1
|
Vu LD, Christofferson RC, O’Neal HR, Hamer D, Phan ATQ, Vance KM, Turner EA, Kumar A, Yola IM, Lim N, Ogden B, Cormier SA. Predicting severe COVID-19 using readily available admission indicators: SpO2/FiO2 ratio, comorbidity index, and gender. Exp Biol Med (Maywood) 2024; 249:10193. [PMID: 39633683 PMCID: PMC11614601 DOI: 10.3389/ebm.2024.10193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
The focus of this study was to identify risk factors for severe and critical COVID-19, evaluate local respiratory immune responses to SARS-CoV-2 infection, and develop a prognostic tool for COVID-19 severity using accessible early indicators. Using nasopharyngeal swab samples from hospitalized patients with COVID-19 of varying severity during the first wave of the pandemic from March to May 2020 in Louisiana, we evaluated the association between COVID-19 severity and viral load, respiratory immune mediators, and demographic/clinical factors. We found that the SpO2/FiO2 ratio at triage, total comorbidity burden (represented by Charlson Comorbidity Index), and gender were significantly associated with COVID-19 severity. Using these early significant indicators, we developed a prognostic tool for COVID-19 severity that is simple and convenient. Additionally, our study demonstrated that elevated levels of respiratory immune mediators, including IL-10, IL-6, MCP-1, and MCP-3, were significantly associated with COVID-19 severity. We also found that viral load at the time of admission was associated with disease severity. Our findings highlight the feasibility and importance of evaluating the humoral component of local mucosal immune responses and viral load at the infected site using convenient nasopharyngeal swab samples, which could be an effective method to understand the relationship between viral infection and immune responses at the early stages of infection. Our proposed prognostic tool has the potential to be useful for COVID-19 management in clinical settings, as it utilizes accessible and easy-to-collect variables at the time of admission.
Collapse
Affiliation(s)
- Luan D. Vu
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hollis R. O’Neal
- Medical Director of Research, Our Lady of the Lake Regional Medical Center, Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center, Baton Rouge, LA, United States
| | - Diana Hamer
- Office of Research Administration, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, United States
| | - Anh T. Q. Phan
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Katie M. Vance
- Office of Research Administration, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, United States
| | - E. A. Turner
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Avinash Kumar
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Ibrahim Musa Yola
- Office of Research Administration, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, United States
| | - Natalie Lim
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Beverly Ogden
- Department of Research, Woman’s Hospital, Baton Rouge, LA, United States
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Uthman OA, Lyngse FP, Anjorin S, Hauer B, Hakki S, Martinez DA, Ge Y, Jonnerby J, Julin CH, Lin G, Lalvani A, Loss J, Madon KJ, Martinez L, Næss LM, Page KR, Prieto D, Robertson AH, Shen Y, Wurm J, Buchholz U. Susceptibility and infectiousness of SARS-CoV-2 in children versus adults, by variant (wild-type, alpha, delta): A systematic review and meta-analysis of household contact studies. PLoS One 2024; 19:e0306740. [PMID: 39240908 PMCID: PMC11379298 DOI: 10.1371/journal.pone.0306740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/22/2024] [Indexed: 09/08/2024] Open
Abstract
IMPORTANCE Understanding the susceptibility and infectiousness of children and adolescents in comparison to adults is important to appreciate their role in the COVID-19 pandemic. OBJECTIVE To determine SARS-CoV-2 susceptibility and infectiousness of children and adolescents with adults as comparator for three variants (wild-type, alpha, delta) in the household setting. We aimed to identify the effects independent of vaccination or prior infection. DATA SOURCES We searched EMBASE, PubMed and medRxiv up to January 2022. STUDY SELECTION Two reviewers independently identified studies providing secondary household attack rates (SAR) for SARS-CoV-2 infection in children (0-9 years), adolescents (10-19 years) or both compared with adults (20 years and older). DATA EXTRACTION AND SYNTHESIS Two reviewers independently extracted data, assessed risk of bias and performed a random-effects meta-analysis model. MAIN OUTCOMES AND MEASURES Odds ratio (OR) for SARS-CoV-2 infection comparing children and adolescents with adults stratified by wild-type (ancestral type), alpha, and delta variant, respectively. Susceptibility was defined as the secondary attack rate (SAR) among susceptible household contacts irrespective of the age of the index case. Infectiousness was defined as the SAR irrespective of the age of household contacts when children/adolescents/adults were the index case. RESULTS Susceptibility analysis: We included 27 studies (308,681 contacts), for delta only one (large) study was available. Compared to adults, children and adolescents were less susceptible to the wild-type and delta, but equally susceptible to alpha. Infectiousness analysis: We included 21 studies (201,199 index cases). Compared to adults, children and adolescents were less infectious when infected with the wild-type and delta. Alpha -related infectiousness remained unclear, 0-9 year old children were at least as infectious as adults. Overall SAR among household contacts varied between the variants. CONCLUSIONS AND RELEVANCE When considering the potential role of children and adolescents, variant-specific susceptibility, infectiousness, age group and overall transmissibility need to be assessed.
