1
|
Huaman SOB, de Souza FA, Bonato MA, Dias CP, Callegari MA, Oba A, de Carvalho RH, da Silva CA. Effects of prebiotic and multispecies probiotic supplementation on the gut microbiota, immune function, and growth performance of weaned piglets. PLoS One 2024; 19:e0313475. [PMID: 39570882 PMCID: PMC11581253 DOI: 10.1371/journal.pone.0313475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
In this study, we evaluated the impact of yeast cell wall prebiotics and multispecies probiotics on the gut microbiota, immune response, and growth performance of weaned piglets, as alternatives to antibiotics as growth promoters (AGPs). A randomized complete block design was employed, involving 160 piglets divided into four treatment groups during the nursery phase. The treatments applied throughout the experimental period were as follows: CONT+ = basal diet with halquinol (AGP); YCW = basal diet with yeast cell wall (cell wall of Saccharomyces cerevisiae yeast); SIM+ = basal diet with yeast cell wall + multispecies probiotic (Bacillus subtilis (2.0 x 109 CFU/g), Bacillus coagulans (5.0 x 108 CFU/g), Clostridium butyricum (5.0 x 107 CFU/g), and Bacillus licheniformis (2.0 x 109 CFU/g)); SIM- = basal diet with yeast cell wall + multispecies probiotic (half dose). The parameters assessed included daily feed intake, weight gain, feed conversion ratio (FCR), diarrhea score, serum cytokine levels, and chemokine concentrations, as well as microbiota analysis. During the 21 to 63-day study period, only FCR differed significantly (p = 0.0076). CONT+ and PREB had superior FCRs of 1.543 and 1.585, while SIM- had the least favorable FCR at 1.654. At 35 days, IL-10 levels were greater in the SIM- group, showing a 271.25% increase over those in the other groups. By 49 days, the IL-8 concentration was lower in the PREB group than in the CONT+ group, with a reduction of 247%, while the IL-8 concentrations in the SIM+ and SIM- groups were not significantly different from those in the other groups. The Firmicutes/Bacteroidetes (F/B) ratio in the CONT+ group was lower than that in the PREB, SIM+, and SIM- treatment groups. The Lactobacillaceae family was more abundant in the SIM+ treatment, followed by the SIM- and PREB treatments. The CONT+ treatment had the lowest abundance. The abundance of the genus Lactobacillus differed between the CONT+ group and the PREB, SIM+, and SIM- treatment groups. Prebiotics, used either alone or combined with probiotics, serve as effective substitutes for AGPs, boosting piglets' health and performance throughout the nursery phase.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandre Oba
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| | - Rafael Humberto de Carvalho
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
- Akei Animal Research, Fartura, São Paulo, Brazil
| | - Caio Abércio da Silva
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Palumbo F, Trevisi P, Correa F, Bee G, Girard M. Increasing the level of hemicelluloses in the lactation diet affects the faecal microbiota of sows and their piglets without affecting their performances. Anim Microbiome 2024; 6:68. [PMID: 39563440 DOI: 10.1186/s42523-024-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Specific sources of dietary fibres in sow gestation and lactation diets, such as inulin or wheat bran, have been shown to affect both the sow and its litter health by modulating the piglet's intestinal microbial population and composition. However, only a few studies have reported the effects of some specific fractions of the cell wall of the plants in the sow's lactation diet. Therefore, this study investigates the effect of increasing the level of HCs in a sow's lactation diet on the nutrient apparent total tract digestibility (ATTD), the faecal volatile fatty acid (VFA) profile, the microbiota of the sow and the microbiota and the performances of slow-growing (SG) and fast-growing (FG) piglets. RESULTS Increasing HCs level increased (P < 0.05) the proportions of butyrate and valerate on day 3, and the ATTD of acid detergent fibres (ADF), neutral detergent fibres (NDF), and gross energy and decreased (P < 0.05) the proportion of propionate on day 17, and the ATTD of crude protein. The beta diversity was affected (r2 = 0.11; P = 0.02) by the maternal dietary treatments with 11 common genera differing (P < 0.05) in the sow's faecal microbiota, and five in the piglet's microbiota. Regardless of the maternal dietary treatment, SG piglets had a lower (P < 0.05) proportion of isobutyrate and isovalerate, a lower (P < 0.05) abundance of Lachnospiraceae_XPB1014_group, Enterococcus, and Succinovibrio genera, and a greater (P < 0.05) abundance of Olsenella than FG piglets. CONCLUSIONS Increased HCs level in a sow's lactation diet affects the ATTD of nutrients, the faecal VFA and microbiota profiles of the sows with limited effects on SG and FG piglets' faecal microbiota and no effects on the performance or VFA profile of these piglets.
