1
|
Liu F, Yao Y, Huang Y, Luo L, Wang Q, Chen B, Hu H. Gut microbiota and metabolic profile changes unveil the deterioration of alveolar bone inflammatory resorption with aging induced by D-galactose. Sci Rep 2024; 14:26135. [PMID: 39477973 PMCID: PMC11526011 DOI: 10.1038/s41598-024-75941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The global aging population has led to a rise in age-related health issues, such as malnutrition, metabolic disorders, and even immune decline. Among these concerns, periodontitis holds particular significance for the well-being of the elderly. This study aimed to investigate the impact of aging on inflammatory resorption of alveolar bone in mice with periodontitis, with a specific focus on alterations in the intestinal microenvironment. To achieve this, we established a D-galactose (D-gal)-induced aging mouse model with periodontitis and employed histopathological staining, oxidative stress, and inflammatory factors analyses to assess the severity of periodontitis and the health status. Additionally, the 16S rRNA sequencing and untargeted metabolomics analysis were employed to investigate alterations in the intestinal microbiota and metabolites. Our results showed that D-gal-induced aging mice with periodontitis experienced more pronounced alveolar bone inflammatory resorption and disruptions in the gut barrier, accompanied by an overall decline in physical condition. The microbial composition and structure of aged mice also underwent significant modifications, with a decreased Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, metabolomics analysis demonstrated that D-gal-induced aging primarily influenced lipids and lipid-like molecules metabolism, and enrichment observed in the rheumatoid arthritis and histidine metabolism pathways. These findings provide further evidence that the aging process exacerbates age-related alveolar bone loss (ABL) through disturbances in intestinal homeostasis.
Collapse
Affiliation(s)
- Fangzhou Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yanzi Yao
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Stomatology, Luoyang Maternal and Child Health Hospital, Luoyang, China
| | - Yue Huang
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Liangliang Luo
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Bin Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Dou L, Peng Y, Zhang B, Yang H, Zheng K. Immune Remodeling during Aging and the Clinical Significance of Immunonutrition in Healthy Aging. Aging Dis 2024; 15:1588-1601. [PMID: 37815906 PMCID: PMC11272210 DOI: 10.14336/ad.2023.0923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is associated with changes in the immune system and the gut microbiota. Immunosenescence may lead to a low-grade, sterile chronic inflammation in a multifactorial and dynamic way, which plays a critical role in most age-related diseases. Age-related changes in the gut microbiota also shape the immune and inflammatory responses. Nutrition is a determinant of immune function and of the gut microbiota. Immunonutrion has been regarded as a new strategy for disease prevention and management, including many age-related diseases. However, the understanding of the cause-effect relationship is required to be more certain about the role of immunonutrition in supporting the immune homeostasis and its clinical relevance in elderly individuals. Herein, we review the remarkable quantitative and qualitative changes during aging that contribute to immunosenescence, inflammaging and microbial dysbiosis, and the effects on late-life health conditions. Furthermore, we discuss the clinical significance of immunonutrition in the treatment of age-related diseases by systematically reviewing its modulation of the immune system and the gut microbiota to clarify the effect of immunonutrition-based interventions on the healthy aging.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bin Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Zhang Y, Zhang J, Liu Y, Ren S, Tao N, Meng F, Cao Q, Liu R. High fat diet increases the severity of collagen-induced arthritis in mice by altering the gut microbial community. Adv Rheumatol 2024; 64:44. [PMID: 38816873 DOI: 10.1186/s42358-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVES Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, gut microbiota and its metabolites contribute to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear. In this study, we aimed to investigate whether gut microbiota and their metabolites alter the effects of high fat diet (HFD) on the severity of collagen-induced arthritis (CIA) in mice. METHODS Briefly, mice were divided into normal group (N), CIA model group (C), HFD group (T), and HFD CIA group (CT). Hematoxylin and Eosin staining(HE) and Safranin O-fast green staining were conducted, and levels of blood lipid and inflammatory cytokines were measured. 16S rDNA sequencing technique and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were performed to explore changes in the microbiota structure to further reveal the pathomechanism of HFD on CIA. RESULTS HFD aggravated the severity of CIA in mice. The CT group had the highest proportion of microbial abundance of Blautia, Oscillibacter, Ruminiclostridium-9, and Lachnospiraceae UCG 006 at the genus level, but had a lower proportion of Alistipes. Additionally, the fecal metabolic phenotype of the combined CT group shows significant changes, with differential metabolites enriched in 9 metabolic pathways, including primary bile acid biosynthesis, arginine biosynthesis, sphingolipid metabolism, purine metabolism, linoleic acid metabolism, oxytocin signaling pathway, aminoacyl-tRNA biosynthesis, the pentose phosphate pathway, and sphingolipid signaling pathway. Correlation analysis revealed that some of the altered gut microbiota genera were strongly correlated with changes in fecal metabolites, total cholesterol (TC), triglyceride (TG), and inflammatory cytokine levels. CONCLUSIONS This study shows that HFD may aggravate inflammatory reaction in CIA mice by altering the gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Yang Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Jie Zhang
