1
|
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00859. [PMID: 39308938 PMCID: PMC11415593 DOI: 10.1016/j.btre.2024.e00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais Belo Horizonte, Brazil
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663, Kaiserslautern, Germany
| | - Bushra Ijaz
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
2
|
Haq IU, Rahim K, Paker NP. Exploring the historical roots, advantages and efficacy of phage therapy in plant diseases management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112164. [PMID: 38908799 DOI: 10.1016/j.plantsci.2024.112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In the drug-resistance era, phage therapy has received considerable attention from worldwide researchers. Phage therapy has been given much attention in public health but is rarely applied to control plant diseases. Herein, we discuss phage therapy as a biocontrol approach against several plant diseases. The emergence of antibiotic resistance in agriculturally important pathogenic bacteria and the toxic nature of different synthetic compounds used to control microbes has driven researchers to rethink the century-old strategy of phage therapy''. Compared to other treatment strategies, phage therapy offers remarkable advantages such as high specificity, less chances of drug resistance, non-harmful nature, and benefit to soil microbial flora. The optimizations and protective formulations of phages are significant accomplishments; however, steps towards a better understanding of the physiologic characteristics of phages need to be preceded to commercialize their use. The future of phage therapy in the context of plant disease management is promising and could play a significant role in sustainable agriculture. Ongoing research will likely affirm the safety of phage therapy, ensuring that it does not harm non-target organisms, including beneficial soil microbes. Phage therapy could become vital in addressing global food security challenges, particularly in regions heavily impacted by plant bacterial diseases. Efforts to create formulations that enhance the stability and shelf-life of phages will be crucial, especially for their use in varied environmental conditions.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland; Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais, Belo Horizonte, Brazil.
| | - Kashif Rahim
- School of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
3
|
Villicaña C, Rubí-Rangel LM, Amarillas L, Lightbourn-Rojas LA, Carrillo-Fasio JA, León-Félix J. Isolation and Characterization of Two Novel Genera of Jumbo Bacteriophages Infecting Xanthomonas vesicatoria Isolated from Agricultural Regions in Mexico. Antibiotics (Basel) 2024; 13:651. [PMID: 39061333 PMCID: PMC11273794 DOI: 10.3390/antibiotics13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial spot is a serious disease caused by several species of Xanthomonas affecting pepper and tomato production worldwide. Since the strategies employed for disease management have been inefficient and pose a threat for environmental and human health, the development of alternative methods is gaining relevance. The aim of this study is to isolate and characterize lytic phages against Xanthomonas pathogens. Here, we isolate two jumbo phages, named XaC1 and XbC2, from water obtained from agricultural irrigation channels by the enrichment technique using X. vesicatoria as a host. We determined that both phages were specific for inducing the lysis of X. vesicatoria strains, but not of other xanthomonads. The XaC1 and XbC2 phages showed a myovirus morphology and were classified as jumbo phages due to their genomes being larger than 200 kb. Phylogenetic and comparative analysis suggests that XaC1 and XbC2 represent both different and novel genera of phages, where XaC1 possesses a low similarity to other phage genomes reported before. Finally, XaC1 and XbC2 exhibited thermal stability up to 45 °C and pH stability from 5 to 9. All these results indicate that the isolated phages are promising candidates for the development of formulations against bacterial spot, although further characterization is required.
Collapse
Affiliation(s)
- Claudia Villicaña
- CONAHCYT—Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán 80110, Sinaloa, Mexico;
| | - Lucía M. Rubí-Rangel
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán 80110, Sinaloa, Mexico;
| | - Luis Amarillas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., Cd. Jimenez 33981, Chihuahua, Mexico; (L.A.)