Collapse
Affiliation(s)
- Francesco Palumbo
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Giuseppe Bee
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland
| | - Marion Girard
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland.
| |
Collapse
|
3
|
de Paula YH, Resende M, Chaves RF, Barbosa JA, Garbossa CAP, Costa MDO, Rigo F, Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Cantarelli VDS. A new approach: preventive protocols with yeast products and essential oils can reduce the in-feed use of antibiotics in growing-finishing pigs. Transl Anim Sci 2024; 8:txae104. [PMID: 39185353 PMCID: PMC11344245 DOI: 10.1093/tas/txae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
The objective of this study was to evaluate the effects of yeast products (YP) and essential oils (EO) in total or partial replacement to in-feed antibiotic protocols (growth promoter and prophylactic), both in recommended doses and in overdose of prophylactic antibiotics (PA), on growth performance, and diarrhea incidence in the growing-finishing pigs; and fecal microbiota in market hogs. Four hundred pigs (20.36 ± 2.64 kg) were assigned to five treatments in a randomized block design: diets with prophylactic and growth promoter antibiotics (ANT); ANT with 30% more PA (ANT+30); diets with less PA and YP (ANT+Y); diets with less PA, YP and EO (ANT+Y+EO); and antibiotics-free diets with YP and EO (Y+EO). The content of the active components of the YP was 60% purified β-1,3/1,6-glucans extracted from Saccharomyces cerevisiae yeast (Macrogard), 20% functional water-soluble MOS (HyperGen), and 18% MOS, extracted from Saccharomyces cerevisiae yeast (ActiveMOS). From 0 to 14 d, pigs of the ANT+30, ANT+Y, and ANT+Y+EO treatments showed a greater body weight (BW) and average daily gain (ADG) compared to pigs from the Y+EO group. From 14 to 35 d, pigs of ANT+30 and ANT+Y+EO treatments were heavier than Y+EO group. At 105 d, ANT pigs had a higher BW than the Y+EO group. For the entire period, ADG of ANT pigs was greater, and feed conversion ratio better than Y+EO pigs. From 0 to 35 d, pigs of the Y+EO treatment showed a higher diarrhea incidence compared to pigs of the other groups. From 49 to 70 d, ANT+Y and ANT+Y+EO treatments showed a lower diarrhea incidence than Y+EO group, which remained the case during the overall period. At 105 d, the alpha diversity of fecal microbiota by Shannon Entropy was lower in ANT, ANT+30, and Y+EO groups than observed for ANT+Y+EO group. The abundance of Firmicutes phylum and Firmicutes/Bacteroidetes ratio was higher in ANT than in ANT+Y+EO pigs. Proteobacteria phylum abundance in ANT+Y+EO was higher than ANT, ANT+Y, and Y+EO. Peptostreptococcaceae family abundance was higher in ANT, ANT+30, and ANT+Y groups than in ANT+Y+EO and Y+EO groups. ANT+Y+EO and Y+EO groups show a lower abundance of SMB53 genus than ANT and ANT+30 groups. In conclusion, the use of YP and EO, in partial replacement to the in-feed antibiotic protocols, does not reduce the growth performance, can replace antibiotic growth promotors, and reduce the in-feed use of PA in growing-finishing pigs. The use of YP and EO, together with PA, increases the microbial diversity, despite having important genera for weight gain in less abundance. Overdose of PA does not improve growth performance and reduces microbial diversity, which does not characterize it as an efficient preventive protocol.
