1
|
Halimi H, Ahmadi B, Asri N, Rostami-Nejad M, Houri H. The roles of functional bacterial amyloids in neurological physiology and pathophysiology: Pros and cons for neurodegeneration. Microb Pathog 2025; 200:107363. [PMID: 39909290 DOI: 10.1016/j.micpath.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Bacterial biofilms, which are complex communities of microorganisms encapsulated in a self-produced extracellular matrix, play critical roles in various diseases. Recent research has underscored the dualistic nature of amyloids, structural proteins within these biofilms, in human health, particularly highlighting the significant role in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's disease (PD). These amyloids modulate the immune response by inducing the production of interleukin-10 (IL-10), which plays a role in anti-inflammatory processes. Additionally, they inhibit the aggregation of human amyloids and enhance the integrity of the intestinal barrier. Detrimentally, they exacerbate neuroinflammation by elevating inflammatory cytokines and promoting the aggregation of human amyloid proteins-amyloid-β (Aβ) in AD and α-synuclein (αS) in PD-through a process known as cross-seeding. Moreover, bacterial amyloids have also been shown to stimulate the production of anti-curli/DNA antibodies, which are implicated in the pathogenesis of autoimmune diseases. Given their dualistic nature, bacterial amyloids may, under specific conditions, function as beneficial proteins for human health. This understanding holds promise for the development of targeted therapeutic strategies aimed at modulating bacterial amyloids in the context of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Hossein Halimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Ahmadi
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Fang ZX, Kuang XY, Li YH, Yu RX, Wang F, Luo SW. Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish. Curr Microbiol 2025; 82:91. [PMID: 39825897 DOI: 10.1007/s00284-025-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification. Whole genome sequencing (WGS) analysis indicated that Lysinibacillus and Enterobacter isolates possessed a variety of functional genes associated with probiotic features. Biofilm-forming activity (BFA) were one of the most important probiotic features, which can enable probiotic strains to communicate with indigenous microbiota by forming sessile community and then confer protection against stressors and invading pathogens. In this study, Lysinibacillus and Enterobacter isolates displayed high levels of BFA, hydrophobicity as well as aggregating potentials. Moreover, supernatants of probiotic isolates not only decreased pathogenic BFA and growth activity, but also showed high decomposing activity to macronutrients. These results indicated that probiotic isolates from gut tract of TCFs may pose protective roles in health of farmed fish.
Collapse
Affiliation(s)
- Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yao-Hui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ruo-Xing Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
3
|
Yao P, Mohd Esah E, Zhao C. Regulatory mechanisms and applications of Lactobacillus biofilms in the food industry. Front Microbiol 2025; 15:1465373. [PMID: 39845052 PMCID: PMC11753222 DOI: 10.3389/fmicb.2024.1465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Lactobacillus is widely recognized for its probiotic benefits and has been widely used in food production. While biofilms are typically associated with pathogenic bacteria, they also served as a self-protective mechanism formed by microorganisms in an adverse environments. In recent years, relevant studies have revealed the excellent characteristics of Lactobacillus biofilms, offering new insights into their potential applications in the food industry. The Lactobacillus biofilms is important in improving fermentation processes and enhancing the resilience of Lactobacillus in various conditions. This paper reviews how quorum sensing regulates the formation of Lactobacillus biofilms and explores their roles in stress resistance, bacteriostasis and food production. Additionally, it highlights the emerging concept of fourth-generation probiotics, developed through biofilm technology, as a novel approach to probiotic applications.
Collapse
Affiliation(s)
- Peilin Yao
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| | - Effarizah Mohd Esah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Chuanping Zhao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| |
Collapse
|
4
|
Kyser AJ, Greiner A, Harris V, Patel R, Frieboes HB, Gilbert NM. 3D-Bioprinted Urinary Catheters Enable Sustained Probiotic Recovery Under Flow and Improve Bladder Colonization In Vivo. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10428-8. [PMID: 39757344 DOI: 10.1007/s12602-024-10428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Catheter-associated urinary tract infections (CAUTIs) account for a large proportion of healthcare-associated infections. CAUTIs, caused by colonization of the catheter surface by uropathogens, are challenging to treat, especially when compounded by antibiotic resistance. One prophylactic strategy that could reduce pathogen colonization is bacterial interference, whereby the catheter surface is coated with non-pathogenic bacteria. Current challenges include identifying appropriate bacterial interference strains that maintain stable association with the catheter and are viable, but not pathogenic, in the urinary tract environment. This study evaluated the stability of probiotic Lactobacillus rhamnosus in 3D bioprints mimicking urinary catheter tubing under urine flow and assessed viability and safety in an in vivo mouse model. Bioprints underwent hydraulic flow testing in vitro with artificial urine media (AUM), followed by evaluation of catheter structure, L. rhamnosus recovery, and biofilm formation. Mice were inoculated with free L. rhamnosus bacteria or implanted with L. rhamnosus-containing bioprints to measure urinary tract colonization and assess effects on the bladder tissue. Bioprinted segments exhibited minimal mass change while maintaining an intact shape and demonstrated viable L. rhamnosus recovery throughout 7 days. L. rhamnosus formed biofilms on the bioprint surface that were not disrupted by urinary flow conditions. Encouragingly, L. rhamnosus viability was maintained in bioprints in a mouse urinary tract catheterization model. Bioprints released L. rhamnosus in vivo and did not cause histological inflammation beyond that generated by standard silicone catheters. In summary, L. rhamnosus bioprints exhibited key desirable characteristics, including maintenance of probiotic viability, probiotic growth on the catheter surface, and enhanced probiotic colonization of the bladder. This study supports the development of bioprinted probiotic catheters as a new strategy to prevent CAUTI.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Arielle Greiner
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Victoria Harris
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40292, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, 40292, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA.
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Donmez HG, Sahal G, Beksac MS. Microbial cell-type-based grouping model as a potential indicator of cervicovaginal flora prone to biofilm formation. Biotech Histochem 2025; 100:17-22. [PMID: 39688594 DOI: 10.1080/10520295.2024.2439447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Cervicovaginal (CV) microbiota is critical for the well-being of host. We investigated the relationship between the ratio of Lactobacilli (LB) and cocci/coccobacilli (C/CB)-type microbial cells with biofilm formation of CV mixed cultures of women with no inflammation/infection or any epithelial abnormalities in Pap-stained smears Group 1 (G1) corresponds to the flora with LB-type cells alone, whereas G2 corresponds to the LB-dominated flora. G3 contains balanced LB and C/CB cells and G4 is dominated with C/CB. G5 corresponds to a flora with C/CB-type cells alone. Biofilm formation of CV mixed cultures was assessed by crystal violet binding assay and optical density (OD)≥0.8 were defined as biofilm producers. G1 and G3 exist in higher frequencies compared to the other smear groups. However, although the frequency of G5 dominated with C/CB-type cells were the lowest (4%); biofilm formation in that group was observed in the highest frequency (42.9%). The least biofilm formation frequency was observed in G3 smears with balanced flora (1%). Biofilm formation in healthy CV flora increases when there becomes an imbalance between LB and C/CB-type cells and an increase in C/CB-type cells. Our approach may enable early detection of vaginal dysbiosis in healthy flora prone to biofilm-associated CV infections such as bacterial vaginosis (BV).
Collapse
Affiliation(s)
- Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Gulcan Sahal
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Yao S, Yang H, Zhang M, Xian J, Zhou R, Jin Y, Huang J, Wu C. Sucrose contributed to the biofilm formation of Tetragenococcus halophilus and changed the biofilm structure. Food Microbiol 2024; 124:104616. [PMID: 39244368 DOI: 10.1016/j.fm.2024.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Abstract
Based on the previous research results that the addition of sucrose in the medium improved the biofilm formation of Tetragenococcus halophilus, the influence of sucrose on biofilm formation was explored. Moreover, the influence of exogenous expression of related genes sacA and galE from T. halophilus on the biofilm formation of L. lactis NZ9000 was investigated. The results showed that the addition of sucrose in the medium improved the biofilm formation, the resistance of biofilm cells to freeze-drying stress, and the contents of exopolysaccharides (EPS) and eDNA in the T. halophilus biofilms. Meanwhile, the addition of sucrose in the medium changed the monosaccharide composition of EPS and increased the proportion of glucose and galactose in the monosaccharide composition. Under 2.5% (m/v) salt stress condition, the expression of gene sacA promoted the biofilm formation and the EPS production of L. lactis NZ9000 with the sucrose addition in the medium and changed the EPS monosaccharide composition. The expression of gene galE up-regulated the proportion of rhamnose, galactose, and arabinose in the monosaccharide composition of EPS, and down-regulated the proportion of glucose and mannose. This study will provide a theoretical basis for regulating the biofilm formation of T. halophilus, and provide a reference for the subsequent research on lactic acid bacteria biofilms.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; GuiZhou XiJiu Co., Ltd, Xishui, Guizhou, 564622, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiao Xian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; GuiZhou XiJiu Co., Ltd, Xishui, Guizhou, 564622, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Gallina NLF, Irizarry Tardi N, Li X, Cai A, Horn MJ, Applegate BM, Reddivari L, Bhunia AK. Assessment of Biofilm Formation and Anti-Inflammatory Response of a Probiotic Blend in a Cultured Canine Cell Model. Microorganisms 2024; 12:2284. [PMID: 39597673 PMCID: PMC11596120 DOI: 10.3390/microorganisms12112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Gut dysbiosis and an inflamed bowel are growing concerns in mammals, including dogs. Probiotic supplements have been used to restore the natural microbial community and improve gastrointestinal health. Biofilm formation, antimicrobial activities, and immunological responses of probiotics are crucial to improving gut health. Thus, we tested a commercial probiotic blend (LabMAX-3), a canine kibble additive comprising Lactobacillus acidophilus, Lacticaseibacillus casei, and Enterococcus faecium for their ability to inactivate common enteric pathogens; their ability to form biofilms; epithelial cell adhesion; and their anti-inflammatory response in the Madin-Darby Canine Kidney (MDCK) cell line. Probiotic LabMAX-3 blend or individual isolates showed a strong inhibitory effect against Salmonella enterica, Listeria monocytogenes, enterotoxigenic Escherichia coli, and Campylobacter jejuni. LabMAX-3 formed biofilms comparable to Staphylococcus aureus. LabMAX-3 adhesion to the MDCK cell line (with or without lipopolysaccharide (LPS) pretreatment) showed comparable adhesion and biofilm formation (p < 0.05) to L. casei ATCC 334 used as a control. LabMAX-3 had no cytotoxic effects on the MDCK cell line during 1 h exposure. The interleukin-10 (IL-10) and tumor necrosis factor alpha (TNFα) ratio of LabMAX-3, compared to the L. casei control, showed a significant increase (p < 0.05), indicating a more pronounced anti-inflammatory response. The data show that LabMAX-3, a canine kibble supplement, can improve gastrointestinal health.
