCID: PMC6187723 DOI: 10.3390/mi9030131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Bidirectional neural interfaces for multi-channel, high-density recording and electrical stimulation of neural activity in the central nervous system are fundamental tools for neuroscience and medical applications. Especially for clinical use, these electrical interfaces must be stable over several years, which is still a major challenge due to the foreign body response of neural tissue. A feasible solution to reduce this inflammatory response is to enable a free-floating implantation of high-density, silicon-based neural probes to avoid mechanical coupling between the skull and the cortex during brain micromotion. This paper presents our latest development of a reproducible microfabrication process, which allows a monolithic integration of a highly-flexible, polyimide-based cable with a silicon-stiffened neural probe at a high resolution of 1 µm. For a precise and complete insertion of the free-floating probes into the cortex, a new silicon-based, vacuum-actuated insertion tool is presented, which can be attached to commercially available electrode drives. To reduce the electrode impedance and enable safe and stable microstimulation an additional coating with the electrical conductive polymer PEDOT:PSS is used. The long-term stability of the presented free-floating neural probes is demonstrated in vitro and in vivo. The promising results suggest the feasibility of these neural probes for chronic applications.
Collapse
Affiliation(s)
- Andreas Schander
- Institute for Microsensors, -actuators and -systems (IMSAS), University of Bremen, Bremen 28359, Germany.
| | - Heiko Stemmann
- Brain Research Institute, University of Bremen, Bremen 28359, Germany.
| | - Andreas K Kreiter
- Brain Research Institute, University of Bremen, Bremen 28359, Germany.
| | - Walter Lang
- Institute for Microsensors, -actuators and -systems (IMSAS), University of Bremen, Bremen 28359, Germany.
| |
Collapse
|
25
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eui-Sung Yoon
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
26
|
Xu H, Hirschberg AW, Scholten K, Berger TW, Song D, Meng E. Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings. J Neural Eng 2018; 15:016017. [PMID: 29044049 PMCID: PMC5792195 DOI: 10.1088/1741-2552/aa9451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The success of a cortical prosthetic device relies upon its ability to attain resolvable spikes from many neurons in particular neural networks over long periods of time. Traditionally, lifetimes of neural recordings are greatly limited by the body's immune response against the foreign implant which causes neuronal death and glial scarring. This immune reaction is posited to be exacerbated by micromotion between the implant, which is often rigid, and the surrounding, soft brain tissue, and attenuates the quality of recordings over time. APPROACH In an attempt to minimize the foreign body response to a penetrating neural array that records from multiple brain regions, Parylene C, a flexible, biocompatible polymer was used as the substrate material for a functional, proof-of-concept neural array with a reduced elastic modulus. This probe array was designed and fabricated to have 64 electrodes positioned to match the anatomy of the rat hippocampus and allow for simultaneous recordings between two cell-body layers of interest. A dissolvable brace was used for deep-brain penetration of the flexible array. MAIN RESULTS Arrays were electrochemically characterized at the benchtop, and a novel insertion technique that restricts acute insertion injury enabled accurate target placement of four, bare, flexible arrays to greater than 4 mm deep into the rat brain. Arrays were tested acutely and in vivo recordings taken intra-operatively reveal spikes in both targeted regions of the hippocampus with spike amplitudes and noise levels similar to those recorded with microwires. Histological staining of a sham array implanted for one month reveals limited astrocytic scarring and neuronal death around the implant. SIGNIFICANCE This work represents one of the first examples of a penetrating polymer probe array that records from individual neurons in structures that lie deep within the brain.
Collapse
Affiliation(s)
- Huijing Xu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089-1111, United States of America
| | | | | | | | | | | |
Collapse
|
27
|
Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. LAB ON A CHIP 2017; 17:1406-1435. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microfluidic neural probes hold immense potential as in vivo tools for dissecting neural circuit function in complex nervous systems. Miniaturization, integration, and automation of drug delivery tools open up new opportunities for minimally invasive implants. These developments provide unprecedented spatiotemporal resolution in fluid delivery as well as multifunctional interrogation of neural activity using combined electrical and optical modalities. Capitalizing on these unique features, microfluidic technology will greatly advance in vivo pharmacology, electrophysiology, optogenetics, and optopharmacology. In this review, we discuss recent advances in microfluidic neural probe systems. In particular, we will highlight the materials and manufacturing processes of microfluidic probes, device configurations, peripheral devices for fluid handling and packaging, and wireless technologies that can be integrated for the control of these microfluidic probe systems. This article summarizes various microfluidic implants and discusses grand challenges and future directions for further developments.
Collapse
Affiliation(s)
- Joo Yong Sim
- Electronics and Telecommunications Research Institute, Bio-Medical IT Convergence Research Department, Daejeon, 34129, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Spencer KC, Sy JC, Falcón-Banchs R, Cima MJ. A three dimensional in vitro glial scar model to investigate the local strain effects from micromotion around neural implants. LAB ON A CHIP 2017; 17:795-804. [PMID: 28119969 PMCID: PMC5389738 DOI: 10.1039/c6lc01411a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glial scar formation remains a significant barrier to the long term success of neural probes. Micromotion coupled with mechanical mismatch between the probe and tissue is believed to be a key driver of the inflammatory response. In vitro glial scar models present an intermediate step prior to conventional in vivo histology experiments as they enable cell-device interactions to be tested on a shorter timescale, with the ability to conduct broader biochemical assays. No established in vitro models have incorporated methods to assess device performance with respect to mechanical factors. In this study, we describe an in vitro glial scar model that combines high-precision linear actuators to simulate axial micromotion around neural implants with a 3D primary neural cell culture in a collagen gel. Strain field measurements were conducted to visualize the local displacement within the gel in response to micromotion. Primary brain cell cultures were found to be mechanically responsive to micromotion after one week in culture. Astrocytes, as determined by immunohistochemical staining, were found to have significantly increased in cell areas and perimeters in response to micromotion compared to static control wells. These results demonstrate the importance of micromotion when considering the chronic response to neural implants. Going forward, this model provides advantages over existing in vitro models as it will enable critical mechanical design factors of neural implants to be evaluated prior to in vivo testing.
Collapse
Affiliation(s)
- Kevin C Spencer
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jay C Sy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Roberto Falcón-Banchs
- University of California, Berkeley and University of California, San Francisco Graduate Program in Bioengineering, USA
| | - Michael J Cima
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|