Collapse
Affiliation(s)
| | - Maíra Resende
- Animal Science Department, Federal University of Lavras, Lavras, Brazil
| | | | | | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Koch JFA, Callegari MA, Dias CP, de Carvalho RH, da Silva CA. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast ( Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals (Basel) 2024; 14:631. [PMID: 38396599 PMCID: PMC10886371 DOI: 10.3390/ani14040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the inclusion of the autolyzed yeast (AY) Saccharomyces cerevisiae with or without an immunomodulator (1,3/1,6 β-glucans) as a total/partial substitute for blood plasma (BP) in the diet of post-weaning piglets; zootechnical performance, intestinal health and microbiota, immune responses and energy metabolism were assessed. A total of 240 castrated male and female piglets, with a mean age of 22 days and mean initial weight of 5.24 ± 0.82 kg, were randomly divided into blocks of four treatments with 12 replicates. The dietary inclusions were blood plasma (BP), autolyzed yeast (AY), autolyzed yeast + immunomodulator (AYI) and 50% BP and 50% AY (BPAY). In pre-initial phase II (29-35 days), piglets fed AY showed better feed conversion (FCR = 1.358) than the piglets in the BP (1.484), AYI (1.379) and BPAY (1.442) groups, i.e., 8.49% (0.126), 1.52% (0.021) and 4.50% (0.084), respectively (p = 0.0293). In the total period (21-42 days), better FCR was observed in the AYI (1.458) group, i.e., 4.64% (0.071), 1.15% (0.017) and 4.58% (0.070), than in the BP (1.529), AY (1.475) and BPAY (1.528) groups, respectively (p = 0.0150). In piglets fed AY (n = 3) and BPAY (n = 2), there was a reduction in the number of medications, i.e., 82.35% (-14n) and 88.23% (-15n), respectively (p = 0.0001), compared with that in the BP group (n = 17). In the AY group (73.83 mg/dL), AYI group (69.92 mg/dL), and BPAY group (69.58 mg/dL), piglets exhibited increases in triglyceride levels of 79.32%, 69.83%, and 69.00%, respectively, in comparison to those in the BP group, which had triglyceride levels of 41.17 mg/dL (p = 0.0400). The beta-hydroxybutyrate concentration in the AY group (79.96 ng/μL) was lower by 31.95%, 22.64%, and 5.89% compared to the BP group (117.50 ng/μL), AYI group (103.36 ng/μL), and BPAY group (84.67 ng/μL), respectively (p = 0.0072). In the AYI group, there was modulation of the microbiota, with an increase in the relative abundance of bacteria of the genera Lactobacillus, Collinsella and Bulleidia. AY, associated or not associated with an immunomodulator, is a potential substitute for BP in diets for piglets in the nursery phase, with positive effects on immune, metabolic, and intestinal microbial performance.
Collapse
Affiliation(s)
- Robson Sfaciotti Barducci
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | - Leticia Graziele Pacheco
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - Thaila Cristina Putarov
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - João Fernando Albers Koch
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | | | - Rafael Humberto de Carvalho
- Akei Animal Research, Fartura 18870-970, SP, Brazil; (M.A.C.); (C.P.D.); (R.H.d.C.)