Collapse
Affiliation(s)
- Nicholas L. F. Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Alvin Cai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Mandy J. Horn
- CH2 Animal Solutions, 21 Bear Creek Estates Dr., Ottumwa, IA 52501, USA;
| | - Bruce M. Applegate
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lavanya Reddivari
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Pinitchun C, Panpetch W, Bhunyakarnjanarat T, Udompornpitak K, Do HT, Visitchanakun P, Wannigama DL, Udomkarnjananun S, Sukprasansap M, Tencomnao T, Tangtanatakul P, Leelahavanichkul A. Aging-induced dysbiosis worsens sepsis severity but is attenuated by probiotics in D-galactose-administered mice with cecal ligation and puncture model. PLoS One 2024; 19:e0311774. [PMID: 39423218 PMCID: PMC11488720 DOI: 10.1371/journal.pone.0311774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION Despite the well-established effects of aging on brain function and gut dysbiosis (an imbalance in gut microbiota), the influence of aging on sepsis-associated encephalopathy (SAE) and the role of probiotics in this context remain less understood. METHODS C57BL/6J mice (8-week-old) were subcutaneously administered with 8 weeks of D-galactose (D-gal) or phosphate buffer solution (PBS) for aging and non-aging models, respectively, with or without 8 weeks of oral Lacticaseibacillus rhamnosus GG (LGG). Additionally, the impact of the condition media from LGG (LCM) was tested in macrophages (RAW 264.7 cells), microglia (BV-2 cells), and hippocampal cells (HT-22 cells). RESULT Fecal microbiome analysis demonstrated D-gal-induced dysbiosis (reduced Firmicutes and Desulfobacterota with increased Bacteroidota and Verrucomicrobiota), which LGG partially neutralized the dysbiosis. D-gal also worsens cecal ligation and puncture (CLP) sepsis severity when compared with PBS-CLP mice, as indicated by serum creatinine (Scr) and alanine transaminase (ALT), but not mortality, neurological characteristics (SHIRPA score), and serum cytokines (TNF-α and IL-6). Additionally, D-gal-induced aging was supported by fibrosis in the liver, kidney, and lung; however, CLP sepsis did not worsen fibrosis. Interestingly, LGG attenuated all parameters (mortality, Scr, ALT, SHIRPA, and cytokines) in non-aging sepsis (PBS-CLP) while improving all these parameters, except for mortality and serum IL-6, in aging sepsis (D-gal CLP). For the in vitro test using lipopolysaccharide (LPS) stimulation, LCM attenuated inflammation in some parameters on RAW264.7 cells but not BV-2 and HT-22 cells, implying a direct anti-inflammatory effect of LGG on macrophages, but not in cells from the brain. CONCLUSION D-gal induced fecal dysbiosis and worsened sepsis severity as determined by Scr and ALT, and LGG could alleviate most of the selected parameters of sepsis, including SAE. However, the impact of LGG on SAE was not a direct delivery of beneficial molecules from the gut to the brain but partly due to the attenuation of systemic inflammation through the modulation of macrophages.
Collapse
Affiliation(s)
- Chalisa Pinitchun
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Transfusion Sciences and Clinical Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Faculty of Science, Department of Microbiology, Burapha University, Chonburi, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Huy Thanh Do
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Infectious Diseases and Infection Control, Pathogen Hunter’s Research Collaborative Team, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Suwasin Udomkarnjananun
- Faculty of Medicine, Department of Medicine, Division of Nephrology, Chulalongkorn University, Bangkok, Thailand
| | - Monruedee Sukprasansap
- Institute of Nutrition, Food Toxicology Unit, Mahidol University, Salaya Campus, Phutthamonthon, Na-khonpathom, Salaya, Thailand
| | - Tewin Tencomnao
- Faculty of Allied Health Sciences, Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Clinical Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Transfusion Sciences and Clinical Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Microbiology, Burapha University, Chonburi, Thailand
| |
Collapse
|
10
|
Rashtchi P, van der Linden E, Habibi M, Abee T. Biofilm formation of Lactiplantibacillus plantarum food isolates under flow and resistance to disinfectant agents. Heliyon 2024; 10:e38502. [PMID: 39397932 PMCID: PMC11466677 DOI: 10.1016/j.heliyon.2024.e38502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Bacterial biofilms formed in food processing environments can be resilient against cleaning and disinfection causing recontamination and spoilage of foods. We investigated the biofilm formation of six Lactiplantibacillus plantarum food spoilage isolates (FBR1-FBR6) using WCFS1 as a reference strain, and examined the impact of benzalkonium chloride (BKC) and peracetic acid (PAA) on planktonic and biofilm cells formed under static and dynamic flow conditions. We used a custom-designed setup composed of a 48-well plate with 0.8 ml culture volumes. We quantified biofilm formation under static and dynamic flow conditions with a flow rate of 3.2 ml/h using plate counting, Crystal Violet (CV) staining, and fluorescence staining techniques. Our findings revealed significant differences in biofilm formation and disinfectant resistance among studied strains and cell types. We observed that flow promoted biofilm formation in some strains and increased the number of culturable cells within biofilms in all strains. Furthermore, biofilm cells demonstrated higher resistance to disinfectants in comparison to planktonic cells for certain strains. Interestingly, cells from dispersed under flow biofilms show higher resistance to disinfectants than cells from static biofilms. The results indicate the importance of flow conditions in influencing L. plantarum food isolates biofilm formation and disinfection resistance, which may have implications for product contamination and spoilage risks.
Collapse
Affiliation(s)
- P. Rashtchi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - E. van der Linden
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - M. Habibi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - T. Abee
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| |
Collapse
|
11
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
12
|
Guo P, Wang W, Xiang Q, Pan C, Qiu Y, Li T, Wang D, Ouyang J, Jia R, Shi M, Wang Y, Li J, Zou J, Zhong Y, Zhao J, Zheng D, Cui Y, Ma G, Wei W. Engineered probiotic ameliorates ulcerative colitis by restoring gut microbiota and redox homeostasis. Cell Host Microbe 2024; 32:1502-1518.e9. [PMID: 39197456 DOI: 10.1016/j.chom.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Probiotics are potential treatments for ulcerative colitis (UC), but their efficacy is frequently compromised by gastrointestinal conditions that limit adhesion and activity. Here, we use machine learning and bioinformatics to confirm that patients with UC have decreased prevalence of Lactobacillus genus and increased oxidative stress, which correlate with inflammation severity. Accordingly, we developed a probiotic-based therapeutic that synergistically restores intestinal redox and microbiota homeostasis. Lactobacillus casei (Lac) were induced to form a pericellular film, providing a polysaccharide network for spatially confined crystallization of ultrasmall but highly active selenium dots (Se-Lac). Upon oral administration, the selenium dot-embedded pericellular film efficiently enhanced gastric acid resistance and intestinal mucoadhesion of Lac cells. At the lesion site, the selenium dots scavenged reactive oxygen species, while Lac modulated the gut microbiota. In multiple mouse models and non-human primates, this therapeutic effectively relieved inflammation and reduced colonic damage, thus showing promise as a UC treatment.
Collapse
Affiliation(s)
- Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, P.R. China
| | - Jian Ouyang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Junxia Li
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jiale Zou
- Department of Gastroenterology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130015, P.R. China
| | - Jiawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Diwei Zheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
13
|
Guarnieri A, Venditti N, Cutuli MA, Brancazio N, Salvatore G, Magnifico I, Pietrangelo L, Falcone M, Vergalito F, Nicolosi D, Scarsella F, Davinelli S, Scapagnini G, Petronio Petronio G, Di Marco R. Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. Front Cell Infect Microbiol 2024; 14:1428525. [PMID: 39310784 PMCID: PMC11412949 DOI: 10.3389/fcimb.2024.1428525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. Methods The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. Results and discussion In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model.