| | | | - José Armando Carrillo-Fasio
- Laboratorio de Nematología Agrícola, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán 80110, Sinaloa, Mexico;
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, A. C., Culiacán 80110, Sinaloa, Mexico;
| |
Collapse
|
4
|
Li X, Zhang B, Tong X, Zhou T, Li M, Barkema HW, Nobrega DB, Kastelic JP, Xu C, Han B, Gao J. Biological and genomic characterization of 4 novel bacteriophages isolated from sewage or the environment using non-aureus Staphylococci strains. Vet Microbiol 2024; 294:110133. [PMID: 38820726 DOI: 10.1016/j.vetmic.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Non-aureus staphylococci (NAS) are an essential group of bacteria causing antimicrobial resistant intramammary infections in livestock, particularly dairy cows. Therefore, bacteriophages emerge as a potent bactericidal agent for NAS mastitis. This study aimed to obtain NAS-specific bacteriophages using bacterial strains isolated from cows with mastitis, subsequently evaluating their morphological, genomic, and lytic characteristics. Four distinct NAS bacteriophages were recovered from sewage or the environment of Chinese dairy farms; PT1-1, PT94, and PT1-9 were isolated using Staphylococcus chromogenes and PT1-4 using Staphylococcus gallinarum. Both PT1-1 (24/54, 44 %) and PT94 (28/54, 52 %) had broader lysis than PT1-4 (3/54, 6 %) and PT1-9 (10/54, 19 %), but PT1-4 and PT1-9 achieved cross-species lysis. All bacteriophages had a short latency period and good environmental tolerance, including surviving at pH=4-10 and at 30-60℃. Except for PT1-9, all bacteriophages had excellent bactericidal efficacy within 5 h of co-culture with host bacteria in vitro at various multiplicity of infection (MOIs). Based on whole genome sequencing, average nucleotide identity (ANI) analysis of PT1-1 and PT94 can be classified as the same species, consistent with whole-genome synteny analysis. Although motifs shared by the 4 bacteriophages differed little from those of other bacteriophages, a phylogenetic tree based on functional proteins indicated their novelty. Moreover, based on whole genome comparisons, we inferred that cross-species lysis of bacteriophage may be related to the presence of "phage tail fiber." In conclusion 4 novel NAS bacteriophages were isolated; they had good biological properties and unique genomes, with potential for NAS mastitis therapy.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Baoling Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Chengdu 611130, China
| | - Moli Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
5
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
6
|
Kim B, Lee SY, Park J, Song S, Kim KP, Roh E. Bacteriophage Cocktail Comprising Fifi044 and Fifi318 for Biocontrol of Erwinia amylovora. THE PLANT PATHOLOGY JOURNAL 2024; 40:160-170. [PMID: 38606446 PMCID: PMC11016559 DOI: 10.5423/ppj.oa.01.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024]
Abstract
Erwinia amylovora is a plant pathogen that causes fire blight on apples and pears. Bacteriophages, which are viruses that selectively infect specific species of bacteria and are harmless to animal cells, have been considered as biological control agents for the prevention of bacterial pathogens. In this study, we aimed to use bacteriophages that infect E. amylovora as biocontrol agents against fire blight. We isolated bacteriophages Fifi044 and Fifi318 infecting E. amylovora, and characterized their morphology, plaque form, and genetic diversity to use as cocktails for disease control. The stabilities of the two phages were investigated at various temperatures and pH values and under sunlight, and long-term storage experiment was conducted for a year. To evaluate whether the two phages were suitable for use in cocktail form, growth curves of E. amylovora were prepared after treating the bacterial cells with single phages and a phage cocktail. In addition, a disease control test was conducted using immature apples and in vitro cultured apple plantlets to determine the biocontrol effects of the phage cocktail. The two phages were morphologically and genetically different, and highly stable up to 50°C and pH value from 4 to 10. The phages showed synergistic effect when used as a cocktail in the inhibition of host bacterial growth and the disease control. This study demonstrated that the potential of the phage cocktail as a biocontrol agent for commercial use.
Collapse
Affiliation(s)
- Byeori Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Seung Yeup Lee
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Jungkum Park
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Sujin Song
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
7
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|
8
|
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, Anand T, Dhewa T, Chaudhary V, Chaudhary P, Behare P, Ram C, Puniya DV, Khedkar GD, Raposo A, Han H, Puniya AK. Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food 2024; 8:1. [PMID: 38172179 PMCID: PMC10764738 DOI: 10.1038/s41538-023-00245-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.
Collapse
Affiliation(s)
- Soniya Ashok Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Harmeet Singh Dhillon
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, 140413, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Ganganali Srikot, Srinagar Pauri Garhwal, 246174, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Dharun Vijay Puniya
- Centre of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-gu, Seoul, 143-747, Republic of Korea.
