1
|
Al-Gahtany SA. Thermal stability and optical properties of radiation-induced grafting of methyl methacrylate onto low-density polyethylene in a solvent system containing pyridine. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
In this study, the grafting of methyl methacrylate (MMA) in a solvent system containing nitrogen of pyridine onto LDPE films was performed using the post-irradiation technique in nitrogen at different gamma doses. The DG% obtained in MMA grafting was 71.0% at 10 kGy of γ dose was increased to 90% in (MMA/Py) (80/20 v/v%) system, indicating the existence of Py enhancement in the grafting % of MMA. The addition of pyridine (Py) into MMA matrix increases the molecular weight of the matrix due to the plasticizing effect of Py on the system. Morphological and structural changes in optical properties and thermogravimetric analysis were performed for the films. According to Fourier transform infrared data, a reaction may be placed between Py and MMA molecules. Furthermore, the effect of Py molecules on the optical properties of LDPE films is studied. The optical transition upon the grafting process increased, indicating the movement of the electrons due to intramolecular hydrogen bonds between MMA and Py molecules. The Urbach energy and the optical band gab, E
g, were investigated and found to depend mainly on the grafting degree. The results obtained from E
g calculations recommended using an irradiation dose of 15 kGy to get LDPE-g-MMA/Py films with suitable optical properties.
Collapse
Affiliation(s)
- Samera Ali Al-Gahtany
- Physics Department, Faculty of Science, University of Jeddah , Jeddah , Saudi Arabia
| |
Collapse
|
2
|
Bibliometrics of Functional Polymeric Biomaterials with Bioactive Properties Prepared by Radiation-Induced Graft Copolymerisation: A Review. Polymers (Basel) 2022; 14:polym14224831. [PMID: 36432958 PMCID: PMC9692568 DOI: 10.3390/polym14224831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Functional polymeric biomaterials (FPBMs) with bioactive characteristics obtained by radiation-induced graft copolymerisation (RIGC) have been subjected to intensive research and developed into many commercial products. Various studies have reported the development of a variety of radiation-grafted FPBMs. However, no reports dealing with the quantitative evaluations of these studies from a global bibliographic perspective have been published. Such bibliographic analysis can provide information to overcome the limitations of the databases and identify the main research trends, together with challenges and future directions. This review aims to provide an unprecedented bibliometric analysis of the published literature on the use of RIGC for the preparation of FPBMs and their applications in medical, biomedical, biotechnological, and health care fields. A total of 235 publications obtained from the Web of Science (WoS) in the period of 1985-2021 were retrieved, screened, and evaluated. The records were used to manifest the contributions to each field and underline not only the top authors, journals, citations, years of publication, and countries but also to highlight the core research topics and the hubs for research excellence on these materials. The obtained data overviews are likely to provide guides to early-career scientists and their research institutions and promote the development of new, timely needed radiation-grafted FPBMs, in addition to extending their applications.
Collapse
|
3
|
Dixon AR, Vondra I. Biting Innovations of Mosquito-Based Biomaterials and Medical Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4587. [PMID: 35806714 PMCID: PMC9267633 DOI: 10.3390/ma15134587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Mosquitoes are commonly viewed as pests and deadly predators by humans. Despite this perception, investigations of their survival-based behaviors, select anatomical features, and biological composition have led to the creation of several beneficial technologies for medical applications. In this review, we briefly explore these mosquito-based innovations by discussing how unique characteristics and behaviors of mosquitoes drive the development of select biomaterials and medical devices. Mosquito-inspired microneedles have been fabricated from a variety of materials, including biocompatible metals and polymers, to mimic of the mouthparts that some mosquitoes use to bite a host with minimal injury during blood collection. The salivary components that these mosquitoes use to reduce the clotting of blood extracted during the biting process provide a rich source of anticoagulants that could potentially be integrated into blood-contacting biomaterials or administered in therapeutics to reduce the risk of thrombosis. Mosquito movement, vision, and olfaction are other behaviors that also have the potential for inspiring the development of medically relevant technologies. For instance, viscoelastic proteins that facilitate mosquito movement are being investigated for use in tissue engineering and drug delivery applications. Even the non-wetting nanostructure of a mosquito eye has inspired the creation of a robust superhydrophobic surface coating that shows promise for biomaterial and drug delivery applications. Additionally, biosensors incorporating mosquito olfactory receptors have been built to detect disease-specific volatile organic compounds. Advanced technologies derived from mosquitoes, and insects in general, form a research area that is ripe for exploration and can uncover potential in further dissecting mosquito features for the continued development of novel medical innovations.