Collapse
Affiliation(s)
- Antonio Guarnieri
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Noemi Venditti
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- Unità Operativa (UO) Laboratorio Analisi, Responsible Research Hospital, Campobasso, Italy
| | - Marco Alfio Cutuli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Natasha Brancazio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanna Salvatore
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Irene Magnifico
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Laura Pietrangelo
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Marilina Falcone
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Franca Vergalito
- Università degli Studi del Molise Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy
| | - Daria Nicolosi
- Università degli Studi di Catania Department of Drug and Health Sciences, Catania, Italy
| | - Franco Scarsella
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- ASReM-Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Sergio Davinelli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanni Scapagnini
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giulio Petronio Petronio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Roberto Di Marco
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| |
Collapse
|
14
|
Charizani E, Dushku E, Kyritsi M, Metallinou ET, Karathodorou A, Amanetidou E, Kokkaleniou MM, Passalis N, Tefas A, Staikou A, Yiangou M. Predicting the immunomodulatory activity of probiotic lactic acid bacteria using supervised machine learning in a Cornu aspersum snail model. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109788. [PMID: 39053586 DOI: 10.1016/j.fsi.2024.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
In the process of screening for probiotic strains, there are no clearly established bacterial phenotypic markers which could be used for the prediction of their in vivo mechanism of action. In this work, we demonstrate for the first time that Machine Learning (ML) methods can be used for accurately predicting the in vivo immunomodulatory activity of probiotic strains based on their cell surface phenotypic features using a snail host-microbe interaction model. A broad range of snail gut presumptive probiotics, including 240 new lactic acid bacterial strains (Lactobacillus, Leuconostoc, Lactococcus, and Enterococcus), were isolated and characterized based on their capacity to withstand snails' gastrointestinal defense barriers, such as the pedal mucus, gastric mucus, gastric juices, and acidic pH, in association with their cell surface hydrophobicity, autoaggregation, and biofilm formation ability. The implemented ML pipeline predicted with high accuracy (88 %) strains with a strong capacity to enhance chemotaxis and phagocytic activity of snails' hemolymph cells, while also revealed bacterial autoaggregation and cell surface hydrophobicity as the most important parameters that significantly affect host immune responses. The results show that ML approaches may be useful to derive a predictive understanding of host-probiotic interactions, while also highlighted the use of snails as an efficient animal model for screening presumptive probiotic strains in the light of their interaction with cellular innate immune responses.
Collapse
Affiliation(s)
- Elissavet Charizani
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Esmeralda Dushku
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kyritsi
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleftheria Theodora Metallinou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Argyro Karathodorou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni Amanetidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Marianthi-Maria Kokkaleniou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikolaos Passalis
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Tefas
- Computational Intelligence and Deep Learning Group, Artificial Intelligence and Information Analysis Laboratory, School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandra Staikou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
15
|
Huang L, Wu Y, Fan Y, Su Y, Liu Z, Bai J, Zhao X, Li Y, Xie X, Zhang J, Chen M, Wu Q. The growth-promoting effects of protein hydrolysates and their derived peptides on probiotics: structure-activity relationships, mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39154217 DOI: 10.1080/10408398.2024.2387328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Lactic acid bacteria (LAB) are the main probiotics currently available in the markets and are essential for maintaining gut health. To guarantee probiotic function, it is imperative to boost the culture yield of probiotic organisms, ensure the sufficient viable cells in commercial products, or develop effective prebiotics. Recent studies have shown that protein hydrolysates and their derived peptides promote the proliferation of probiotic in vitro and the abundance of gut flora. This article comprehensively reviews different sources of protein hydrolysates and their derived peptides as growth-promoting factors for probiotics including Lactobacillus, Bifidobacterium, and Saccharomyces. We also provide a preliminary analysis of the characteristics of LAB proteolytic systems focusing on the correlation between their elements and growth-promoting activities. The structure-activity relationship and underlying mechanisms of growth-promoting peptides and their research perspectives are thoroughly discussed. Overall, this review provides valuable insights into growth-promoting protein hydrolysates and their derived peptides for proliferating probiotics in vivo or in vitro, which may inspire researchers to explore new options for industrial probiotics proliferation, dairy products fermentation, and novel prebiotics development in the future.
Collapse
Affiliation(s)
- Lanyan Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Wu
- Guangdong Huankai Biotechnology Co., Ltd, Guangzhou, China
| | - Yue Fan
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Yue Su
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Zihao Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Jianling Bai
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Xinyu Zhao
- Guangdong Huankai Biotechnology Co., Ltd, Guangzhou, China
| | - Ying Li
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Xinqiang Xie
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, China
| |
Collapse
|
16
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
17
|
Liu T, Shen J, Qian Y, Zhao Y, Meng X, Liu Z, Jia F. The enhancement mechanism of adding stachyose to Lactiplantibacillus plantarum SS-128 in the probiotic/prebiotic combination biopreservation in salmon. Lebensm Wiss Technol 2024; 205:116526. [DOI: 10.1016/j.lwt.2024.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
19
|
Chen J, Cheng J, Li F, Deng Y, Li Y, Li H, Zeng J, You Y, Zhou X, Chen Q, Luo R, Lai Y, Zhao X. Gut microbiome and metabolome alterations in traditional Chinese medicine damp-heat constitution following treatment with a Chinese patent medicine and lifestyle intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155787. [PMID: 38851100 DOI: 10.1016/j.phymed.2024.155787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The gut microbiota is crucial in human health and diseases. Traditional Chinese Medicine Constitution (TCMC) divides people into those with a balanced constitution (Ping-he [PH]) and those with an unbalanced constitution. Dampness-heat constitution (Shi-re [SR]) is a common unbalanced constitution in the Chinese population and is susceptible to diseases. However, unbalanced constitutions can be regulated by Chinese medicine and lifestyle interventions in clinical practice. Ermiao Pill (EMP) is a Chinese medicine known for clearing heat and draining dampness and improving SR. However, the efficacy and mechanism of EMP are unclear. HYPOTHESIS/PURPOSE To determine alterations in the gut microbiota and metabolome in SR and any changes after EMP treatment combined with lifestyle intervention. STUDY DESIGN Randomized clinical trial. METHODS We enrolled 112 healthy SR individuals and evaluated the efficacy of EMP along with lifestyle interventions. We further assessed serum cytokine levels, serum and urinary metabolomes, and the gut microbiota by 16S rRNA gene sequencing analysis before and after the EMP and lifestyle interventions. RESULTS 107 SR individuals (55 in the intervention group and 52 in the control group) completed the 1-month-intervention and 1-year-follow-up. The intervention group significantly improved their health status within 1 month, with a reduced SR symptom score, and the efficacy lasted to the 1-year follow-up. The control group needed a further 6 months to reduce the SR symptom score. The gut microbiota of PH individuals was more diverse and had significantly higher proportions of many bacterial species than the SR. Microbiota co-occurrence network analysis showed that SR enriches metabolites correlating with microbial community structure, consistent with traits of healthy SR-enriched microbiota. CONCLUSION EMP combined with lifestyle intervention produced health benefits in SR individuals. Our study indicates a pivotal role of gut microbiota and metabolome alterations in distinguishing between healthy SR and PH. Furthermore, the study reveals structural changes of gut microbiota and metabolites induced by EMP and lifestyle intervention. The treatment enriched the number of beneficial bacteria, such as Akkermansia muciniphila and Lactobacillus in the gut. Our findings provide a strong indication that several metabolite factors are associated with the gut microbiota. Moreover, the gut microbiome and metabolome might be powerful tools for TCMC diagnosis and personalized therapy.
Collapse
Affiliation(s)
- Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingru Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fei Li
- Oncology Department, People's Hospital of Boluo County, Huizhou, 516100, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yutong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haipeng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingyi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ren Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
20
|
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024; 15:1428808. [PMID: 39135871 PMCID: PMC11317286 DOI: 10.3389/fmicb.2024.1428808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.
Collapse
Affiliation(s)
- Prerna Saini
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Repally Ayyanna
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sayan Kumar Bhowmick
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
21
|
Fukuda Y, Morioka H, Yamamoto S, Iguchi M, Umeda S, Asahara T, Kanda K, Oka K, Nakayama G, Yagi T. Catheter-related bloodstream infection caused by Lacticaseibacillus paracasei: A case report and literature review. J Infect Chemother 2024; 30:664-667. [PMID: 38184108 DOI: 10.1016/j.jiac.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Catheter-related bloodstream infections (CRBSIs) caused by Lactobacillus spp. and Lacticaseibacillus spp. are rare, and their clinical course and optimal treatment remain uncertain. In this report, we present a 46-year-old male patient who experienced clinically diagnosed Lacticaseibacillus paracasei CRBSI on four separate occasions, despite receiving systemic administration of antibiotics and antimicrobial lock therapy. The patient did not develop L. paracasei bacteremia after catheter removal. This case report furthers our knowledge of CRBSI caused by Lactobacillus and related genera and highlights the need for further research.