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
9
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
10
|
Hu ZT, Ntambo MS, Zhao JY, Javed T, Shi Y, Fu HY, Huang MT, Gao SJ. Genetic Divergence and Population Structure of Xanthomonas albilineans Strains Infecting Saccharum spp. Hybrid and Saccharum officinarum. PLANTS (BASEL, SWITZERLAND) 2023; 12:1937. [PMID: 37653854 PMCID: PMC10222335 DOI: 10.3390/plants12101937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023]
Abstract
Leaf scald caused by Xanthomonas albilineans (Xa) is a major bacterial disease in sugarcane that represents a threat to the global sugar industry. Little is known about the population structure and genetic evolution of this pathogen. In this study, 39 Xa strains were collected from 6 provinces in China. Of these strains, 15 and 24 were isolated from Saccharum spp. hybrid and S. officinarum plants, respectively. Based on multilocus sequence analysis (MLSA), with five housekeeping genes, these strains were clustered into two distinct phylogenetic groups (I and II). Group I included 26 strains from 2 host plants, Saccharum spp. hybrid and S. officinarum collected from 6 provinces, while Group II consisted of 13 strains from S. officinarum plants in the Zhejiang province. Among the 39 Xa strains, nucleotide sequence identities from 5 housekeeping genes were: ABC (99.6-100%), gyrB (99.3-100%), rpoD (98.4-100%), atpD (97.0-100%), and glnA (97.6-100%). These strains were clustered into six groups (A-F), based on the rep-PCR fingerprinting, using primers for ERIC2, BOX A1R, and (GTG)5. UPGMA and PCoA analyses revealed that group A had the most strains (24), followed by group C with 11 strains, while there was 1 strain each in groups B and D-F. Neutral tests showed that the Xa population in S. officinarum had a trend toward population expansion. Selection pressure analysis showed purification selection on five concatenated housekeeping genes from all tested strains. Significant genetic differentiation and infrequent gene flow were found between two Xa populations hosted in Saccharum spp. hybrids and S. officinarum. Altogether, these results provide evidence of obvious genetic divergence and population structures among Xa strains from China.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - Mbuya Sylvain Ntambo
- Université de Lubumbashi, Faculté des Sciences Agronomiques, Département de Phytotechnie, Laboratoire de Recherche en Biofortification, Défense et Valorisation des Cultures (BioDeV), Lubumbashi 7010, Congo;
| | - Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - Yang Shi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.-T.H.); (J.-Y.Z.); (T.J.); (Y.S.); (H.-Y.F.); (M.-T.H.)
| |
Collapse
|
11
|
Skliros D, Papazoglou P, Gkizi D, Paraskevopoulou E, Katharios P, Goumas DE, Tjamos S, Flemetakis E. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Appl Microbiol Biotechnol 2023; 107:3801-3815. [PMID: 37074382 PMCID: PMC10175458 DOI: 10.1007/s00253-023-12493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Polyxeni Papazoglou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, School of Food Sciences, University of West Attica, 12243, Athens, Greece
| | - Eleni Paraskevopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71004, Heraklio, Estavromenos, Greece
| | - Sotirios Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 1855, Athens, Greece.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
12
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
13
|
Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. Int J Mol Sci 2022; 24:ijms24010325. [PMID: 36613768 PMCID: PMC9820149 DOI: 10.3390/ijms24010325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Phage therapy consists of applying bacteriophages, whose natural function is to kill specific bacteria. Bacteriophages are safe, evolve together with their host, and are environmentally friendly. At present, the indiscriminate use of antibiotics and salt minerals (Zn2+ or Cu2+) has caused the emergence of resistant strains that infect crops, causing difficulties and loss of food production. Phage therapy is an alternative that has shown positive results and can improve the treatments available for agriculture. However, the success of phage therapy depends on finding effective bacteriophages. This review focused on describing the potential, up to now, of applying phage therapy as an alternative treatment against bacterial diseases, with sustainable improvement in food production. We described the current isolation techniques, characterization, detection, and selection of lytic phages, highlighting the importance of complementary studies using genome analysis of the phage and its host. Finally, among these studies, we concentrated on the most relevant bacteriophages used for biocontrol of Pseudomonas spp., Xanthomonas spp., Pectobacterium spp., Ralstonia spp., Burkholderia spp., Dickeya spp., Clavibacter michiganensis, and Agrobacterium tumefaciens as agents that cause damage to crops, and affect food production around the world.