Collapse
Affiliation(s)
- Angela R. Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabelle Vondra
- Biomedical Engineering Program, Northern Illinois University, DeKalb, IL 60115, USA;
| |
Collapse
|
4
|
Shah P, Chandra S. Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
6
|
Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers (Basel) 2021; 13:3102. [PMID: 34578003 PMCID: PMC8473120 DOI: 10.3390/polym13183102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
Collapse
Affiliation(s)
- Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Roshafima Rasit Ali
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Malaysia;
| |
Collapse
|
7
|
Wilson AC, Chou SF, Lozano R, Chen JY, Neuenschwander PF. Thermal and Physico-Mechanical Characterizations of Thromboresistant Polyurethane Films. Bioengineering (Basel) 2019; 6:bioengineering6030069. [PMID: 31416139 PMCID: PMC6783839 DOI: 10.3390/bioengineering6030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 01/27/2023] Open
Abstract
Hemocompatibility remains a challenge for injectable and/or implantable medical devices, and thromboresistant coatings appear to be one of the most attractive methods to down-regulate the unwanted enzymatic reactions that promote the formation of blood clots. Among all polymeric materials, polyurethanes (PUs) are a class of biomaterials with excellent biocompatibility and bioinertness that are suitable for the use of thromboresistant coatings. In this work, we investigated the thermal and physico-mechanical behaviors of ester-based and ether-based PU films for potential uses in thromboresistant coatings. Our results show that poly(ester urethane) and poly(ether urethane) films exhibited characteristic peaks corresponding to their molecular configurations. Thermal characterizations suggest a two-step decomposition process for the poly(ether urethane) films. Physico-mechanical characterizations show that the surfaces of the PU films were hydrophobic with minimal weight changes in physiological conditions over 14 days. All PU films exhibited high tensile strength and large elongation to failure, attributed to their semi-crystalline structure. Finally, the in vitro clotting assays confirmed their thromboresistance with approximately 1000-fold increase in contact time with human blood plasma as compared to the glass control. Our work correlates the structure-property relationships of PU films with their excellent thromboresistant ability.
Collapse
Affiliation(s)
- Aaron C Wilson
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd, Tyler, TX 75799, USA.
| | - Roberto Lozano
- School of Human Ecology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan Y Chen
- School of Human Ecology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pierre F Neuenschwander
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
8
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
9
|
Gizaw M, Faglie A, Pieper M, Poudel S, Chou SF. The Role of Electrospun Fiber Scaffolds in Stem Cell Therapy for Skin Tissue Regeneration. MED ONE 2019; 4:e190002. [PMID: 30972372 PMCID: PMC6453140 DOI: 10.20900/mo.20190002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy has emerged as one of the topics in tissue engineering where undifferentiated and multipotent cells are strategically placed/ injected in tissue structure for cell regeneration. Over the years, stem cells have shown promising results in skin repairs for non-healing and/or chronic wounds. The addition of the stem cells around the wound site promotes signaling pathways for growth factors that regulate tissue reconstruction. However, injecting stem cells around the wound site has its drawbacks, including cell death due to lack of microenvironment cues. This particular issue is resolved when biomaterial scaffolds are involved in the cultivation and mechanical support of the stem cells. In this review, we describe the current models of stem cell therapy by injections and those that are done through cell cultures using electrospun fiber scaffolds. Electrospun fibers are considered as an ideal candidate for cell cultures due to their surface properties. Through the control of fiber morphology and fiber structure, cells are able to proliferate and differentiate into keratinocytes for skin tissue regeneration. Furthermore, we provide another perspective of using electrospun fibers and stem cells in a layer-by-layer structure for skin substitutes (dressing). Finally, electrospun fibers have the potential to incorporate bioactive agents to achieve controlled release properties, which is beneficial to the survival of the delivered stem cells or the recruitment of the cells. Overall, our work illustrates that electrospun fibers are ideal for stem cell cultures while serving as cell carriers for wound dressing materials.