Collapse
Affiliation(s)
- Yuto Fukuda
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroshi Morioka
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Shuta Yamamoto
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi, Tokyo, 186-8650, Japan
| | - Mitsutaka Iguchi
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi, Tokyo, 186-8650, Japan
| | - Kohei Kanda
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Keisuke Oka
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
22
|
Kozawa T, Aoyagi H. Novel method for screening probiotic candidates tolerant to human gastrointestinal stress. J Microbiol Methods 2024; 222:106945. [PMID: 38729266 DOI: 10.1016/j.mimet.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Tolerance to human gastrointestinal stressors is crucial for probiotics to exhibit their health benefits; however, there is no standardised method for screening their stress tolerance. In this study, we proposed a novel method for screening probiotic candidates tolerant to human gastrointestinal stress-gastrointestinal tolerance assay and culture (GTA-C) method-using black polyethylene terephthalate (PET) non-woven fabric as a scaffold to modify the specialized cellulose film (SCF) method. The modified SCF method showed excellent pH-based diffusion of medium components, had minimal effect on the growth of Escherichia coli K12, and improved the visibility of the colonies. Analysis of kimchi samples cultured using the SCF and modified SCF methods revealed that the modified method diversified the cultured bacteria. GTA in a simulated human fasting state using the modified SCF method showed that acid stress significantly affected the growth of four bacteria used as probiotics and that tolerance to acid stress may be species-dependent. Screening of probiotics in kimchi samples resulted in the identification of lactic acid bacteria tolerant to human gastrointestinal stress during fasting. Our results indicate that the modified SCF method (GTA-C method) is useful for screening probiotics resistant to the gastrointestinal environment during fasting.
Collapse
Affiliation(s)
- Takuma Kozawa
- Master's Program in Agro-Bioresources Science and Technology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideki Aoyagi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
23
|
Gao J, Hu Y, Yan S, Qi F, Li X, Sun Q. Evaluation of in vitro colonisation and immunomodulation of Lactiplantibacillus plantarumL3 microcapsules after subjected to yoghurt storage. Int J Food Sci Technol 2024; 59:4660-4671. [DOI: 10.1111/ijfs.17188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 01/05/2025]
Abstract
SummaryThis work aimed to evaluate the in vitro adhesive and immunoregulative effects of water‐in‐oil‐in‐water (W/O/W) microencapsulated Lactiplantibacillus plantarum L3 after subjected to yoghurt stress. The W/O/W microencapsulated L. plantarum L3 was prepared and dropped into fresh milk with commercial starters (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus). The yoghurt was prepared and stored at 4 °C for 21 days. The effects of yoghurt storage and simulated gastrointestinal treatment on the in vitro adhesive and immunomodulatory activities of L. plantarum L3 were investigated. Results showed that the hydrophobicity, auto‐aggregation and biofilm synthesis ability of L. plantarum L3 were improved after yoghurt storage but in a storage time‐dependent manner. The maximum coaggregation coefficients with S. aureus and E. coli were higher than 20%. L. plantarum L3 increased the viability and phagocytosis of mouse RAW264.7 cells, whereas the secretion of NO and proinflammatory cytokines induced by LPS was significantly reduced. In conclusion, yoghurt was a promising vehicle for delivering W/O/W L. plantarum L3 to the intestinal tract.
Collapse
Affiliation(s)
- Jiaxu Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Yingxi Hu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Shuqin Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Fuling Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| |
Collapse
|
24
|
Urcan AC, Criste AD, Bobiș O, Cornea-Cipcigan M, Giurgiu AI, Dezmirean DS. Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms 2024; 12:1249. [PMID: 38930631 PMCID: PMC11205645 DOI: 10.3390/microorganisms12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluates the suitability of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Apilactobacillus kunkeei-for use as probiotics in apiculture. Given the decline in bee populations due to pathogens and environmental stressors, sustainable alternatives to conventional treatments are necessary. This study aimed to assess the potential of these LAB strains in a probiotic formulation for bees through various in vitro tests, including co-culture interactions, biofilm formation, auto-aggregation, antioxidant activity, antimicrobial activity, antibiotic susceptibility, and resistance to high osmotic concentrations. This study aimed to assess both the individual effects of the strains and their combined effects, referred to as the LAB mix. Results indicated no mutual antagonistic activity among the LAB strains, demonstrating their compatibility with multi-strain probiotic formulations. The LAB strains showed significant survival rates under high osmotic stress and simulated gastrointestinal conditions. The LAB mix displayed enhanced biofilm formation, antioxidant activity, and antimicrobial efficacy against different bacterial strains. These findings suggest that a probiotic formulation containing these LAB strains could be used for a probiotic formulation, offering a promising approach to mitigating the negative effects of pathogens. Future research should focus on in vivo studies to validate the efficacy of these probiotic bacteria in improving bee health.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Adriana Dalila Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Otilia Bobiș
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alexandru-Ioan Giurgiu
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| |
Collapse
|
25
|
Berrios-Henríquez B, Venegas-Toloza M, Reyes-Fuentes M, Zúñiga-Arbalti F, Bustamante L, García-Cancino A, Alarcón-Enos J, Pastene-Navarrete E. Synthesis and Isolation of Phenol- and Thiol-Derived Epicatechin Adducts Prepared from Avocado Peel Procyanidins Using Centrifugal Partition Chromatography and the Evaluation of Their Antimicrobial and Antioxidant Activity. Molecules 2024; 29:2872. [PMID: 38930937 PMCID: PMC11206461 DOI: 10.3390/molecules29122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Barbara Berrios-Henríquez
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Matías Venegas-Toloza
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - María Reyes-Fuentes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile;
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Luis Bustamante
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
26
|
Huijboom L, Rashtchi P, Tempelaars M, Boeren S, van der Linden E, Habibi M, Abee T. Phenotypic and proteomic differences in biofilm formation of two Lactiplantibacillus plantarum strains in static and dynamic flow environments. Biofilm 2024; 7:100197. [PMID: 38706985 PMCID: PMC11066574 DOI: 10.1016/j.bioflm.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lactiplantibacillus plantarum is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well. Biofilm formation occurred at the bottom of the well for both strains, under static and flow conditions, where in the latter condition, CIP104448 also showed increased biofilm formation at the walls of the well in line with the higher hydrophobicity of the cells and the increased initial attachment efficacy compared to WCFS1. Fluorescence and scanning electron microscopy showed open 3D structured biofilms formed under flow conditions, containing live cells and ∼30 % damaged/dead cells for CIP104448, whereas the WCFS1 biofilm showed live cells closely packed together. Comparative proteome analysis revealed minimal changes between planktonic and static biofilm cells of the respective strains suggesting that biofilm formation within 24 h is merely a passive process. Notably, observed proteome changes in WCFS1 and CIP104448 flow biofilm cells indicated similar and unique responses including changes in metabolic activity, redox/electron transfer and cell division proteins for both strains, and myo-inositol production for WCFS1 and oxidative stress response and DNA damage repair for CIP104448 uniquely. Exposure to DNase and protease treatments as well as lethal concentrations of peracetic acid showed highest resistance of flow biofilms. For the latter, CIP104448 flow biofilm even maintained its high disinfectant resistance after dispersal from the bottom and from the walls of the well. Combining all results highlights that L. plantarum biofilm structure and matrix, and physiological state and stress resistance of cells is strain dependent and strongly affected under flow conditions. It is concluded that consideration of effects of flow on biofilm formation is essential to better understand biofilm formation in different settings, including food processing environments.