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Yantong Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Shuang Ren
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Ning Tao
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Fanyan Meng
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China
| | - Qi Cao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110001, Liaoning, China
| | - Ruoshi Liu
- The First Hospital of China Medical University, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
4
|
Pan X, Zhang Y, Qiao Y, Cao Q, Wei L, Zhao M. Investigation of the therapeutic effect of Hedan tablets on high-fat diet-induced obesity in rats by GC-MS technology and 16S ribosomal RNA gene sequencing. Biomed Chromatogr 2024; 38:e5848. [PMID: 38368632 DOI: 10.1002/bmc.5848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Obesity is a persistent metabolic condition resulting from the excessive accumulation or abnormal distribution of body fat. This study aimed to establish an experimental rat model of obesity. The efficacy of treating obesity with Hedan tablets (HDT) was assessed by monitoring changes in weight, blood lipid levels, analyzing inflammatory factors, evaluating organ indices, and observing liver tissue pathology. Furthermore, we utilized 16S ribosomal RNA gene sequencing technology to explore changes in intestinal flora. In addition, GC-MS was used to measure fecal short-chain fatty acid (SCFA) content. The onset of obesity led to a significant decrease in the relative abundance of beneficial bacteria. Conversely, the administration of HDT demonstrated a substantial ability to increase the relative abundance of beneficial bacteria. Obesity resulted in a noteworthy reduction in total SCFAs, a trend significantly reversed in the HDT group. Through correlation analysis, it was determined that HDT mitigated the inflammatory response and improved blood lipid levels by augmenting the abundance of Lactobacillus, Limosilactobacillus, Ruminococcus, and Enterococcus. These particular intestinal flora were identified as regulators of SCFA metabolism, thereby ameliorating metabolic abnormalities associated with obesity. Moreover, HDT intervention elevated the overall fecal concentration of SCFAs, thereby improving metabolic disorders induced by obesity. The anti-obesity effects of HDT are likely attributable to their capacity to influence the composition of intestinal flora and boost SCFA levels in the intestine.
Collapse
Affiliation(s)
- Xuan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yongyao Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Qingying Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Liuxin Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
6
|
Hill EB, Konigsberg IR, Ir D, Frank DN, Jambal P, Litkowski EM, Lange EM, Lange LA, Ostendorf DM, Scorsone JJ, Wayland L, Bing K, MacLean PS, Melanson EL, Bessesen DH, Catenacci VA, Stanislawski MA, Borengasser SJ. The Microbiome, Epigenome, and Diet in Adults with Obesity during Behavioral Weight Loss. Nutrients 2023; 15:3588. [PMID: 37630778 PMCID: PMC10458964 DOI: 10.3390/nu15163588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity has been linked to the gut microbiome, epigenome, and diet, yet these factors have not been studied together during obesity treatment. Our objective was to evaluate associations among gut microbiota (MB), DNA methylation (DNAme), and diet prior to and during a behavioral weight loss intervention. Adults (n = 47, age 40.9 ± 9.7 years, body mass index (BMI) 33.5 ± 4.5 kg/m2, 77% female) with data collected at baseline (BL) and 3 months (3 m) were included. Fecal MB was assessed via 16S sequencing and whole blood DNAme via the Infinium EPIC array. Food group and nutrient intakes and Healthy Eating Index (HEI) scores were calculated from 7-day diet records. Linear models were used to test for the effect of taxa relative abundance on DNAme and diet cross-sectionally at each time point, adjusting for confounders and a false discovery rate of 5%. Mean weight loss was 6.2 ± 3.9% at 3 m. At BL, one MB taxon, Ruminiclostridium, was associated with DNAme of the genes COL20A1 (r = 0.651, p = 0.029), COL18A1 (r = 0.578, p = 0.044), and NT5E (r = 0.365, p = 0.043). At 3 m, there were 14 unique MB:DNAme associations, such as Akkermansia with DNAme of GUSB (r = -0.585, p = 0.003), CRYL1 (r = -0.419, p = 0.007), C9 (r = -0.439, p = 0.019), and GMDS (r = -0.559, p = 0.046). Among taxa associated with DNAme, no significant relationships were seen with dietary intakes of relevant nutrients, food groups, or HEI scores. Our findings indicate that microbes linked to mucin degradation, short-chain fatty acid production, and body weight are associated with DNAme of phenotypically relevant genes. These relationships offer an initial understanding of the possible routes by which alterations in gut MB may influence metabolism during weight loss.