Collapse
|
14
|
Comparative Analysis of Novel Lytic Phages for Biological Control of Phytopathogenic Xanthomonas spp. Microbiol Spectr 2022; 10:e0296022. [PMID: 36326506 PMCID: PMC9769650 DOI: 10.1128/spectrum.02960-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthomonas is an important genus of plant-pathogenic bacteria that affects agronomic and economically important crops, causing serious economic losses. In fact, several Xanthomonas species are considered regulated quarantine pests. Due to the lack of effective control measures to treat plant-pathogenic bacteria, innovative control tools are needed to carry out integrated disease management. In this regard, bacteriophages (phages), viruses of bacteria, constitute a promising biocontrol tool. In this work, we report the isolation and characterization of 11 novel Xanthomonas arboricola pv. juglandis phages belonging to different families and genera of the class Caudoviricetes. Infectivity matrix in more than 60 isolates of different xanthomonads and other phytopathogenic bacteria suggests that these phages are specific to the Xanthomonas genus, with different host ranges depending on the isolates tested. Interestingly, some of these phages showed relevant features to be used as biocontrol tools to combat pathogenic Xanthomonas spp. as important as X. oryzae or X. citri. IMPORTANCE Phytopathogenic bacteria represent serious losses worldwide. The lack of current treatments has focused the spotlight on phages, viruses of bacteria, as very promising biocontrol tools. Phages are very specific and can help to control bacterial infections in crops, as is the case of xanthomonads-associated diseases. The discovery of new environmental phages with lytic capacity that can help to combat these pathogens is of special relevance, and it is necessary to implement phage isolation and characterization techniques to determine their host range and their genomic properties. The establishment of phage collections worldwide will allow their use as preventive, diagnostic, or therapeutic tools. Although there is still a long way to go, this work is a step forward in the implementation of new ecofriendly techniques to combat key pathogens in the field.
Collapse
|
15
|
Costa J, Pothier JF, Boch J, Stefani E, Koebnik R. Integrating Science on Xanthomonas and Xylella for Integrated Plant Disease Management. Microorganisms 2022; 11:microorganisms11010006. [PMID: 36677298 PMCID: PMC9861534 DOI: 10.3390/microorganisms11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Present, emerging or re-emerging plant diseases due to infection by bacteria of the Lysobacteraceae (syn: Xanthomonadaceae) family are continually challenging food security and cause significant losses to the economies of European countries each year [...].
Collapse
Affiliation(s)
- Joana Costa
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, 3000-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34394 Montpellier, France
- Correspondence: ; Tel.: +33-467-416228
| |
Collapse
|
16
|
Garvey M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 2022; 11:1324. [PMID: 36289982 PMCID: PMC9598955 DOI: 10.3390/antibiotics11101324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
17
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
18
|
Retamales J, Núñez P, Alvarado R, Campan EDM, Otto T, Segovia C, Vasquez I, Santander J. Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses 2022; 14:v14071380. [PMID: 35891361 PMCID: PMC9325289 DOI: 10.3390/v14071380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Xanthomonas arboricola pv. juglandis (hereafter X. juglandis) is the etiological agent of walnut blight, the most important bacterial disease affecting walnut production worldwide. Currently, the disease is treated mainly with copper-derived compounds (e.g., CuSO4) despite the evidence of genetic resistance in these strains. Regarding the effectiveness and sustainability, the use of a bacteriophage appears to be a biocontrol alternative to reduce X. juglandis load and symptomatology of walnut blight. Here, the phages f20-Xaj, f29-Xaj, and f30-Xaj were characterized, and their effectiveness in walnut orchards against walnut blight was determined. These bacteriophages showed a specific lytic infection in X. juglandis strains isolated from Chile and France. Phylogenetic analysis of the complete genome of f20-Xaj and f30-Xaj indicates that these phages belong to the Pradovirus genus. In the field, the cocktail of these bacteriophages showed similar effectivity to CuSO4 in the reduction of incidence and severity in walnut tissue. Moreover, the bacterial load of X. juglandis was significantly reduced in the presence of bacteriophages in contrast to a CuSO4 treatment. These results show that the use of bacteriophages can be an alternative to combat the symptoms of walnut blight caused by X. juglandis.