Collapse
Affiliation(s)
- Linda Huijboom
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Parisa Rashtchi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Marcel Tempelaars
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Sjef Boeren
- Biochemistry, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Erik van der Linden
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| |
Collapse
|
27
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
28
|
Zhao L, Li X, Wang Y, Yang Q, Jiang X, Zhao R, Chen H, Zhang Y, Ran J, Chen W, Wei Z, Wang H. Resistance role of Lactobacillus sp. and Lactococcus sp. to copper ions in healthy children's intestinal microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134059. [PMID: 38503209 DOI: 10.1016/j.jhazmat.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yibin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yiping Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zihan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
29
|
Li J, Yu J, Song Y, Wang S, Mu G, Tuo Y. Exopolysaccharides and Surface-Layer Proteins Expressed by Biofilm-State Lactiplantibacillus plantarum Y42 Play Crucial Role in Preventing Intestinal Barrier and Immunity Dysfunction of Balb/C Mice Infected by Listeria monocytogenes ATCC 19115. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8581-8594. [PMID: 38590167 DOI: 10.1021/acs.jafc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Our previous study showed that Lactiplantibacillus plantarum Y42 in the biofilm state can produce more exopolysaccharides and surface-layer proteins and showed a stronger promoting effect on intestinal barrier function than that in the planktonic state. In this study, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites (exopolysaccharides and surface-layer proteins) increased the expression of Occludin, Claudin-1, ZO-1, and MUC2 in the gut of the Balb/C mice after exposure to Listeria monocytogenes ATCC 19115 and inhibited the activation of the NLRP3 inflammasome pathway, which in turn reduced the levels of inflammatory cytokines IL-1β and IL-18 in the serum of the mice. Furthermore, oral administration of the live/pasteurized planktonic or biofilm L. plantarum Y42 and its metabolites increased the abundance of beneficial bacteria (e.g., Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001) while reducing the abundance of harmful bacteria (e.g., norank_f__Muribaculaceae) in the gut of the mice, in line with the increase of short-chain fatty acids and indole derivatives in the feces of the mice. Notably, biofilm L. plantarum Y42 exerted a better preventing effect on the intestinal barrier dysfunction of the Balb/C mice due to the fact that biofilm L. plantarumY42 expressed more exopolysaccharides and surface-layer proteins than the planktonic state. These results provide data support for the use of exopolysaccharides and surface-layer proteins extracted from biofilm-state L. plantarum Y42 as functional food ingredients in preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Sihan Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
30
|
López-Valverde N, López-Valverde A, Blanco Rueda JA. The role of probiotic therapy on clinical parameters and human immune response in peri-implant diseases: a systematic review and meta-analysis of randomized clinical studies. Front Immunol 2024; 15:1371072. [PMID: 38686378 PMCID: PMC11056541 DOI: 10.3389/fimmu.2024.1371072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background Peri-implant diseases (peri-implant mucositis and peri-implantitis) are pathologies of an infectious-inflammatory nature of the mucosa around dental implants. Probiotics are microorganisms that regulate host immunomodulation and have shown positive results in the treatment of peri-implant diseases. The objective of the systematic review and meta-analysis was to evaluate the efficacy of probiotics in the treatment of peri-implant oral diseases. Methods According to the PRISMA guidelines, the research question was established: Are probiotics able to favorably modify clinical and immunological biomarkers determinants of peri-implant pathologies? and an electronic search of the databases MEDLINE/PubMed, Embase, Cochrane Central, Web of Science, (until December 2023) was performed. Inclusion criteria were established for intervention studies (RCTs), according to the PICOs strategy in subjects with peri-implant pathology (participants), treated with probiotics (intervention) compared to patients with conventional treatment or placebo (control) and evaluating the response to treatment (outcomes). Results- 1723 studies were obtained and 10 were selected. Risk of bias was assessed using the Cochrane Risk of Bias Tool and methodological quality using the Joanna Briggs Institute for RCTs. Two meta-analyses were performed, one to evaluate probiotics in mucositis and one for peri-implantitis. All subgroups were homogeneous (I2 = 0%), except in the analysis of IL-6 in mucositis (I2 = 65%). The overall effect was favorable to the experimental group in both pathologies. The analysis of the studies grouped in peri-implantitis showed a tendency to significance (p=0.09). Conclusion The use of probiotics, as basic or complementary treatment of peri-implant diseases, showed a statistically significant trend, but well-designed studies are warranted to validate the efficacy of these products in peri-implant pathologies.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, University of Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - José Antonio Blanco Rueda
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Maione A, Imparato M, Buonanno A, Salvatore MM, Carraturo F, de Alteriis E, Guida M, Galdiero E. Evaluation of Potential Probiotic Properties and In Vivo Safety of Lactic Acid Bacteria and Yeast Strains Isolated from Traditional Home-Made Kefir. Foods 2024; 13:1013. [PMID: 38611319 PMCID: PMC11011881 DOI: 10.3390/foods13071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Probiotics are known for their health-promoting resources and are considered as beneficial microorganisms. The current study focuses on the isolation, and on a complete in vitro and in vivo characterization, of yeast and lactic acid bacteria acquired from traditional homemade kefir in order to assess their potentiality as probiotic candidates. In particular, the isolates Pichia kudriavzevii Y1, Lactococcus lactis subsp. hordniae LAB1 and Lactococcus lactis subsp. lactis LAB2 were subjected to in vitro characterization to evaluate their suitability as probiotics. Resistance to acid and bile salts, auto-aggregation, co-aggregation, hydrophobicity, and biofilm production capability were examined, as well as their antioxidant activity. A safety assessment was also conducted to confirm the non-pathogenic nature of the isolates, with hemolysis assay and antibiotic resistance assessment. Moreover, mortality in the invertebrate model Galleria mellonella was evaluated. Current findings showed that P. kudriavzevii exhibited estimable probiotic properties, placing them as promising candidates for functional foods. Both lactic acid bacteria isolated in this work could be classified as potential probiotics with advantageous traits, including antimicrobial activity against enteric pathogens and good adhesion ability on intestinal cells. This study revealed that homemade kefir could be a beneficial origin of different probiotic microorganisms that may enhance health and wellness.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Marianna Imparato
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Annalisa Buonanno
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Federica Carraturo
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
32
|
Boev M, Stănescu C, Turturică M, Cotârleţ M, Batîr-Marin D, Maftei N, Chiţescu C, Grigore-Gurgu L, Barbu V, Enachi E, Lisă EL. Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum. Molecules 2024; 29:917. [PMID: 38398667 PMCID: PMC10893200 DOI: 10.3390/molecules29040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The primary goal of this study was to generate different kinds of functional products based on carrots that were supplemented with lactic acid bacteria. The fact that carrots (Daucus carota sp.) rank among the most popular vegetables in our country led to the convergence of the research aim. Their abundance of bioactive compounds, primarily polyphenols, flavonoids, and carotenoids, offers numerous health benefits. Among the obtained products, the freeze-dried carrot powder (FDCP) variation presented the highest concentrations of total carotenoids (TCs) and β-carotene (BC) of 26.977 ± 0.13 mg/g DW and 22.075 ± 0.14 mg/g DW, respectively. The amount of total carotenoids and β-carotene significantly increased with the addition of the selected lactic acid bacteria (LAB) for most of the samples. In addition, a slight increase in the antioxidant activity compared with the control sample for the FDCP variant, with the highest value of 91.74%, was observed in these functional food products. The content of polyphenolic compounds varied from 0.044 to 0.091 mg/g DW, while the content of total flavonoids varied from 0.03 to 0.66 mg/g DW. The processing method had an impact on the population of L. plantarum that survived, as indicated by the viability of bacterial cells in all the analyzed products. The chromatographic analysis through UHPLC-MS/MS further confirmed the abundance of the bioactive compounds and their corresponding derivatives by revealing 19 different compounds. The digestibility study indicated that carotenoid compounds from carrots followed a rather controlled release. The carrot-based products enriched with Lactobacillus plantarum can be considered newly functional developed products based on their high content of biologically active compounds with beneficial effects upon the human body. Furthermore, these types of products could represent innovative products for every related industry such as the food, pharmaceutical, and cosmeceutical industries, thus converging a new strategy to improve the health of consumers or patients.
Collapse
Affiliation(s)
- Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
| | - Cristina Stănescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania;
| | - Mihaela Turturică
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University, 800008 Galati, Romania; (M.T.); (M.C.); (L.G.-G.); (V.B.)
| | - Mihaela Cotârleţ
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University, 800008 Galati, Romania; (M.T.); (M.C.); (L.G.-G.); (V.B.)
| | - Denisa Batîr-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
| | - Nicoleta Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
| | - Carmen Chiţescu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
| | - Leontina Grigore-Gurgu
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University, 800008 Galati, Romania; (M.T.); (M.C.); (L.G.-G.); (V.B.)
| | - Vasilica Barbu
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University, 800008 Galati, Romania; (M.T.); (M.C.); (L.G.-G.); (V.B.)
| | - Elena Enachi
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University, 800008 Galati, Romania; (M.T.); (M.C.); (L.G.-G.); (V.B.)
| | - Elena Lăcrămioara Lisă
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunărea de Jos University, 800008 Galati, Romania; (M.B.); (D.B.-M.); (N.M.); (C.C.); (E.L.L.)
| |
Collapse
|
33
|
Paterniti I, Scuderi SA, Cambria L, Nostro A, Esposito E, Marino A. Protective Effect of Probiotics against Pseudomonas aeruginosa Infection of Human Corneal Epithelial Cells. Int J Mol Sci 2024; 25:1770. [PMID: 38339047 PMCID: PMC10855269 DOI: 10.3390/ijms25031770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Probiotic therapy needs consideration as an alternative strategy to prevent and possibly treat corneal infection. This study aimed to assess the preventive effect of Lactobacillus reuteri and Bifidobacterium longum subsp. infantis on reducing the infection of human corneal epithelial (HCE) cells caused by Pseudomonas aeruginosa. The probiotics' preventive effect against infection was evaluated in cell monolayers pretreated with each probiotic 1 h and 24 h prior to P. aeruginosa challenge followed by 1 h and 24 h of growth in combination. Cell adhesion, cytotoxicity, anti-inflammatory, and antinitrosative activities were evaluated. L. reuteri and B. longum adhered to HCE cells, preserved occludin tight junctions' integrity, and increased mucin production on a SkinEthicTM HCE model. Pretreatment with L. reuteri or B. longum significantly protected HCE cells from infection at 24 h, increasing cell viability at 110% (110.51 ± 5.15; p ≤ 0.05) and 137% (137.55 ± 11.97; p ≤ 0.05), respectively. Each probiotic showed anti-inflammatory and antinitrosative activities, reducing TNF-α level (p ≤ 0.001) and NOx amount (p ≤ 0.001) and reestablishing IL-10 level (p ≤ 0.001). In conclusion, this study demonstrated that L. reuteri and B. longum exert protective effects in the context of corneal infection caused by P. aeruginosa by restoring cell viability and modulating inflammatory cytokine release.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (I.P.); (S.A.S.); (L.C.); (A.N.); (E.E.)