Collapse
Affiliation(s)
- Olalekan A. Uthman
- Warwick Centre for Global Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Frederik Plesner Lyngse
- Department of Economics & Center for Economic Behaviour and Inequality, University of Copenhagen, Copenhagen, Denmark
| | - Seun Anjorin
- Warwick Centre for Global Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Barbara Hauer
- Department for Infectious Disease Epidemiology, Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Diego A. Martinez
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Yang Ge
- School of Health Professions, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jakob Jonnerby
- School of Public Health, Imperial College London, London, United Kingdom
| | - Cathinka Halle Julin
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Gary Lin
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Julika Loss
- Department of Epidemiology and Health Monitoring, Robert Koch-Institute, Berlin, Germany
| | - Kieran J. Madon
- NIHR Health Protection Research Unit in Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Leonardo Martinez
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States of America
| | - Lisbeth Meyer Næss
- School of Public Health, Imperial College London, London, United Kingdom
| | - Kathleen R. Page
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Diana Prieto
- School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Ye Shen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States of America
| | - Juliane Wurm
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Udo Buchholz
- Department for Infectious Disease Epidemiology, Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
3
|
Sivertsen A, Mortensen N, Solem U, Valen E, Bullita MF, Wensaas KA, Litleskare S, Rørtveit G, Grewal HMS, Ulvestad E. Comprehensive contact tracing during an outbreak of alpha-variant SARS-CoV-2 in a rural community reveals less viral genomic diversity and higher household secondary attack rates than expected. mSphere 2024; 9:e0011424. [PMID: 39109863 DOI: 10.1128/msphere.00114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes throughout the COVID-19 pandemic has generated a wealth of data on viral evolution across populations, but only a few studies have so far explored SARS-CoV-2 evolution across large connected transmission networks. Here, we couple data from SARS-CoV-2 sequencing with contact tracing data from an outbreak with a single origin in a rural Norwegian community where samples from all exposed persons were collected prospectively. A total of 134 nasopharyngeal samples were positive by PCR. Among the 121 retrievable genomes, 81 were identical to the genome of the introductor, thus demonstrating that genomics beyond clustering genotypically similar viral genomes to confirm relatedness offers limited additional value to manual contact tracing. In the cases where mutations were discovered, five small genetic clusters were identified. We observed a household secondary attack rate of 77%, with 92% of household members infected among households with secondary transmission, suggesting that SARS-CoV-2 introduction into large families is likely to affect all household members. IMPORTANCE In outbreak investigations, obtaining a full overview of infected individuals within a population is seldom achieved. We here present an example where a single introduction of B1.1.7 SARS-CoV-2 within a rural community allowed for tracing of the virus from an introductor via dissemination through larger gatherings into households. The outbreak occurred before widespread vaccination, allowing for a "natural" outbreak development with community lockdown. We show through sequencing that the virus can infect up to five consecutive persons without gaining mutations, thereby showing that contact tracing seems more important than sequencing for local outbreak investigations in settings with few alternative introductory transmission pathways. We also show how larger households where a child introduced transmission appeared more likely to promote further spread of the virus compared to households with an adult as the primary introductor.