Collapse
Affiliation(s)
- Julio Retamales
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-32-2524274
| | - Pablo Núñez
- Agroadvance SpA, Peñaflor 9750000, Chile; (P.N.); (R.A.)
| | | | - Erick D. M. Campan
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062 Toulouse, France; (E.D.M.C.); (T.O.)
| | - Thierry Otto
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062 Toulouse, France; (E.D.M.C.); (T.O.)
| | - Cristopher Segovia
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (C.S.); (I.V.); (J.S.)
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (C.S.); (I.V.); (J.S.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (C.S.); (I.V.); (J.S.)
| |
Collapse
|
19
|
Zhang M, Qian J, Xu X, Ahmed T, Yang Y, Yan C, Elsharkawy MM, Hassan MM, Alorabi JA, Chen J, Li B. Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase. Viruses 2022; 14:1088. [PMID: 35632829 PMCID: PMC9143033 DOI: 10.3390/v14051088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Phage therapy is a promising biocontrol management on plant diseases caused by bacterial pathogens due to its specificity, efficiency and environmental friendliness. The emergence of natural phage-resistant bacteria hinders the application of phage therapy. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of the devastating bacterial leaf blight disease of rice. Here, we obtained a spontaneous mutant C2R of an Xoo strain C2 showing strong resistance to the lytic phage X2. Analysis of the C2R genome found that the CDS2289 gene encoding glycosyltransferase acquired a frameshift mutation at the 180th nucleotide site, which also leads to a premature stop mutation at the 142nd amino acid. This mutation confers the inhibition of phage adsorption through the changes in lipopolysaccharide production and structure and bacterial surface morphology. Interestingly, glycosyltransferase-deficient C2R and an insertional mutant k2289 also showed reduced virulence, suggesting the trade-off costs of phage resistance. In summary, this study highlights the role of glycosyltransferase in interactions among pathogenic bacteria, phages and plant hosts, which provide insights into balanced coevolution from environmental perspectives.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (J.Q.); (X.X.); (T.A.)
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (J.Q.); (X.X.); (T.A.)
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (J.Q.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (J.Q.); (X.X.); (T.A.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
| | - Chenqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif P.O. Box 21974, Saudi Arabia; (M.M.H.); (J.A.A.)
| | - Jamal A. Alorabi
- Department of Biology, College of Science, Taif University, Taif P.O. Box 21974, Saudi Arabia; (M.M.H.); (J.A.A.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (J.Q.); (X.X.); (T.A.)
| |
Collapse
|
20
|
Antibacterial Activity of Copper Nanoparticles against Xanthomonas campestris pv. vesicatoria in Tomato Plants. Int J Mol Sci 2022; 23:ijms23084080. [PMID: 35456899 PMCID: PMC9032352 DOI: 10.3390/ijms23084080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Copper-based bactericides have appeared as a new tool in crop protection and offer an effective solution to combat bacterial resistance. In this work, two copper nanoparticle products that were previously synthesized and evaluated against major bacterial and fungal pathogens were tested on their ability to control the bacterial spot disease of tomato. Growth of Xanthomonas campestris pv. vesicatoria, the causal agent of the disease, was significantly suppressed by both nanoparticles, which had superior function compared to conventional commercial formulations of copper. X-ray fluorescence spectrometry measurements in tomato leaves revealed that bioavailability of copper is superior in the case of nanoparticles compared to conventional formulations and is dependent on synthesis rather than size. This is the first report correlating bioavailability of copper to nanoparticle efficacy.