| |
Collapse
|
34
|
Chen P, Tian J, Ren Y, Cheng H, Pan H, Chen S, Ye X, Chen J. Enhance the resistance of probiotics by microencapsulation and biofilm construction based on rhamnogalacturonan I rich pectin. Int J Biol Macromol 2024; 258:128777. [PMID: 38096935 DOI: 10.1016/j.ijbiomac.2023.128777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024]
Abstract
Microcapsules were always used as functional material carriers for targeted delivery and meanwhile offering protection. However, microcapsule wall materials with specific properties were required, which makes the choice of wall material a key factor. In our previous study, a highly branched rhamnogalacturonan I rich (RG-I-rich) pectin was extracted from citrus canning processing water, which showed good gelling properties and binding ability, indicating it could be a potential microcapsule wall material. In the present study, Lactiplantibacillus plantarum GDMCC 1.140 and Lactobacillus rhamnosus were encapsulated by RG-I-rich pectin with embedding efficiencies of about 65 %. The environmental tolerance effect was evaluated under four different environmental stresses. Positive protection results were obtained under all four conditions, especially under H2O2 stress, the survival rate of probiotics embedded in microcapsules was about double that of free probiotics. The storage test showed that the total plate count of L. rhamnosus encapsulated in RG-I-rich pectin microcapsules could still reach 6.38 Log (CFU/mL) at 25 °C for 45 days. Moreover, probiotics embedded in microcapsules with additional incubation to form a biofilm layer inside could further improve the probiotics' activities significantly in the above experiments. In conclusion, RG-I-rich pectin may be a good microcapsule wall material for probiotics protection.
Collapse
Affiliation(s)
- Pin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
| |
Collapse
|
35
|
Somalou P, Ieronymaki E, Feidaki K, Prapa I, Stylianopoulou E, Spyridopoulou K, Skavdis G, Grigoriou ME, Panas P, Argiriou A, Tsatsanis C, Kourkoutas Y. Novel Wild-Type Pediococcus and Lactiplantibacillus Strains as Probiotic Candidates to Manage Obesity-Associated Insulin Resistance. Microorganisms 2024; 12:231. [PMID: 38399636 PMCID: PMC10891751 DOI: 10.3390/microorganisms12020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
As the food and pharmaceutical industry is continuously seeking new probiotic strains with unique health properties, the aim of the present study was to determine the impact of short-term dietary intervention with novel wild-type strains, isolated from various sources, on high-fat diet (HFD)-induced insulin resistance. Initially, the strains were evaluated in vitro for their ability to survive in simulated gastrointestinal (GI) conditions, for adhesion to Caco-2 cells, for bile salt hydrolase secretion, for cholesterol-lowering and cellular cholesterol-binding ability, and for growth inhibition of food-borne pathogens. In addition, safety criteria were assessed, including hemolytic activity and susceptibility to antibiotics. The in vivo test on insulin resistance showed that mice receiving the HFD supplemented with Pediococcus acidilactici SK (isolated from human feces) or P. acidilactici OLS3-1 strain (isolated from olive fruit) exhibited significantly improved insulin resistance compared to HFD-fed mice or to the normal diet (ND)-fed group.
Collapse
Affiliation(s)
- Paraskevi Somalou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Department of Laboratory Medicine, Medical School, University of Crete, 71003 Crete, Greece; (E.I.); (C.T.)
| | - Kyriaki Feidaki
- Institute of Applied Sciences, Centre for Research and Technology, 57001 Thessaloniki, Greece; (K.F.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Lemnos, Greece
| | - Ioanna Prapa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Electra Stylianopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Katerina Spyridopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | | | - Anagnostis Argiriou
- Institute of Applied Sciences, Centre for Research and Technology, 57001 Thessaloniki, Greece; (K.F.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Lemnos, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Department of Laboratory Medicine, Medical School, University of Crete, 71003 Crete, Greece; (E.I.); (C.T.)
- Institute for Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Yiannis Kourkoutas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| |
Collapse
|
36
|
Bajrami D, Sarquis A, Ladero VM, Fernández M, Mizaikoff B. Rapid discrimination of Lentilactobacillus parabuchneri biofilms via in situ infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123391. [PMID: 37714102 DOI: 10.1016/j.saa.2023.123391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Microbial contamination in food industry is a source of foodborne illnesses and biofilm-related diseases. In particular, biogenic amines (BAs) accumulated in fermented foods via lactic acid bacterial activity exert toxic effects on human health. Among these, biofilms of histamine-producer Lentilactobacillus parabuchneri strains adherent at food processing equipment surfaces can cause food spoilage and poisoning. Understanding the chain of contamination is closely related to elucidating molecular mechanisms of biofilm formation. In the present study, an innovative approach using integrated chemical sensing technologies is demonstrated to fundamentally understand the temporal behavior of biofilms at the molecular level by combining mid-infrared (MIR) spectroscopy and fluorescence sensing strategies. Using these concepts, the biofilm forming capacity of six cheese-isolated L. parabuchneri strains (IPLA 11151, 11150, 11129, 11125, 11122 and 11117) was examined. The cut-off values for the biofilm production ability of each strain were quantified using crystal violet (CV) assays. Real-time infrared attenuated total reflection spectroscopy (IR-ATR) combined with fluorescence quenching oxygen sensing provides insight into distinct molecular mechanisms for each strain. IR spectra showed significant changes in characteristic bands of amides, lactate, nucleic acids, and extracellular polymeric substances (i.e., lipopolysaccharides, phospholipids, phosphodiester, peptidoglycan, etc.), which are major contributors to biofilm maturation involved in the initial adhesion processes. Chemometric methods including principal component analysis and partial least square-discriminant analysis facilitated the rapid determination and classification of cheese isolated L. parabuchneri strains unambiguously differentiating the IR signatures based on their ability to produce biofilm. All biofilms were morphologically characterized by confocal laser scanning microscopy on relevant industrial equipment surfaces. In summary, this innovative approach combining MIR spectroscopy with luminescence sensing enables real-time insight into the molecular composition and formation of L. parabuchneri biofilms.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Agustina Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain.
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Hahn-Schickard, Sedanstrasse 14, 89077 Ulm, Germany.
| |
Collapse
|
37
|
Shaposhnikov LA, Tishkov VI, Pometun AA. Lactobacilli and Klebsiella: Two Opposites in the Fight for Human Health. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S71-S89. [PMID: 38621745 DOI: 10.1134/s0006297924140050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 04/17/2024]
Abstract
The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.
Collapse
Affiliation(s)
- Leonid A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
38
|
Lauko S, Gancarcikova S, Hrckova G, Hajduckova V, Andrejcakova Z, Fecskeova LK, Bertkova I, Hijova E, Kamlarova A, Janicko M, Ambro L, Kvakova M, Gulasova Z, Strojny L, Strkolcova G, Mudronova D, Madar M, Demeckova V, Nemetova D, Pacuta I, Sopkova D. Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model. Biomedicines 2023; 12:43. [PMID: 38255150 PMCID: PMC10813722 DOI: 10.3390/biomedicines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC.
Collapse
Affiliation(s)
- Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Gabriela Hrckova
- Institute of Parasitology, Slovak Academy of Sciences, 041 81 Kosice, Slovakia;
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| | - Livia Kolesar Fecskeova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital (UHLP) in Kosice, 040 11 Kosice, Slovakia;
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Emilia Hijova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia;
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Monika Kvakova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Zuzana Gulasova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Ladislav Strojny
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Gabriela Strkolcova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Marian Madar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Drahomira Sopkova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| |
Collapse
|
39
|
Savitskaya I, Zhantlessova S, Kistaubayeva A, Ignatova L, Shokatayeva D, Sinyavskiy Y, Kushugulova A, Digel I. Prebiotic Cellulose-Pullulan Matrix as a "Vehicle" for Probiotic Biofilm Delivery to the Host Large Intestine. Polymers (Basel) 2023; 16:30. [PMID: 38201695 PMCID: PMC10780842 DOI: 10.3390/polym16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024] Open
Abstract
This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies.