Collapse
Affiliation(s)
- Emily B. Hill
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| | - Iain R. Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
| | - Diana Ir
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| | - Elizabeth M. Litkowski
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Aurora, CO 80045, USA
| | - Ethan M. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045, USA
| | - Leslie A. Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Aurora, CO 80045, USA
| | - Danielle M. Ostendorf
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared J. Scorsone
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Liza Wayland
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen Bing
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward L. Melanson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel H. Bessesen
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Victoria A. Catenacci
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Anschutz Health and Wellness Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maggie A. Stanislawski
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.R.K.)
| | - Sarah J. Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.B.H.)
| |
Collapse
|
7
|
Yanan Z, Lu M, Lu Z, Jinhai H, Weiming W. Effects and action mechanisms of lotus leaf ( Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats. Front Nutr 2023; 10:1169843. [PMID: 37435567 PMCID: PMC10332267 DOI: 10.3389/fnut.2023.1169843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 07/13/2023] Open
Abstract
Objective The present study aimed to clarify the effect of the lotus leaf ethanol extract (LLEE) on the mechanism of antiobesity and the intestinal microbiota of obese rats. Methods A total of 40 specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were split into the blank control group, the model control group, the Orlistat capsule control group, and the LLEE group. All the groups were intervened and fed specific diets for 5 months. During the experiment, we evaluated the rats' body weight, length, serum biochemical indicators, and inflammatory factor levels. After dissection, the liver; epididymal and perirenal white adipose tissue (WAT); and the contents of the cecum were collected for pathological evaluation and intestinal flora analysis. Results Lotus leaf alcohol extract can significantly reduce the serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels. It also decreases the accumulation of fatty deposits in the liver of rats and the levels of serum inflammatory factors IL-6 and TNF-α and increases the level of IL-10. Lotus leaf alcohol extracts significantly increased the abundance of Muribaculaceae in the intestinal flora of rats, reduced the abundance of pro-inflammatory bacteria Firmicutes, and relieved fatty liver and other inflammation and diseases caused by a high-fat diet. Besides, the ethanol extract of the lotus leaf significantly regulated the abundance of Ruminococcus, suggesting that the ethanol extract of the lotus leaf may prevent hyperlipidemia. Conclusion We elucidated the effects and action mechanisms of LLEE on obesity in high-fat diet-fed rats to provide suggestions for regulating intestinal flora through dietary intervention and thus improving blood lipid metabolism.
Collapse
Affiliation(s)
- Zhang Yanan
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Ma Lu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Zhang Lu
- Institute of Chinese Materia Medica, Heilongjiang Nursing College, Harbin, China
| | - Huo Jinhai
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| | - Wang Weiming
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China
| |
Collapse
|
8
|
Weninger SN, Ding A, Browne EN, Frost ML, Schiro G, Laubitz D, Duca FA. Longitudinal Characterization of the Gut Microbiota in the Diabetic ZDSD Rat Model and Therapeutic Potential of Oligofructose. Metabolites 2023; 13:660. [PMID: 37233701 PMCID: PMC10220957 DOI: 10.3390/metabo13050660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The complex development of type 2 diabetes (T2D) creates challenges for studying the progression and treatment of the disease in animal models. A newly developed rat model of diabetes, the Zucker Diabetic Sprague Dawley (ZDSD) rat, closely parallels the progression of T2D in humans. Here, we examine the progression of T2D and associated changes in the gut microbiota in male ZDSD rats and test whether the model can be used to examine the efficacy of potential therapeutics such as prebiotics, specifically oligofructose, that target the gut microbiota. Bodyweight, adiposity, and fed/fasting blood glucose and insulin were recorded over the course of the study. Glucose and insulin tolerance tests were performed, and feces collected at 8, 16, and 24 weeks of age for short-chain fatty acids and microbiota analysis using 16s rRNA gene sequencing. At the end of 24 weeks of age, half of the rats were supplemented with 10% oligofructose and tests were repeated. We observed a transition from healthy/nondiabetic to prediabetic and overtly diabetic states, via worsened insulin and glucose tolerance and significant increases in fed/fasted glucose, followed by a significant decrease in circulating insulin. Acetate and propionate levels were significantly increased in the overt diabetic state compared to healthy and prediabetic. Microbiota analysis demonstrated alterations in the gut microbiota with shifts in alpha and beta diversity as well as alterations in specific bacterial genera in healthy compared to prediabetic and diabetic states. Oligofructose treatment improved glucose tolerance and shifted the cecal microbiota of the ZDSD rats during late-stage diabetes. These findings underscore the translational potential of ZDSD rats as a model of T2D and highlight potential gut bacteria that could impact the development of the disease or serve as a biomarker for T2D. Additionally, oligofructose treatment was able to moderately improve glucose homeostasis.