Collapse
|
21
|
Gašić K, Obradović M, Kuzmanović N, Zlatković N, Ivanović M, Ristić D, Obradović A. Isolation, Characterization and Draft Genome Analysis of Bacteriophages Infecting Acidovorax citrulli. Front Microbiol 2022; 12:803789. [PMID: 35185829 PMCID: PMC8851203 DOI: 10.3389/fmicb.2021.803789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022] Open
Abstract
Bacterial fruit blotch and seedling blight, caused by Acidovorax citrulli, is one of the most destructive diseases of melon and watermelon in many countries. Pathogen-free seed and cultural practices are major pillars of the disease control. However, use of bacteriophages as natural biocontrol agents might also contribute to the disease management. Therefore, we isolated 12 bacteriophages specific to A. citrulli, from phyllosphere and rhizosphere of diseased watermelon plants. The phage strains were characterized based on their host range, plaque and virion morphology, thermal inactivation point, adsorption rate, one step growth curve, restriction fragment length polymorphism (RFLP), and genomic analysis. Transmission electron microscopy of three phage strains indicated that they belong to the order Caudovirales, family Siphoviridae. All phages lysed 30 out of 32 tested A. citrulli strains isolated in Serbia, and did not lyse other less related bacterial species. They produced clear plaques, 2 mm in diameter, on bacterial lawns of different A. citrulli strains after 24 h of incubation. The thermal inactivation point was 66 or 67°C. They were stable at pH 5–9, but were sensitive to chloroform and inactivated in either 5 or 10 min exposure to ultraviolet (UV) light. RFLP analysis using EcoRI, BsmI and BamHI enzymes did not show genetic differences among the tested phages. Adsorption rate and one step growth curve were determined for the Acidovorax phage ACF1. Draft genome sequence of the ACF1 phage was 59.377 bp in size, with guanine-cytosine (GC) content 64.5%, including 89 open reading frames. This phage shared a very high genomic identity with Acidovorax phage ACPWH, isolated in South Korea. Evaluation of systemic nature of ACF1 strain showed that it can be absorbed by roots and translocated to upper parts of watermelon plants where it survived up to 10 days.
Collapse
Affiliation(s)
- Katarina Gašić
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Mina Obradović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nemanja Kuzmanović
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Braunschweig, Germany
| | - Nevena Zlatković
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Milan Ivanović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Danijela Ristić
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Aleksa Obradović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Abstract
The aim of this work was to investigate the most promising natural antimicrobials effective for the growth suppression of Xanthomonas spp. bacteria. The research objects were Xanthomonas spp. strains isolated from tubers and stem of plants growing in Lithuania: Xanthomonas translucens NRCIB X6, X. arboricola NRCIB X7, NRCIB X8, NRCIB X9, and NRCIB X10; the supernatants of lactic acid bacteria Lactococcus lactis strains 140/2, 57, and 768/5, Lactobacillus helveticus strains 14, 148/3, R, and 3, Lb. reuteri 3 and 7, Streptococcus thermophilus 43, Enterococcus faecium 59-30 and 41-2; endophytic bacterial strains Bacillus, Pseudomonas, and Paenibacillus spp.; and essential oils of lavender (Lavandula angustifolia), grapefruit (Citrus paradisi), pine (Pinus sylvestris), thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis), peppermint (Mentha piperita), lemon (Citrus limetta), aqueous extracts of blueberries (Vaccinium myrtillus), and cranberries (Vaccinium vitis-idaea). The antimicrobial activity of tested substances was determined by agar diffusion method. Supernatants of Lb. reuteri strain 7 and Lb. helveticus strains 14, R, 3, and 148/3 were found to have a high antimicrobial activity against Xanthomonas spp. bacteria strains when compared to the positive control—1.0% copper sulfate (diameter of inhibition zones was 28.8 ± 0.7 mm). The diameter of inhibition zones of supernatants ranged from 23.3 ± 0.6 mm to 32.0 ± 0.1 mm. Thyme (2.0%) and lavender (2.0%) essential oils inhibited the growth of Xanthomonas spp. strains. The diameter of the inhibition zones was from 14.7 ± 0.8 mm to 22.8 ± 0.9 mm. The aqueous extracts of blueberries had a weak antimicrobial activity. The diameter of inhibition zones ranged from 11.0 ± 0.2 mm to 13.0 ± 0.2 mm.
Collapse
|