Collapse
Affiliation(s)
- Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Sirina Zhantlessova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Ludmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Dina Shokatayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | | | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan;
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, D-52428 Jülich, Germany;
| |
Collapse
|
40
|
Leboš Pavunc A, Penava L, Čuljak N, Banić M, Novak J, Butorac K, Ceilinger M, Miličević J, Čukelj D, Šušković J, Kos B. Evaluation of the Probiotic Properties of Lacticaseibacillus casei 431 ® Isolated from Food for Special Medical Purposes §. Food Technol Biotechnol 2023; 61:418-429. [PMID: 38205053 PMCID: PMC10775782 DOI: 10.17113/ftb.61.04.23.8045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Research background Increasing awareness of the importance of nutrition in health promotion and disease prevention has driven to the development of foods for special medical purposes (FSMPs). In this study, the probiotic strain Lacticaseibacillus paracasei ssp. paracasei (Lacticaseibacillus casei 431®) was incorporated into FSMPs to develop an innovative product. The aim was to investigate the influence of the FSMP matrix on the specific probiotic properties of L. casei 431® in vitro. Experimental approach A series of in vitro experiments were performed as part of the probiotic approach. After evaluation of antibiotic susceptibility profiles, functional properties such as survival under simulated gastrointestinal tract (GIT) conditions, bile salt deconjugation activities, cholesterol assimilation, antagonistic activity against spoilage bacteria and adhesion to Caco-2 cell line monolayers and extracellular matrix proteins were investigated. Results and conclusions The L. casei 431® strain, both the lyophilised strain and the strain isolated from the FSMP matrix, effectively survived the simulated adverse gastrointestinal conditions without significant effects of the food matrix. The effect of the FSMP matrix on the deconjugation activity of the bile salts of L. casei 431® was minimal; however, cholesterol assimilation was increased by 16.4 %. L. casei 431® had antibacterial activity against related lactic acid bacteria regardless of whether it was used in FSMPs or not. Conversely, the probiotic strain isolated from FSMP matrix had significantly higher inhibitory activity against six potential pathogens than the lyophilised culture. The autoaggregation ability of the L. casei 431® cells was not affected by the FSMP matrix. The adhesion of L. casei 431® bacterial cells to the extracellular matrix proteins was reduced after treatment with proteinase K, with the highest adhesion observed to laminin. The adhesion of L. casei 431® reduced the binding of E. coli 3014 by 1.81 log units and the binding of S. Typhimurium FP1 to Caco-2 cell lines by 1.85 log units, suggesting the potential for competitive exclusion of these pathogens. Novelty and scientific contribution The results support the positive effect of the FSMP matrix on the specific probiotic properties of L. casei 431®, such as antibacterial activity, bile salt deconjugation and cholesterol assimilation, while the incorporation of this probiotic strain adds functional value to the FSMPs. The synergistic effect achieved by the joint application of L. casei 431® and innovative FSMP matrix contributed to the development of the novel formulation of an improved functional food product with added value.
Collapse
Affiliation(s)
- Andreja Leboš Pavunc
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Lenkica Penava
- Belupo, Pharmaceuticals & Cosmetics Inc., Nutraceuticals, Business Development and Registration, I. Savica 36, 10000 Zagreb, Croatia
| | - Nina Čuljak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Martina Banić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Butorac
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marijana Ceilinger
- Belupo, Pharmaceuticals & Cosmetics Inc., Nutraceuticals, Business Development and Registration, Danica 5, 48000 Koprivnica, Croatia
| | - Jelena Miličević
- Belupo, Pharmaceuticals & Cosmetics Inc., Nutraceuticals, Business Development and Registration, Danica 5, 48000 Koprivnica, Croatia
| | - Danijela Čukelj
- Belupo, Pharmaceuticals & Cosmetics Inc., Nutraceuticals, Business Development and Registration, I. Savica 36, 10000 Zagreb, Croatia
| | - Jagoda Šušković
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Blaženka Kos
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Barreto Pinilla CM, Guzman Escudero F, Torres Silva E Alves A, Spadoti LM, Brandelli A. Draft Genome Sequence and Comparative Genome Analysis Reveal Potential Functional Properties in Lacticaseibacillus paracasei ItalPN16. Curr Microbiol 2023; 80:399. [PMID: 37910267 DOI: 10.1007/s00284-023-03515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Nowadays, there is a great interest on rapid and effective methods for initial identification of probiotic bacteria. In this work, potential probiotic features of the lactic acid bacteria strain ItalPN16 isolated from a traditional Brazilian cheese were studied using bioinformatic tools. The complete genome sequence was obtained, and in silico analyses were carried out to identify the strain and its potential probiotic properties. The sequenced genome (3.02 Mb) presented 3126 protein-coding sequences distributed on 244 SEED subsystems, classifying the strain as nomadic lactobacilli. Phylogenetic and ANI analyses allowed to locate the ItalPN16 strain as a member of the Lacticaseibacillus paracasei group, due to the highest number of orthologous genes in common with reference L. paracasei strains (>98%). In silico analyses revealed the presence of CDSs related to microbe-host interactions, such as adhesion proteins and exopolysaccharide biosynthesis genes. The comparative analysis reveals the presence of a strain-specific glycosyl transferases, compared with other three L. paracasei strains and a high level of protein expression (92%) with the probiotic L. paracasei BL29. The results obtained here indicated interesting probiotic features of the strain L. paracasei ItalPN16 that could favor a future application in the food industry.
Collapse
Affiliation(s)
| | | | - Adriana Torres Silva E Alves
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, 13070-178, Brazil
| | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, 13070-178, Brazil
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 91501-970, Brazil
| |
Collapse
|
42
|
Ang JL, Athalye-Jape G, Rao S, Bulsara M, Patole S. Limosilactobacillus reuteri DSM 17938 as a probiotic in preterm infants: An updated systematic review with meta-analysis and trial sequential analysis. JPEN J Parenter Enteral Nutr 2023; 47:963-981. [PMID: 37742098 DOI: 10.1002/jpen.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Our previous strain-specific systematic review (SR) showed that Lactobacillus reuteri (LR) DSM 17938 reduces necrotizing enterocolitis (NEC), late-onset sepsis (LOS), and time to full feeds (TFF) in preterm infants. Considering progress in the field over the past 6 years, we aimed to update our SR. METHODS SR of randomized controlled trials (RCTs) and non-RCTs was conducted. MEDLINE, Embase, Emcare, Cochrane CENTRAL, and gray literature were searched in June 2023. Primary outcomes were TFF, NEC stage ≥II, LOS, and all-cause mortality. Meta-analysis was performed using random-effects model. Certainty of evidence (CoE) was summarized using Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) guidelines. Trial sequential analysis (TSA) was applied for outcome of NEC in RCTs. RESULTS Twelve RCTs (n = 2284) and four non-RCTs (n = 1616) were included. Six RCTs and three non-RCTs were new. Meta-analysis of RCTs showed LR significantly reduced TFF (mean difference, -2.70 [95% CI, -4.90 to -1.31] days; P = 0.0001), NEC stage ≥II (risk ratio [RR], 0.57 [95% CI, 0.37-0.87]; P = 0.009; eight RCTs), and LOS (RR, 0.72 [95% CI, 0.54-0.97]; P = 0.03); but not mortality (RR, 0.76 [95% CI, 0.54-1.06]; P = 0.10). TSA showed diversity-adjusted required information size (DARIS) as 3624 for NEC. Overall CoE was "very low." Meta-analysis of non-RCTs showed LR reduced NEC (odds ratio, 0.34 [95% CI, 0.15-0.77]; P = 0.01) but not LOS. LR had no adverse effects. CONCLUSIONS Very low CoE suggests that LR DSM 17938 may reduce NEC and LOS and shorten TFF in preterm infants. Additional RCTs are required to confirm our findings.
Collapse
Affiliation(s)
- Ju Li Ang
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
| | - Gayatri Athalye-Jape
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Shripada Rao
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Neonatal Directorate, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Max Bulsara
- Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Sanjay Patole
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
43
|
Chauhan J, Sharma RK. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int J Biol Macromol 2023; 248:125873. [PMID: 37473897 DOI: 10.1016/j.ijbiomac.2023.125873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The need for a broader range of probiotics, prebiotics, and synbiotics to improve the activity and functioning of gut microbiota has led to the development of new nutraceuticals formulations. These techniques majorly depend on the type of the concerned food, inclusive factors i.e. application of biotic components, probiotics, and synbiotics along with the type of encapsulation involved. For improvisation of the oral transfer mode of synbiotics delivery within the intestine along with viability, efficacy, and stability co-encapsulation is required. The present study explores encapsulation materials, probiotics and prebiotics in the form of synbiotics. The emphasis was given to the selection and usage of probiotic delivery matrix or prebiotic polymers, which primarily include animal derived (gelatine, casein, collagen, chitosan) and plant derived (starch, cellulose, pectin, alginate) materials. Beside this, the role of microbial polymers and biofilms (exopolysaccharides, extracellular polymeric substances) has also been discussed in the formation of probiotic functional foods. In this instance, the microbial biofilm is also used as suitable polymeric compound for encapsulation providing stability, viability, and efficacy. Thus, the review highlights the utilization of diverse prebiotic polymers in synbiotic formulations, along with microbial biofilms, which hold great potential for enhancing gut microbiota activity and improving overall health.