Collapse
Affiliation(s)
- Savanna N. Weninger
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Angela Ding
- Department of Physiological Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Elizabeth N. Browne
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Morgan L. Frost
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA
| | - Frank A. Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Mena-Vázquez N, Ruiz-Limón P, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Rioja J, Mucientes A, Martin-Núñez GM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomed Pharmacother 2023; 160:114388. [PMID: 36773522 DOI: 10.1016/j.biopha.2023.114388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE To analyze the intestinal microbiota of patients with rheumatoid arthritis (RA) and obesity and a higher percentage of fatty tissue. METHODS Nested case-control study of 80 RA patients and 80 age and sex-matched controls. Obesity was defined as a body mass index ≥ 30, and body composition using dual-energy x-ray absorptiometry. The gut microbiota was analyzed using 16 S rRNA gene sequencing; bioinformatics analysis was performed using QIIME2 and PICRUSt. Other variables included averaged 28-joint Disease Activity Score (DAS28-ESR), cytokines and adipokines. Two multivariate were constructed with obesity and fat mass index (FMI). RESULTS Obesity was more frequent in RA patients than in controls (36.3 % vs 25.1 %; p = 0.026), as was a higher FMI value (mean [SE]=11.6 [3.9] vs 10.2 [3.9]; p = 0.032). Alpha and beta diversity analysis revealed differences in gut microbiota between RA patients with and without obesity. Dialister and Odoribacter were more abundant in RA patients with obesity than in RA patients without obesity, while the genus Clostridium was more abundant in RA patients without obesity. The factors associated with obesity in RA patients were age (OR [95 % CI], 1.09 [1.02-1.17]), mean DAS28-ESR (OR [95 % CI], 1.46 [1.12-1.67]), leptin levels (OR [95 % CI], 1.06 [1.01-1.10]), the genus Dialister (OR [95 % CI], 1.03 [1.01-1.07]), and the genus Clostridium (OR [95 % CI], 0.013 [0.00-0.36]). The associations observed for FMI were similar. CONCLUSIONS In patients with RA, obesity, and a higher percentage of fatty tissue, intestinal microbiota differed from that of controls and of the other patients. The genus Dialister was associated with obesity and FMI.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Moreno-Indias
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Sara Manrique-Arija
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Jose Manuel Lisbona-Montañez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - José Rioja
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Arkaitz Mucientes
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Gracia María Martin-Núñez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Cano-García
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Francisco J Tinahones
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
10
|
Buisson C, Leuzy V, Loizon E, Meugnier E, Monnoye M, Philippe C, Gérard P, Michalski MC, Laugerette F. Soy Lecithin in High-Fat Diets Exerts Dual Effects on Adipose Tissue Versus Ileum. Mol Nutr Food Res 2023; 67:e2200461. [PMID: 36708587 DOI: 10.1002/mnfr.202200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/10/2023] [Indexed: 01/30/2023]
Abstract
SCOPE Lipopolysaccharides and their transporters, LBP and sCD14, are involved in systemic inflammation following a high-fat diet. Natural emulsifiers such as soy lecithin, rich in soybean polar lipids (SPL), are often used by the food industry but little is known about effects of associating SPL with different oils. METHODS AND RESULTS Thus, this study investigates the effects of 4 weeks feeding of palm (P) or rapeseed (R) oil-enriched diets with or without SPL in mice, on white adipose tissue (WAT) inflammation, on ileum permeability, and on microbiota composition. When SPL are associated with rapeseed oil, a greater gene expression of leptin and inflammation in WAT is observed compared to P-SPL. In ileum, R-SPL group results in a lower expression of TLR4, IAP that detoxify bacterial LPS and tight junction proteins than R group. In turn, the gene expression of Reg3β and Reg3γ, which have antimicrobial activity, is higher in ileum of R-SPL group than in R group. SPL in rapeseed oil increases specific bacterial species belonging to Lachnospiraceae, Alistipes, and Bacteroidales. CONCLUSION The incorporation of SPL in a diet with rapeseed oil exerts differential effect on WAT and ileum, with respectively an inflammation of WAT and an antimicrobial activity in ileum, associated with specific microbiota changes.