Collapse
Affiliation(s)
- Audun Sivertsen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Nicolay Mortensen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | | | - Knut-Arne Wensaas
- NORCE Norwegian Research Centre, Research Unit for General Practice, Bergen, Norway
| | - Sverre Litleskare
- NORCE Norwegian Research Centre, Research Unit for General Practice, Bergen, Norway
| | - Guri Rørtveit
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Harleen M S Grewal
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Elling Ulvestad
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Chang JJY, Grimley SL, Tran BM, Deliyannis G, Tumpach C, Nguyen AN, Steinig E, Zhang J, Schröder J, Caly L, McAuley J, Wong SL, Waters SA, Stinear TP, Pitt ME, Purcell D, Vincan E, Coin LJ. Uncovering strain- and age-dependent innate immune responses to SARS-CoV-2 infection in air-liquid-interface cultured nasal epithelia. iScience 2024; 27:110009. [PMID: 38868206 PMCID: PMC11166695 DOI: 10.1016/j.isci.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Jessie J.-Y. Chang
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Samantha L. Grimley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bang M. Tran
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - An N.T. Nguyen
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Eike Steinig
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - JianShu Zhang
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Schröder
- Computational Sciences Initiative (CSI), The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sharon L. Wong
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shafagh A. Waters
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Respiratory Medicine, Sydney Children’s Hospital, Sydney, NSW 2031, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Miranda E. Pitt
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Damian Purcell
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lachlan J.M. Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Meiners L, Horn J, Jones TC, Mühlemann B, Schmidt ML, Walper F, Menzel P, Schwarzer R, Rose R, Krumbholz A, Corman VM, Seybold J, Drosten C. SARS-CoV-2 rapid antigen test sensitivity and viral load in newly symptomatic hospital employees in Berlin, Germany, December, 2020 to February, 2022: an observational study. THE LANCET. MICROBE 2024; 5:e538-e546. [PMID: 38759669 DOI: 10.1016/s2666-5247(23)00412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/16/2023] [Accepted: 12/22/2023] [Indexed: 05/19/2024]
Abstract
BACKGROUND Evolving SARS-CoV-2 variants and changing levels of pre-existing immunity require re-evaluation of antigen-detecting rapid diagnostic test (Ag-RDT) performance. We investigated possible associations between Ag-RDT sensitivity and various potential influencing factors, such as immunisation status and viral variant, in symptomatic hospital employees. METHODS In this observational study, RT-PCR, Ag-RDT, and symptom-specific data were collected at three SARS-CoV-2 test centres for employees of the Charité-Universitätsmedizin Berlin hospital (Berlin, Germany). Employees reporting SARS-CoV-2-like symptoms, those at an increased risk of infection (eg, due to contact with an infected person), those testing positive in a previous self-administered Ag-RDT, or those seeking release-testing to return to work at least 7 days after a positive RT-PCR test were eligible for combined testing by RT-PCR and Ag-RDT. Only data from individuals with an ongoing SARS-CoV-2 infection as assessed by RT-PCR were used for further analysis. Bayesian regression analyses were done to evaluate possible differences in viral load and Ag-RDT sensitivity according to viral variant and immunisation status (previous vaccination or recovery from infection), using data from first RT-PCR positive samples in an infection. A comprehensive logistic regression analysis was used to investigate potential concomitant associations between Ag-RDT sensitivity and level of pre-existing immunity, time post symptom onset, viral load, gender, age, and Ag-RDT device. Ag-RDT performance was also compared between supernatants from cell cultures infected with the omicron variant of concern (VOC) or the wild-type strain (pre-VOC). FINDINGS Between Nov 30, 2020 and Feb 11, 2022, a total of 14 773 samples from 7675 employees were tested for SARS-CoV-2 by both RT-PCR and Ag-RDT. We found a negative association between immunisation status and Ag-RDT sensitivity in symptomatic employees, with an observed sensitivity of 82% (94% highest posterior density interval [HPDI] 78-86) in immunologically naive participants compared with 73% (68-78) in multiply immunised individuals (ie, those with at least two vaccinations or recoveries from infection) and median log10 viral loads of 7·02 (IQR 5·83-8·07) and 8·08 (6·80-8·89), respectively. The dominant viral variant changed several times during the study period, from the pre-VOC period (sensitivity 80% [94% HPDI 75-85] in symptomatic participants) through the alpha variant (82% [70-94]), delta variant (75% [69-82]), and omicron variant (72% [65-79]) waves, concomitantly with a steep increase in vaccination coverage in our dataset. In a comparison of Ag-RDT performance on cell culture supernatants, we found no difference between the wild-type and omicron viral variants. INTERPRETATION On the basis of our findings and data from other studies, we hypothesise that the observed reduction in clinical Ag-RDT sensitivity, despite higher SARS-CoV-2 RNA loads, is due to shorter incubation times later in our study period resulting from increased population immunity or changes in immune response dynamics caused by later SARS-CoV-2 VOCs. FUNDING Berlin University Alliance, German Ministry of Education and Research, the EU (Projects EU4Health and ReCoVer), and the Berlin Institute of Health.