Collapse
Affiliation(s)
- Juhi Chauhan
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
44
|
Li X, Wu J, Wu Y, Duan Z, Luo M, Li L, Li S, Jia Y. Imbalance of Vaginal Microbiota and Immunity: Two Main Accomplices of Cervical Cancer in Chinese Women. Int J Womens Health 2023; 15:987-1002. [PMID: 37424699 PMCID: PMC10329453 DOI: 10.2147/ijwh.s406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Objective To explore the correlation of female vaginal microbiota and immune factors with cervical cancer. Methods The distribution pattern difference of vaginal microbiota of four groups of women (cervical cancer, HPV-positive CIN, HPV-positive non-CIN, and HPV-negative groups) were compared by microbial 16S rDNA sequencing. The protein chip was used to detect the composition and changes of the immune factors in the four groups. Results Alpha diversity analysis demonstrated that the diversity of the vaginal microbiota was increased as the disease develops. Among those bacteria abundant in the vaginal microbiota, Lactobacillus, Prevotella, and Gardnerella dominate at the genus level of vaginal flora. Compared with the HPV-negative group, the differentially dominant bacteria, such as Prevotella, Ralstonia, Gardnerella and Sneathia, are enriched in the cervical cancer group. Likewise, Gardnerella, Prevotella, and Sneathia are more in the HPV-positive CIN group, while Gardnerella and Prevotella in the HPV-positive non-CIN group, respectively. In contrast, Lactobacillus and Atopobium are dominant in the HPV-negative group (LDA>4log10). The concentration of inflammatory immune factors IP-10 and VEGF-A were increased in the cervical cancer group (P < 0.05), compared with other groups. Conclusion The occurrence of cervical cancer is related to an increase of vaginal microbiota diversity and up-regulation of inflammatory immune factor proteins. The abundance of Lactobacillus was decreased while the one of Prevotella and Gardnerella were increased in the cervical cancer group, compared with other three groups. Moreover, the IP-10 and VEGF-A were also increased in the cervical cancer group. Thus, evaluation of changes in the vaginal microbiota and these two immune factor levels might be a potential non-invasive and simple method to predict cervical cancer. Furthermore, it is significant to adjust and restore the balance of vaginal microbiota and maintain normal immune function in preventing and treating cervical cancer.
Collapse
Affiliation(s)
- Xiaoge Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yutong Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Sijing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ying Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
45
|
Kyser AJ, Mahmoud MY, Johnson NT, Fotouh B, Steinbach-Rankins JM, Gilbert NM, Frieboes HB. Development and Characterization of Lactobacillus rhamnosus-Containing Bioprints for Application to Catheter-Associated Urinary Tract Infections. ACS Biomater Sci Eng 2023. [PMID: 37367532 DOI: 10.1021/acsbiomaterials.3c00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Catheter-associated urinary tract infections (CAUTI) are a significant healthcare burden affecting millions of patients annually. CAUTI are characterized by infection of the bladder and pathogen colonization of the catheter surface, making them especially difficult to treat. Various catheter modifications have been employed to reduce pathogen colonization, including infusion of antibiotics and antimicrobial compounds, altering the surface architecture of the catheter, or coating it with nonpathogenic bacteria. Lactobacilli probiotics offer promise for a "bacterial interference" approach because they not only compete for adhesion to the catheter surface but also produce and secrete antimicrobial compounds effective against uropathogens. Three-dimensional (3D) bioprinting has enabled fabrication of well-defined, cell-laden architectures with tailored release of active agents, thereby offering a novel means for sustained probiotic delivery. Silicone has shown to be a promising biomaterial for catheter applications due to mechanical strength, biocompatibility, and its ability to mitigate encrustation on the catheter. Additionally, silicone, as a bioink, provides an optimum matrix for bioprinting lactobacilli. This study formulates and characterizes novel 3D-bioprinted Lactobacillus rhamnosus (L. rhamnosus)-containing silicone scaffolds for future urinary tract catheterization applications. Weight-to-weight (w/w) ratio of silicone/L. rhamnosus was bioprinted and cured with relative catheter dimensions in diameter. Scaffolds were analyzed in vitro for mechanical integrity, recovery of L. rhamnosus, antimicrobial production, and antibacterial effect against uropathogenic Escherichia coli, the leading cause of CAUTI. The results show that L. rhamnosus-containing scaffolds are capable of sustained recovery of live bacteria over 14 days, with sustained production of lactic acid and hydrogen peroxide. Through the use of 3D bioprinting, this study presents a potential alternative strategy to incorporate probiotics into urinary catheters, with the ultimate goal of preventing and treating CAUTI.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, Kentucky 40202, United States
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, Kentucky 40202, United States
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | | | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, Kentucky 40202, United States
| | - Jill M Steinbach-Rankins
- Formerly at: Department of Bioengineering and Center for Predictive Medicine, University of Louisville Speed School of Engineering, Louisville, Kentucky 40202, United States
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, Kentucky 40202, United States
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, United States
- UofL Health─Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| |
Collapse
|
46
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
47
|
Rezaei Z, Salari A, Khanzadi S, Rhim J, Shamloo E. Preparation of milk-based probiotic lactic acid bacteria biofilms: A new generation of probiotics. Food Sci Nutr 2023; 11:2915-2924. [PMID: 37324845 PMCID: PMC10261778 DOI: 10.1002/fsn3.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Biofilm is considered as a community of microorganisms in which cells adhere to each other on surfaces in a self-produced matrix of extracellular polymer compounds. In recent years, efforts to use the beneficial aspects of biofilm in probiotic research have intensified. In this study, probiotic biofilms of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus were manufactured using milk and transferred to yogurt in whole and pulverized forms to test in real food conditions. Survival was assessed during 21 days of storage time as well as gastrointestinal conditions. The results indicated that Lp. plantarum and Lc. rhamnosus can form a very desirable and strong biofilm that can have a good protective effect on the survival of these bacteria in probiotic yogurt during processing, storage, and gastrointestinal conditions, in a way that, after 120 min of treatment in high acidic gastrointestinal conditions (pH 2.0), the survival rate decreased by only 0.5 and 1.1 log CFU/ml. Probiotic biofilm can be used as a natural way of utilizing bacteria in biotechnology and fermentation, which is an excellent way to increase the utility of probiotics.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Jong‐Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research CenterKyung Hee UniversitySeoulRepublic of Korea
| | - Ehsan Shamloo
- Department of Food Science and TechnologyNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
48
|
Coulibaly WH, Kouadio NR, Camara F, Diguță C, Matei F. Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiol 2023; 23:152. [PMID: 37231432 DOI: 10.1186/s12866-023-02899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Probiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast. RESULTS Twelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose. CONCLUSION The explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| | - N'goran Richard Kouadio
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Fatoumata Camara
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Camelia Diguță
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania.
| | - Florentina Matei
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| |
Collapse
|
49
|
Truong AT, Kang JE, Yoo MS, Nguyen TT, Youn SY, Yoon SS, Cho YS. Probiotic candidates for controlling Paenibacillus larvae, a causative agent of American foulbrood disease in honey bee. BMC Microbiol 2023; 23:150. [PMID: 37226109 DOI: 10.1186/s12866-023-02902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND American foulbrood (AFB) disease caused by Paenibacillus larvae is dangerous, and threatens beekeeping. The eco-friendly treatment method using probiotics is expected to be the prospective method for controlling this pathogen in honey bees. Therefore, this study investigated the bacterial species that have antimicrobial activity against P. larvae. RESULTS Overall, 67 strains of the gut microbiome were isolated and identified in three phyla; the isolates had the following prevalence rates: Firmicutes 41/67 (61.19%), Actinobacteria 24/67 (35.82%), and Proteobacteria 2/67 (2.99%). Antimicrobial properties against P. larvae on agar plates were seen in 20 isolates of the genus Lactobacillus, Firmicutes phylum. Six representative strains from each species (L. apis HSY8_B25, L. panisapium PKH2_L3, L. melliventris HSY3_B5, L. kimbladii AHS3_B36, L. kullabergensis OMG2_B25, and L. mellis OMG2_B33) with the largest inhibition zones on agar plates were selected for in vitro larvae rearing challenges. The results showed that three isolates (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) had the potential to be probiotic candidates with the properties of safety to larvae, inhibition against P. larvae in infected larvae, and high adhesion ability. CONCLUSIONS Overall, 20 strains of the genus Lactobacillus with antimicrobial properties against P. larvae were identified in this study. Three representative strains from different species (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) were evaluated to be potential probiotic candidates and were selected for probiotic development for the prevention of AFB. Importantly, the species L. panisapium isolated from larvae was identified with antimicrobial activity for the first time in this study.
Collapse
Affiliation(s)
- A-Tai Truong
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, 250000, Vietnam
| | - Jeong Eun Kang
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Mi-Sun Yoo
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Thi Thu Nguyen
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - So-Youn Youn
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yun Sang Cho
- Parasitic and InParasitic and Honey Bee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
50
|
Kang CE, Park YJ, Kim JH, Lee NK, Paik HD. Probiotic Weissella cibaria displays antibacterial and anti-biofilm effect against cavity-causing Streptococcus mutans. Microb Pathog 2023; 180:106151. [PMID: 37172659 DOI: 10.1016/j.micpath.2023.106151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Streptococcus mutans is a significant contributor to dental caries and causes functional and aesthetic discomfort. Weissella cibaria strains were isolated from kimchi, and their functional properties were determined. In this study, the antibacterial and antibiofilm effects of four W. cibaria strains (D29, D30, D31, and B22) were evaluated against three S. mutans strains using culture fluid and cell-free supernatants. The results showed that W. cibaria reduced the exopolysaccharides production and auto-aggregation, increased co-aggregation, and downregulated virulence factors, leading to the inhibition of bacterial growth and biofilm formation. These findings were confirmed using scanning electron microscopy and confocal laser scanning microscopy. These results indicate that oral health can be potentially improved by W. cibaria.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Yeong Jin Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|