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
5
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Palumbo F, Bee G, Trevisi P, Girard M. Decreasing the level of hemicelluloses in sow’s lactation diet affects the milk composition and post-weaning performance of low birthweight piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2181108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Francesco Palumbo
- Agroscope, Swine Research Group, Posieux, Switzerland
- Dipartimento di Scienze e Tecnologie Agro-alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Giuseppe Bee
- Agroscope, Swine Research Group, Posieux, Switzerland
| | - Paolo Trevisi
- Dipartimento di Scienze e Tecnologie Agro-alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Marion Girard
- Agroscope, Swine Research Group, Posieux, Switzerland
| |
Collapse
|
7
|
Liu S, Xiao G, Wang Q, Zhang Q, Tian J, Li W, Gong L. Effects of Dietary Bacillus subtilis HC6 on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Health in Broilers. Animals (Basel) 2023; 13:2915. [PMID: 37760314 PMCID: PMC10526030 DOI: 10.3390/ani13182915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the impact of Bacillus subtilis HC6 on the growth performance, immunity, antioxidant capacity, and intestinal health of broilers. A total of 180 one-day-old white feather broilers were randomly divided into two experimental groups, each comprising six replicates of fifteen chicks from 1 to 50 d of age. The groups were either fed a basal diet (CON) or the same diet supplemented with 5 × 108 cfu/kg of Bacillus subtilis HC6 (BS). Our results indicated that compared with the CON, dietary supplementation with BS increased feed efficiency during d 21-50 and d 1-50 (p < 0.05). Moreover, BS supplementation enhanced antioxidant capacity in the serum and liver, and also decreased the activity of diamine oxidase and the level of endotoxins (p < 0.05). Additionally, BS treatment increased the villi height in the jejunum and ileum, increased the ratio of villus height/crypt depth in the ileum, upregulated the expression of tight junction proteins in the jejunal mucosa, and downregulated the levels of IL-22 and IFN-γ on day 50 (p < 0.05). Principal coordinates analysis yielded clear clustering of two groups; dietary BS increased the relative abundance of Bacteroidales_unclassified (genus) and Olsenella (genus), and decreased the abundance of genera Alistipes on day 50, which identified a strong correlation with FCR, serum differential metabolites, or differential gene expression in the jejunal mucosa by spearman correlation analysis. The PICRUSt2 analysis revealed that supplementation with BS enriched the pathways related to xenobiotics biodegradation and metabolism, carbohydrate metabolism, energy metabolism, signaling molecules and interaction, the digestive system, and transport and catabolism. These results demonstrated that dietary BS increased feed efficiency, antioxidant capacity, and the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa; and decreased the activity of diamine oxidase in serum, which might be attributed to the modulation of community composition and the functions of cecal microbiota in white-feathered broilers.
Collapse
Affiliation(s)
- Shun Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Qi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Qingyang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Jinpeng Tian
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| | - Weifen Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Q.W.); (W.L.)
| | - Li Gong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (S.L.); (G.X.); (Q.Z.); (J.T.)
| |
Collapse
|
8
|
Lerch F, Yosi F, Vötterl JC, Koger S, Ehmig J, Sharma S, Verhovsek D, Metzler-Zebeli BU. An insight into the temporal dynamics in the gut microbiome, metabolite signaling, immune response, and barrier function in suckling and weaned piglets under production conditions. Front Vet Sci 2023; 10:1184277. [PMID: 37720467 PMCID: PMC10500839 DOI: 10.3389/fvets.2023.1184277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Little information is available on age- and creep-feeding-related microbial and immune development in neonatal piglets. Therefore, we explored age- and gut-site-specific alterations in the microbiome, metabolites, histo-morphology, and expression of genes for microbial signaling, as well as immune and barrier function in suckling and newly weaned piglets that were receiving sow milk only or were additionally offered creep feed from day of life (DoL) 10. The experiment was conducted in two replicate batches. Creep feed intake was estimated at the litter level. Piglets were weaned on day 28 of life. Gastric and cecal digesta and jejunal and cecal tissue were collected on DoL 7, 14, 21, 28, 31, and 35 for microbial and metabolite composition, histomorphology, and gene expression. In total, results for 10 piglets (n = 5/sex) per dietary group (sow milk only versus additional creep feed) were obtained for each DoL. The creep feed intake was low at the beginning and only increased in the fourth week of life. Piglets that were fed creep feed had less lactate and acetate in gastric digesta on DoL 28 compared to piglets fed sow milk only (p < 0.05). Age mainly influenced the gastric and cecal bacteriome and cecal mycobiome composition during the suckling phase, whereas the effect of creep feeding was small. Weaning largely altered the microbial communities. For instance, it reduced gastric Lactobacillaceae and cecal Bacteroidaceae abundances and lowered lactate and short-chain fatty acid concentrations on DoL 31 (p < 0.05). Jejunal and cecal expression of genes related to microbial and metabolite signaling, and innate immunity showed age-related patterns that were highest on DoL 7 and declined until DoL 35 (p < 0.05). Weaning impaired barrier function and enhanced antimicrobial secretion by lowering the expression of tight junction proteins and stimulating goblet cell recruitment in the jejunum and cecum (p < 0.05). Results indicated that age-dependent alterations, programmed genetically and by the continuously changing gut microbiome, had a strong impact on the expression of genes for gut barrier function, integrity, innate immunity, and SCFA signaling, whereas creep feeding had little influence on the microbial and host response dynamics at the investigated gut sites.