Collapse
Affiliation(s)
- Leonie Meiners
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Centre for Infection Research, Charité, Berlin, Germany
| | - Johanna Horn
- Departments of Emergency Medicine Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Centre for Infection Research, Charité, Berlin, Germany; Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Centre for Infection Research, Charité, Berlin, Germany
| | - Marie Luisa Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Felix Walper
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | | | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany; Labor Dr Krause und Kollegen MVZ, Kiel, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Centre for Infection Research, Charité, Berlin, Germany; Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Joachim Seybold
- Medical Directorate, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Centre for Infection Research, Charité, Berlin, Germany; Labor Berlin-Charité Vivantes, Berlin, Germany.
| |
Collapse
|
6
|
Inaba M, Miyake Y, Yasuda K. Secondary household transmission of SARS-CoV-2: a case-control study on factors associated with reduced transmission risk. Int J Infect Dis 2023; 137:4-8. [PMID: 37788740 DOI: 10.1016/j.ijid.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVES This study aimed to identify factors deterring secondary household transmission of SARS-CoV-2 from SARS-CoV-2-positive cohabitants. METHODS A case-control study was conducted with 272 healthcare workers in close contact with SARS-CoV-2-positive cohabitants. Logistic regression modeling was employed to determine the factors independently associated with secondary household transmission. RESULTS A SARS-CoV-2 infection within the past 6 months was the most protective factor against secondary household transmission (adjusted odds ratio = 0.07, 95% CI: 0.01-0.61, P <0.05). Home isolation and older age of primary index case (7-12, ≥18 years) were also associated with a reduced risk. Both monovalent and bivalent messenger ribonucleic acid booster vaccinations exhibited potential protective tendencies but were not statistically significant. Additionally, bivalent vaccines did not demonstrate a clear advantage over monovalent vaccines. CONCLUSION A recent history of SARS-CoV-2 infection, home isolation of positive cohabitants, and older age of primary index cases were positively associated with a reduced risk of secondary household transmission. Regarding booster vaccinations, data from a single center with a limited sample size may not capture all statistically significant differences, necessitating broader studies.
Collapse
Affiliation(s)
- Masato Inaba
- Division of Infectious Diseases, Central Japan International Medical Center, Mino-Kamo, Gifu, Japan.
| | - Yukiko Miyake
- Division of Infection Control and Prevention, Central Japan International Medical Center, Mino-Kamo, Gifu, Japan
| | - Kazutaka Yasuda
- Department of Hospital Pharmacy, Central Japan International Medical Center, Mino-Kamo, Gifu, Japan
| |
Collapse
|
7
|
Wiedenmann M, Ipekci AM, Araujo-Chaveron L, Prajapati N, Lam YT, Alam MI, L'Huillier AG, Zhelyazkov I, Heron L, Low N, Goutaki M. SARS-CoV-2 variants of concern in children and adolescents with COVID-19: a systematic review. BMJ Open 2023; 13:e072280. [PMID: 37813543 PMCID: PMC10565293 DOI: 10.1136/bmjopen-2023-072280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Infections by SARS-CoV-2 variants of concern (VOCs) might affect children and adolescents differently than earlier viral lineages. We aimed to address five questions about SARS-CoV-2 VOC infections in children and adolescents: (1) symptoms and severity, (2) risk factors for severe disease, (3) the risk of infection, (4) the risk of transmission and (5) long-term consequences following a VOC infection. DESIGN Systematic review. DATA SOURCES The COVID-19 Open Access Project database was searched up to 1 March 2022 and PubMed was searched up to 9 May 2022. ELIGIBILITY CRITERIA We included observational studies about Alpha, Beta, Gamma, Delta and Omicron VOCs among ≤18-year-olds. We included studies in English, German, French, Greek, Italian, Spanish and Turkish. DATA EXTRACTION AND SYNTHESIS Two reviewers extracted and verified the data and assessed the risk of bias. We descriptively synthesised the data and assessed the risks of bias at the outcome level. RESULTS We included 53 articles. Most children with any VOC infection presented with mild disease, with more severe disease being described with the Delta or the Gamma VOC. Diabetes and obesity were reported as risk factors for severe disease during the whole pandemic period. The risk of becoming infected with a SARS-CoV-2 VOC seemed to increase with age, while in daycare settings the risk of onward transmission of VOCs was higher for younger than older children or partially vaccinated adults. Long-term symptoms following an infection with a VOC were described in <5% of children and adolescents. CONCLUSION Overall patterns of SARS-CoV-2 VOC infections in children and adolescents are similar to those of earlier lineages. Comparisons between different pandemic periods, countries and age groups should be improved with complete reporting of relevant contextual factors, including VOCs, vaccination status of study participants and the risk of exposure of the population to SARS-CoV-2. PROSPERO REGISTRATION NUMBER CRD42022295207.