Collapse
Affiliation(s)
- Charline Buisson
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Valentin Leuzy
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| | - Magali Monnoye
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Catherine Philippe
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Philippe Gérard
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, 78350, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France.,CRNH Rhône-Alpes, Oullins, 69310, France
| | - Fabienne Laugerette
- Univ Lyon, CarMeN laboratory INRAE, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, Pierre Bénite, 69310, France
| |
Collapse
|
11
|
Hoseini Tavassol Z, Ejtahed HS, Atlasi R, Saghafian F, Khalagi K, Hasani-Ranjbar S, Siadat SD, Nabipour I, Ostovar A, Larijani B. Alteration in Gut Microbiota Composition of Older Adults Is Associated with Obesity and Its Indices: A Systematic Review. J Nutr Health Aging 2023; 27:817-823. [PMID: 37960904 DOI: 10.1007/s12603-023-1988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Obesity in the older adults is a health concern that increases the risk of several life-threatening diseases. Previous research has been revealed that alterations in the gut microbiota composition is related to obesity. So, understanding the gut microbiota changes in older adults' obesity may help to provide promising strategies for their health management. OBJECTIVES Here we conducted a systematic review that investigate the alteration of gut microbiota composition in association with obesity and its indices in the older adults. DESIGN Systematic review. SETTING A comprehensive systematic search was performed through PubMed, Web of Science, Scopus and Embase databases for all relative studies up to 2023 with the main search concepts as Microbiota, Obesity and Elderly. The data about gut microbiota in association with obesity indices had been extracted. PARTICIPANTS Older adults (≥60 years). INTERVENTION None. MEASUREMENTS None. RESULTS Within 10741 recordes, 11 studies met the inclusion criteria and were included in this systematic review. Most of them indicated the gut microbiota alterations in obese compared with non-obese older adults. However, the gut microbiome composition in obese older adults is affected by other underlying diseases like diabetes and metabolic syndrome. The most important taxa that had abundance alteration in association with obesity in older adults were Christensenellaceae, Porphyromonadaceae and Rikenellaceae, Akkermansia, Blautia, Prevotella, Ruminococcus, Bacteroides and Faecalibacterium. CONCLUSION The gut microbiota composition is associated with obesity in older adults. Considering the other factors affecting the composition of gut microbiota, such as age, underlying diseases and lifestyle, a more accurate conclusion about this matter requires more future studies.
Collapse
Affiliation(s)
- Z Hoseini Tavassol
- Shirin Hasani-Ranjbar, Professor of Endocrinology, Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran, P.O. Box: 1411713137, Tel: +98-21- 88220038, Fax: +98-21-88220052,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
14
|
Effect of a Community Gerontology Program on the Control of Metabolic Syndrome in Mexican Older Adults. Healthcare (Basel) 2022; 10:healthcare10030466. [PMID: 35326944 PMCID: PMC8950718 DOI: 10.3390/healthcare10030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Metabolic syndrome (MS) is highly prevalent in older adults; it constitutes a risk factor for cognitive deterioration, frailty, and Alzheimer’s disease. For this reason, the WHO has pointed out the importance of the implementation of community programs for the training of healthy aging. The aim of this study was to evaluate the effect of a community gerontology program framed in active aging on the control of metabolic syndrome in older adults. Methods: An experimental study was carried out in a convenience sample of 80 older adults diagnosed with MS according to the ATPIII criteria, comprising (1) experimental group (EG), n = 40; (2) control group (CG), n = 40. During a 6-month period, the EG participated in a supervised community gerontology program, and the CG was assessed monthly. Results: A statistically significant decrease was observed in the number of components for the diagnosis of MS. In this regard, of the total of participants with a diagnosis of MS in EG, only 28% maintained the diagnosis of MS (ATPIII ≥ 3 criteria), in contrast to 83% of the CG participants (p < 0.0001). Conclusions: Our findings suggest that health self-care training within the framework of active aging is effective for the control of MS in older adults.