Collapse
Affiliation(s)
- Frederike Lerch
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Fitra Yosi
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang, South Sumatra, Indonesia
| | - Julia C. Vötterl
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juliane Ehmig
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Verhovsek
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara U. Metzler-Zebeli
- Unit of Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
9
|
Skoufos I, Nelli A, Venardou B, Lagkouvardos I, Giannenas I, Magklaras G, Zacharis C, Jin L, Wang J, Gouva E, Skoufos S, Bonos E, Tzora A. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023; 11:1723. [PMID: 37512895 PMCID: PMC10384456 DOI: 10.3390/microorganisms11071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to evaluate whether dietary supplementation with an innovative silage (IS) created using 60% olive mill waste, 20% grape pomace, and 20% deproteinised feta cheese waste solids can modulate the composition of the intestinal microbiota in weaned (Exp. 1) and finishing (Exp. 2) pigs. In Exp. 1 (40 day supplementation), forty-five crossbred weaned pigs were randomly assigned to the 0% (Control), 5%, or 10% IS groups (15 replicates/experimental diet). In Exp. 2 (60 day supplementation), eighteen finishing pigs from Exp. 1 were fed the control diet for 8 weeks before being re-assigned to their original experimental groups and fed with the 0% (Control), 5%, or 10% IS diets (six replicates/experimental diet). Performance parameters were recorded. Ileal and caecal digesta and mucosa were collected at the end of each experiment for microbiota analysis using 16S rRNA gene sequencing (five pigs/experimental diet for Exp. 1 and six pigs/experimental diet for Exp. 2). No significant effects on pig growth parameters were observed in both experiments. In Exp. 1, 5% IS supplementation increased the relative abundance of the Prevotellaceae family, Coprococcus genus, and Alloprevotella rava (OTU_48) and reduced the relative abundance of Lactobacillus genus in the caecum compared to the control and/or 10% IS diets (p < 0.05). In Exp. 2, 5% IS supplementation led to compositionally more diverse and different ileal and caecal microbiota compared to the control group (p < 0.05; p = 0.066 for β-diversity in ileum). Supplementation with the 5% IS increased the relative abundance of Clostridium celatum/disporicum/saudiense (OTU_3) in the ileum and caecum and Bifidobacterium pseudolongum (OTU_17) in the caecum and reduced the relative abundance of Streptococcus gallolyticus/alactolyticus (OTU_2) in the caecum compared to the control diet (p < 0.05). Similar effects on C. celatum/disporicum/saudiense and S. gallolyticus/alactolyticus were observed with the 10% IS diet in the caecum (p < 0.05). IS has the potential to beneficially alter the composition of the gastrointestinal microbiota in pigs.