Collapse
Affiliation(s)
- Margarethe Wiedenmann
- Medical Service Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Aziz Mert Ipekci
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Lucia Araujo-Chaveron
- EHESP French School of Public Health, Rennes, France
- Emerging Disease Epidemiology Unit, Insitut Pasteur, Paris, France
| | - Nirmala Prajapati
- Université Paris-Saclay, Gif-sur-Yvette, France
- Exposome and Heredity Team, Institut national de la santé et de la recherche médicale, Paris, France
| | - Yin Ting Lam
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Arnaud G L'Huillier
- Département de pédiatrie, gynécologie et obstétrique, HUG, Geneve, Switzerland
| | | | - Leonie Heron
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ji J, Viloria Winnett A, Shelby N, Reyes JA, Schlenker NW, Davich H, Caldera S, Tognazzini C, Goh YY, Feaster M, Ismagilov RF. Index cases first identified by nasal-swab rapid COVID-19 tests had more transmission to household contacts than cases identified by other test types. PLoS One 2023; 18:e0292389. [PMID: 37796850 PMCID: PMC10553276 DOI: 10.1371/journal.pone.0292389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
At-home rapid COVID-19 tests in the U.S. utilize nasal-swab specimens and require high viral loads to reliably give positive results. Longitudinal studies from the onset of infection have found infectious virus can present in oral specimens days before nasal. Detection and initiation of infection-control practices may therefore be delayed when nasal-swab rapid tests are used, resulting in greater transmission to contacts. We assessed whether index cases first identified by rapid nasal-swab COVID-19 tests had more transmission to household contacts than index cases who used other test types (tests with higher analytical sensitivity and/or non-nasal specimen types). In this observational cohort study, 370 individuals from 85 households with a recent COVID-19 case were screened at least daily by RT-qPCR on one or more self-collected upper-respiratory specimen types. A two-level random intercept model was used to assess the association between the infection outcome of household contacts and each covariable (household size, race/ethnicity, age, vaccination status, viral variant, infection-control practices, and whether a rapid nasal-swab test was used to initially identify the household index case). Transmission was quantified by adjusted secondary attack rates (aSAR) and adjusted odds ratios (aOR). An aSAR of 53.6% (95% CI 38.8-68.3%) was observed among households where the index case first tested positive by a rapid nasal-swab COVID-19 test, which was significantly higher than the aSAR for households where the index case utilized another test type (27.2% 95% CI 19.5-35.0%, P = 0.003 pairwise comparisons of predictive margins). We observed an aOR of 4.90 (95% CI 1.65-14.56) for transmission to household contacts when a nasal-swab rapid test was used to identify the index case, compared to other test types. Use of nasal-swab rapid COVID-19 tests for initial detection of infection and initiation of infection control may be less effective at limiting transmission to household contacts than other test types.