Collapse
|
15
|
Mocanu V, Zhang Z, Deehan EC, Kao DH, Hotte N, Karmali S, Birch DW, Samarasinghe KK, Walter J, Madsen KL. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat Med 2021; 27:1272-1279. [PMID: 34226737 DOI: 10.1038/s41591-021-01399-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Fecal microbial transplantation (FMT) from lean donors to patients with obesity has been associated with metabolic benefits, yet results so far have been inconsistent. In this study, we tested the application of daily fiber supplementation as an adjunct to FMT therapy to modulate cardiometabolic outcomes. We performed a double-blind randomized trial in patients with severe obesity and metabolic syndrome receiving oral FMT, to test high-fermentable (HF) and low-fermentable (LF) fiber supplements (NCT03477916). Seventy participants were randomized to the FMT-HF (n = 17), FMT-LF (n = 17), HF (n = 17) and LF (n = 19) groups. The primary outcome was the assessment of change in insulin sensitivity from baseline to 6 weeks using the homeostatic model assessment (HOMA2-IR/IS). After 6 weeks, only patients in the FMT-LF group had significant improvements in HOMA2-IR (3.16 ± 3.01 at 6 weeks versus 3.77 ± 3.57 at baseline; P = 0.02). No difference in HOMA2-IR was observed over this period for those in the FMT-HF group (3.25 ± 1.70 at 6 weeks versus 3.17 ± 1.72 at baseline; P = 0.8), the HF group (3.49 ± 1.43 at 6 weeks versus 3.26 ± 1.33 at baseline; P = 0.8) or the LF group (3.76 ± 2.01 at 6 weeks versus 3.56 ± 1.81 at baseline; P = 0.8). Interventions were safe and well-tolerated with no treatment-attributed serious adverse events. We provide proof of concept for the use of a single-dose oral FMT combined with daily low-fermentable fiber supplementation to improve insulin sensitivity in patients with severe obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Valentin Mocanu
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Edward C Deehan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina H Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shahzeer Karmali
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel W Birch
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Karen L Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Fernández-Rodríguez R, Mesas AE, Garrido-Miguel M, Martínez-Ortega IA, Jiménez-López E, Martínez-Vizcaíno V. The Relationship of Tree Nuts and Peanuts with Adiposity Parameters: A Systematic Review and Network Meta-Analysis. Nutrients 2021; 13:nu13072251. [PMID: 34208812 PMCID: PMC8308485 DOI: 10.3390/nu13072251] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
The network meta-analysis and systematic review conducted aim to comparatively assess the effects of tree nuts and peanuts on body weight (BW), body mass index (BMI), waist circumference (WC), and body fat percentage (BF%). A systematic search up to 31 December 2020 was performed. A random-effects network meta-analysis was conducted following the PRISMA-NMA statement. A total of 105 randomized controlled trials (RCTs) with measures of BW (n = 6768 participants), BMI (n = 2918), WC (n = 5045), and BF% (n = 1226) were included. The transitivity assumption was met based on baseline characteristics. In the comparisons of nut consumption versus a control diet, there was no significant increase observed in any of the adiposity-related measures examined except for hazelnut-enriched diets, which raised WC. Moreover, almond-enriched diets significantly reduced WC compared to the control diet and to the pistachio-, mixed nuts-, and hazelnut-enriched diets. In subgroup analyses with only RCTs, designed to assess whether nut consumption affected weight loss, almonds were associated with reduced BMI and walnuts with reduced %BF. The evidence supports that: (1) tree nut and peanut consumption do not influence adiposity, and (2) compared to a control diet, the consumption of almond-enriched diets was associated with a reduced waist circumference.
Collapse
Affiliation(s)
- Rubén Fernández-Rodríguez
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
| | - Arthur E. Mesas
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
- Health Science Centre, Universidade Estadual de Londrina, Londrina 86038-350, Brazil
- Correspondence: ; Tel.: +34-969179100 (ext. 4686)
| | - Miriam Garrido-Miguel
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
- Facultad de Enfermería, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Isabel A. Martínez-Ortega
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
| | - Estela Jiménez-López
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
| | - Vicente Martínez-Vizcaíno
- Health and Social Research Center, Universidad de Castilla La-Mancha, 16071 Cuenca, Spain; (R.F.-R.); (M.G.-M.); (I.A.M.-O.); (E.J.-L.); (V.M.-V.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 1101, Chile
| |
Collapse
|