Collapse
Affiliation(s)
- Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Brigkita Venardou
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Magklaras
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Christos Zacharis
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Lizhi Jin
- Meritech (Asia Pacific) Biotech Pte Ltd., Singapore 079903, Singapore
| | - Jin Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Evangelia Gouva
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Stylianos Skoufos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| |
Collapse
|
10
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
11
|
Sun W, Chen W, Meng K, Cai L, Li G, Li X, Jiang X. Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets. BIOLOGY 2023; 12:biology12020238. [PMID: 36829515 PMCID: PMC9953057 DOI: 10.3390/biology12020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL-S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p < 0.05). Probiotics enhanced superoxidase dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in serum (p < 0.05), and increased the level of mRNA expression of SOD1, Nrf2, and HO-1 (p < 0.05) in the jejunum mucosa. Moreover, supplementation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and protein levels of occludin and ZO-1 in jejunum mucosa (p < 0.05). The intestinal sIgA levels (p < 0.05) were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher (p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL-S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea.
Collapse
Affiliation(s)
- Wenjuan Sun
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiguan Li
- COFCO Feed Co., Ltd., Beijing 100020, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| |
Collapse
|
12
|
Saladrigas-García M, Durán M, D’Angelo M, Coma J, Pérez JF, Martín-Orúe SM. An insight into the commercial piglet's microbial gut colonization: from birth towards weaning. Anim Microbiome 2022; 4:68. [PMID: 36572944 PMCID: PMC9791761 DOI: 10.1186/s42523-022-00221-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | - Matilde D’Angelo
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Coma
- Grupo Vall Companys, 25191 Lleida, Spain
| | - José Francisco Pérez
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana María Martín-Orúe
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
13
|
Lerch F, Vötterl JC, Schwartz-Zimmermann HE, Sassu EL, Schwarz L, Renzhammer R, Bünger M, Sharma S, Koger S, Sener-Aydemir A, Quijada NM, Selberherr E, Kummer S, Berthiller F, U. Metzler-Zebeli B. Exposure to plant-oriented microbiome altered jejunal and colonic innate immune response and barrier function more strongly in suckling than in weaned piglets. J Anim Sci 2022; 100:skac310. [PMID: 36165740 PMCID: PMC9677959 DOI: 10.1093/jas/skac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Weaning often leaves the piglet vulnerable to gut dysfunction. Little is known about the acute response of a gut mucosa primed by a milk-oriented microbiome before weaning to a plant-oriented microbiome (POM) after weaning. We evaluated the epithelial structure, secretory response and permeability in the small and large intestines of piglets receiving a milk-based (i.e., preweaning) or plant-based diet (i.e., postweaning) to POM inocula using intestinal loop perfusion assays (ILPA). The POM were prepared from jejunal and colonic digesta of four 7 week-old weaned (day 28 of life) piglets, having gut-site specific microbial and metabolite composition. Two consecutive ILPA were performed in 16 piglets pre- (days 24 to 27) and 16 piglets postweaning (days 38 to 41) in two replicate batches. Two jejunal and colonic loops per piglet were perfused with Krebs-Henseleit buffer (control) or the respective POM. The outflow fluid was analyzed for antimicrobial secretions. Jejunal and colonic loop tissue were collected after each ILPA for histomorphology and electrophysiology using Ussing chambers. ANOVA was performed using the MIXED procedure in SAS. The POM stimulated the secretory response by increasing mucin in the jejunal and colonic outflow by 99.7% and 54.1%, respectively, and jejunal IgA by 19.2%, whereas colonic lysozyme decreased 25.6% compared to the control (P < 0.05). Fittingly, the POM raised the number of goblet cells by 96.7% in jejunal and 56.9% in colonic loops compared to control loops (P < 0.05). The POM further flattened jejunal villi by 18.3% and reduced crypt depth in jejunal and colonic loops by 53.8% and 9.0% compared to the control (P < 0.05); observations typically made postweaning and indicative for mucosal recognition of 'foreign' compounds. The POM altered the jejunal and colonic net ion flux as indicated by 22.7% and 59.2% greater short-circuit current compared to control loops, respectively; the effect being stronger postweaning (P < 0.05). Colonic barrier function improved with age (P < 0.05), whereas POM perfusion compromised the mucosal barrier as suggested by 17.7% and 54.1% greater GT and mucosal-to-serosal flux of fluorescein-isothiocyanate dextran, respectively, compared to the control (P < 0.05). In conclusion, results demonstrated that the preweaning gut epithelium acutely responds to novel compounds in postweaning digesta by upregulating the first line of defense (i.e., mucin and lysozyme secretion) and impairment of the structural integrity.