Collapse
Affiliation(s)
- Jenny Ji
- California Institute of Technology, Pasadena, California, United States of America
| | - Alexander Viloria Winnett
- California Institute of Technology, Pasadena, California, United States of America
- University of California Los Angeles–California Institute of Technology Medical Scientist Training Program, Los Angeles, California, United States of America
| | - Natasha Shelby
- California Institute of Technology, Pasadena, California, United States of America
| | - Jessica A. Reyes
- California Institute of Technology, Pasadena, California, United States of America
| | - Noah W. Schlenker
- California Institute of Technology, Pasadena, California, United States of America
| | - Hannah Davich
- California Institute of Technology, Pasadena, California, United States of America
| | - Saharai Caldera
- California Institute of Technology, Pasadena, California, United States of America
| | - Colten Tognazzini
- Pasadena Public Health Department, Pasadena, California, United States of America
| | - Ying-Ying Goh
- Pasadena Public Health Department, Pasadena, California, United States of America
| | - Matt Feaster
- Pasadena Public Health Department, Pasadena, California, United States of America
| | - Rustem F. Ismagilov
- California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
9
|
Kagami K, Oyamada R, Watanabe T, Nakakubo S, Hayashi T, Iwasaki S, Fukumoto T, Usami T, Hayasaka K, Fujisawa S, Watanabe C, Nishida M, Teshima T, Niinuma Y, Yokota I, Takekuma Y, Sugawara M, Ishiguro N. Factors associated with household transmission of SARS-CoV-2 omicron variant to health care workers: A retrospective cohort study. Int J Nurs Pract 2023; 29:e13195. [PMID: 37621085 DOI: 10.1111/ijn.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
AIM The aim of this study was to determine the risk factors for household transmission of the omicron variant of SARS-CoV-2. BACKGROUND The household infection rate has been reported to be higher for the omicron variant than for non-omicron variants of SARS-CoV-2. Determination of the risk factors for household transmission of the omicron variant is therefore important. DESIGN A Retrospective Cohort Study was conducted. METHODS When family members of health care workers (HCWs) were found to be infected with SARS-CoV-2, the HCWs had to receive two nucleic acid amplification tests for SARS-CoV-2: immediately after and 5 to 10 days after the onset of COVID-19 in the family members. Risk factors of household transmission were analysed by comparing cases (HCWs infected with SARS-CoV-2) and controls (HCWs not infected with SARS-CoV-2) using multivariable analysis. RESULTS Unvaccinated status (OR: 3.97), age of index cases (≤6 years) (OR: 1.94) and staying at home with index cases (OR: 10.18) were risk factors for household transmission. CONCLUSION If there is a strong desire to avoid household infection, family members infected with SARS-CoV-2 should live separately during the period of viral shedding.
Collapse
Affiliation(s)
- Keisuke Kagami
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Reiko Oyamada
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tsubasa Watanabe
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Sho Nakakubo
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Hayashi
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Sumio Iwasaki
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tatsuya Fukumoto
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takayuki Usami
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kasumi Hayasaka
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Chiaki Watanabe
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Mutsumi Nishida
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Yusuke Niinuma
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuhisa Ishiguro
- Department of Infection Control and Prevention, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Rubinstein RJ, Mei W, Cassidy CA, Streeter G, Basham C, Cerami C, Lin FC, Lin JT, Mollan KR. Transmission prevention behaviors in US households with SARS-CoV-2 cases in 2020. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1160214. [PMID: 38406213 PMCID: PMC10888502 DOI: 10.3389/fepid.2023.1160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Introduction Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission frequently occurs within households, yet few studies describe which household contacts and household units are most likely to engage in transmission-interrupting behaviors. Methods We analyzed a COVID-19 prospective household transmission cohort in North Carolina (April to October 2020) to quantify changes in physical distancing behaviors among household contacts over 14 days. We evaluated which household contacts were most likely to ever mask at home and to ever share a bedroom with the index case between days 7-14. Results In the presence of a household COVID-19 infection, 24% of household contacts reported ever masking at home during the week before study entry. Masking in the home between days 7-14 was reported by 26% of household contacts and was more likely for participants who observed their household index case wearing a mask. Participants of color and participants in high-density households were more likely to mask at home. After adjusting for race/ethnicity, living density was not as clearly associated with masking. Symptomatic household contacts were more likely to share a bedroom with the index case. Working individuals and those with comorbidities avoided sharing a bedroom with the index case. Discussion In-home masking during household exposure to COVID-19 was infrequent in 2020. In light of the ongoing transmission of SARS-CoV-2, these findings underscore a need for health campaigns to increase the feasibility and social desirability of in-home masking among exposed household members. Joint messaging on social responsibility and prevention of breakthrough infections, reinfections, and long COVID-19 may help motivate transmission-interruption behaviors.