Collapse
Affiliation(s)
- Mulugeta Gizaw
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Martha Pieper
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Sarju Poudel
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
10
|
Abstract
Injectable and/or Implantable medical devices are widely used in the treatment of diseases. Among them, vascular stents provide the medical solution to treat blood clotting. However, traditional metallic stents, even with current improvements in anticoagulation properties, have potential drawbacks in local inflammation when first implanted into the body and undesirable protein adsorption and cell adhesion after a prolonged period of time in the body. In this perspective, we discuss several engineering approaches, including drug-eluting materials, polymeric and non-polymeric coatings, and surface modifications to coating materials that can be applied to the surface of medical implants to significantly improve the hemocompatibility. These coatings are expected to have a slow degradation rate with the ability to either load drugs or attach biomacromolecules to form an architecture that mimics the surrounding cells. In general, our perspective provides a current view on the achievements of hemo-compatible coatings and future trends in coating materials that will extend the life of the medical implants.
Collapse
Affiliation(s)
- Aaron C Wilson
- Department of Mechanical Engineering, The University of Texas at Tyler, USA
| | - Pierre F Neuenschwander
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, The University of Texas at Tyler, USA
| |
Collapse
|
11
|
Chen KS, Chang SJ, Feng CK, Lin WL, Liao SC. Plasma Deposition and UV Light Induced Surface Grafting Polymerization of NIPAAm on Stainless Steel for Enhancing Corrosion Resistance and Its Drug Delivery Property. Polymers (Basel) 2018; 10:E1009. [PMID: 30960934 PMCID: PMC6403935 DOI: 10.3390/polym10091009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
When stainless steel is implanted in human bodies, the corrosion resistance and biocompatibility must be considered. In this study, first, a protective organic silicone film was coated on the surface of stainless steel by a plasma deposition technique with a precursor of hexamethyldisilazane (HMDSZ). Then, ultraviolet (UV) light-induced graft polymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) in different molar ratios were applied onto the organic silicone film in order to immobilize thermos-/pH-sensitive composite hydrogels on the surface. The thermo-/pH-sensitive composite hydrogels were tested at pH values of 4, 7.4 and 10 of a phosphate buffer saline (PBS) solution at a fixed temperature of 37 °C to observe the swelling ratio and drug delivery properties of caffeine which served as a drug delivery substance. According to the results of Fourier Transformation Infrared (FTIR) spectra and a potential polarization dynamic test, the silicone thin film formed by plasma deposition not only improved the adhesion ability between the substrate and hydrogels but also exhibited a high corrosion resistance. Furthermore, the composite hydrogels have an excellent release ratio of up to 90% of the absorbed amount after 8h at a pH of 10. In addition, the results of potential polarization dynamic tests showed that the corrosion resistance of stainless steel could be improved by the HMDSZ plasma deposition.
Collapse
Affiliation(s)
- Ko-Shao Chen
- Department of Materials Engineering, Tatung University, Taipei 104, Taiwan.
| | - Shu-Ju Chang
- Department of Materials Engineering, Tatung University, Taipei 104, Taiwan.
| | - Chi-Kuang Feng
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Win-Li Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Shu-Chuan Liao
- Institute of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
- Bachelor Program for Design and Materials for Medical Equipment and Devices, Da Yeh University, Changhua 515, Taiwan.
| |
Collapse
|