Collapse
Affiliation(s)
- Frederike Lerch
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia C Vötterl
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Rene Renzhammer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Narciso M Quijada
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Barbara U. Metzler-Zebeli
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
14
|
Evidence-Based Recommendations for Herd Health Management of Porcine Post-Weaning Diarrhea. Animals (Basel) 2022; 12:ani12141737. [PMID: 35883284 PMCID: PMC9311872 DOI: 10.3390/ani12141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In this paper, you will find recommendations on how to prevent post-weaning diarrhea in pigs kept in indoor pig herds. The recommendations are based on the scientific knowledge that is currently available. The authors first validated that Danish veterinarians working with pigs demanded such recommendations. Then, we collected papers written by other researchers who had summarized the scientific knowledge on different topics related to post-weaning diarrhea. From the papers, we extracted and synthesized 79 specific recommendations that may help veterinarians and pig producers make good decisions for their pig herd. The paper exemplifies a novel approach to summarizing and transferring science into practice that may be of interest to people that are not involved with pigs and post-weaning diarrhea. Abstract Aided by their advising veterinarians, pig producers need to make difficult decisions regarding herd health management strategies. For instance, the preventive use of antimicrobials and medicinal zinc oxide must be substituted with more sustainable preventive approaches to porcine post-weaning diarrhea. Veterinarians and pig producers may find assistance in knowledge based on evidence in this regard; however, the overwhelming scientific literature is not always readily available. The overall aim of this paper is to suggest herd health management decision-support tools that can aid veterinary-assisted decision making in the control of porcine post-weaning diarrhea at a tactical level. The first objective was to validate the need for a herd health management concept, including two decision-support tools. The second objective was to develop evidence-based recommendations that can aid veterinary-assisted decision-making for the herd health management of post-weaning diarrhea. The first objective was investigated by a questionnaire-based study among veterinary pig practitioners in Denmark. For the second objective, we conducted a scientific summary based on scientific review papers identified through a systematic search in three databases. From the papers, we synthesized and extracted 79 specific recommendations. In this paper, we report comprehensive evidence-based recommendations for the herd health management of post-weaning diarrhea.
Collapse
|
15
|
Geervliet M, de Vries H, Jansen CA, Rutten VPMG, van Hees H, Wen C, Skovgaard K, Antonello G, Savelkoul HFJ, Smidt H, Tijhaar E, Wells JM. Effects of E scherichia coli Nissle 1917 on the Porcine Gut Microbiota, Intestinal Epithelium and Immune System in Early Life. Front Microbiol 2022; 13:842437. [PMID: 35283814 PMCID: PMC8914288 DOI: 10.3389/fmicb.2022.842437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 12/22/2022] Open
Abstract
Early in life and particularly around weaning, piglets are susceptible to infections because of abrupt social, environmental, and dietary changes. Dietary interventions with probiotic bacteria have gained popularity because of the increased awareness of the direct link between diet and health. In this study, piglets received the probiotic strain Escherichia coli Nissle 1917 (EcN) or a control treatment perorally from day 2 after birth until 2 weeks post-weaning. To investigate spatio-temporal effects of EcN on the gut microbiota composition, intestinal epithelial gene expression and immune system, feces, digesta, blood, scraping material and mesenteric lymph node tissue were collected at different time points. In addition, oral vaccinations against Salmonella enterica serovar Typhimurium were administered on days 21 and 45 of the study to assess the immunocompetence. EcN-treated pigs showed a reduced diversity of taxa within the phylum Proteobacteria and a lower relative abundance of taxa within the genus Treponema during the pre-weaning period. Moreover, EcN induced T cell proliferation and Natural Killer cell activation in blood and enhanced IL-10 production in ex vivo stimulated mesenteric lymph node cells, the latter pointing toward a more regulatory or anti-inflammatory state of the local gut-associated immune system. These outcomes were primarily observed pre-weaning. No significant differences were observed between the treatment groups with regards to body weight, epithelial gene expression, and immune response upon vaccination. Differences observed during the post-weaning period between the treatment groups were modest. Overall, this study demonstrates that the pre-weaning period offers a 'window of opportunity' to modulate the porcine gut microbiota and immune system through dietary interventions such as EcN supplementation.
Collapse
Affiliation(s)
- Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hugo de Vries
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Hubèrt van Hees
- Research and Development, Trouw Nutrition, Amersfoort, Netherlands
| | - Caifang Wen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Giacomo Antonello
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Luise D, Bosi P, Raff L, Amatucci L, Virdis S, Trevisi P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front Microbiol 2022; 13:801827. [PMID: 35197953 PMCID: PMC8859173 DOI: 10.3389/fmicb.2022.801827] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023] Open
Abstract
The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6-8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Lena Raff
- Chr. Hansen, Animal Health and Nutrition, Hørsholm, Denmark
| | - Laura Amatucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Luise D, Correa F, Fusco L, Bosi P, Trevisi P. Productive effects of a colostrum-oriented amino acid dietary supply for sows in transition from gestation to lactation. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1960210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diana Luise
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Correa
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Paolo Bosi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Sarri L, Costa-Roura S, Balcells J, Seradj AR, de la Fuente G. The Impact of Genetics on Gut Microbiota of Growing and Fattening Pigs under Moderate N Restriction. Animals (Basel) 2021; 11:ani11102846. [PMID: 34679867 PMCID: PMC8532768 DOI: 10.3390/ani11102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. To simultaneously study the effects of producing type (PT), production phase (PP) and dietary crude protein (CP) content on microbial populations, 20 Duroc pigs and 16 crossbred pigs (F2), belonging to growing and fattening phases, were used. Half of the pigs of each PT were fed a moderate CP restriction (2%). After sacrifice, contents of ileum, cecum and distal colon were collected for sequencing procedure. Fattening pigs presented higher microbial richness than growing pigs because of higher maturity and stability of the community. The F2 pigs showed higher bacterial alpha diversity and microbial network complexity (cecum and colon), especially in the fattening phase, while Duroc pigs tended to have higher Firmicutes/Bacteroidetes ratio in cecum segment. Lactobacillus was the predominant genus, and along with Streptococcus and Clostridium, their relative abundance decreased throughout the intestine. Although low CP diet did not alter the microbial diversity, it increased interaction network complexity. These results have revealed that the moderate CP restriction had lower impact on intestinal microbiota than PP and PT of pigs.
Collapse
|
19
|
Luise D, Chalvon-Demersay T, Lambert W, Bosi P, Trevisi P. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Corino C, Di Giancamillo A, Modina SC, Rossi R. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals (Basel) 2021; 11:1573. [PMID: 34072221 PMCID: PMC8229765 DOI: 10.3390/ani11061573] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure environmental sustainability, according to the European Green Deal and to boost the One Health concept, it is essential to improve animals' health and adopt sustainable and natural feed ingredients. Over the past decade, prebiotics have been used as an alternative approach in order to reduce the use of antimicrobials, by positively affecting the gut microbiota and decreasing the onset of several enteric diseases in pig. However, dietary supplementation with seaweed polysaccharides as prebiotics has gained attention in recent years. Seaweeds or marine macroalgae contain several polysaccharides: laminarin, fucoidan, and alginates are found in brown seaweeds, carrageenan in red seaweeds, and ulvan in green seaweeds. The present review focuses on studies evaluating dietary seaweed polysaccharide supplementation in pig used as prebiotics to positively modulate gut health and microbiota composition.
Collapse
Affiliation(s)
| | | | | | - Raffaella Rossi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (C.C.); (A.D.G.); (S.C.M.)
| |
Collapse
|