Collapse
Affiliation(s)
- Rebecca J. Rubinstein
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin A. Cassidy
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gabrielle Streeter
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christopher Basham
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carla Cerami
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Medical Research Council Unit, The Gambia, London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica T. Lin
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katie R. Mollan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Zhu Y, Xia Y, Pickering J, Bowen AC, Short KR. The role of children in transmission of SARS-CoV-2 variants of concern within households: an updated systematic review and meta-analysis, as at 30 June 2022. Euro Surveill 2023; 28:2200624. [PMID: 37140450 PMCID: PMC10161681 DOI: 10.2807/1560-7917.es.2023.28.18.2200624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
BackgroundMeta-analyses and single-site studies have established that children are less infectious than adults within a household when positive for ancestral SARS-CoV-2. In addition, children appear less susceptible to infection when exposed to ancestral SARS-CoV-2 within a household. The emergence of SARS-CoV-2 variants of concern (VOC) has been associated with an increased number of paediatric infections worldwide. However, the role of children in the household transmission of VOC, relative to the ancestral virus, remains unclear.AimWe aimed to evaluate children's role in household transmission of SARS-CoV-2 VOC.MethodsWe perform a meta-analysis of the role of children in household transmission of both ancestral SARS-CoV-2 and SARS-CoV-2 VOC.ResultsUnlike with the ancestral virus, children infected with VOC spread SARS-CoV-2 to an equivalent number of household contacts as infected adults and were equally as likely to acquire SARS-CoV-2 VOC from an infected family member. Interestingly, the same was observed when unvaccinated children exposed to VOC were compared with unvaccinated adults exposed to VOC.ConclusionsThese data suggest that the emergence of VOC was associated with a fundamental shift in the epidemiology of SARS-CoV-2. It is unlikely that this is solely the result of age-dependent differences in vaccination during the VOC period and may instead reflect virus evolution over the course of the pandemic.
Collapse
Affiliation(s)
- Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
- These authors contributed equally to this manuscript
| | - Yao Xia
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- These authors contributed equally to this manuscript
| | - Janessa Pickering
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
| | - Asha C Bowen
- Wesfarmer's Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Perth, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Vardavas CI, Nikitara K, Aslanoglou K, Kamekis A, Puttige Ramesh N, Symvoulakis E, Agaku I, Phalkey R, Leonardi-Bee J, Fernandez E, Condell O, Lamb F, Deogan C, Suk JE. Systematic review of outbreaks of COVID-19 within households in the European region when the child is the index case. BMJ Paediatr Open 2023; 7:10.1136/bmjpo-2022-001718. [PMID: 36649374 PMCID: PMC9835947 DOI: 10.1136/bmjpo-2022-001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES This systematic review aims to identify the secondary attack rates (SAR) to adults and other children when children are the index cases within household settings. METHODS This literature review assessed European-based studies published in Medline and Embase between January 2020 and January 2022 that assessed the secondary transmission of SARS-CoV-2 within household settings. The inclusion criteria were based on the Population, Exposure, Outcome framework for systematic reviews. Thus, the study population was restricted to humans within the household setting in Europe (population), in contact with paediatric index cases 1-17 years old (exposure) that led to the transmission of SARS-CoV-2 reported as either an SAR or the probability of onward infection (outcome). RESULTS Of 1819 studies originally identified, 19 met the inclusion criteria. Overall, the SAR ranged from 13% to 75% in 15 studies, while there was no evidence of secondary transmission from children to other household members in one study. Evidence indicated that asymptomatic SARS-CoV-2 index cases also have a lower SAR than those with symptoms and that younger children may have a lower SAR than adolescents (>12 years old) within household settings. CONCLUSIONS SARS-CoV-2 secondary transmission from paediatric index cases ranged from 0% to 75%, within household settings between January 2020 and January 2022, with differences noted by age and by symptomatic/asymptomatic status of the index case. Given the anticipated endemic circulation of SARS-CoV-2, continued monitoring and assessment of household transmission is necessary.
Collapse
Affiliation(s)
- Constantine I Vardavas
- School of Medicine, University of Crete School of Medicine, Heraklion, Greece.,Department of Oral Health Policy and Epidemiology, Harvard University, Cambridge, Massachusetts, USA
| | - Katerina Nikitara
- School of Medicine, University of Crete School of Medicine, Heraklion, Greece
| | - Katerina Aslanoglou
- School of Medicine, University of Crete School of Medicine, Heraklion, Greece
| | - Apostolos Kamekis
- School of Medicine, University of Crete School of Medicine, Heraklion, Greece
| | - Nithya Puttige Ramesh
- Department of Oral Health Policy and Epidemiology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Israel Agaku
- Department of Oral Health Policy and Epidemiology, Harvard University, Cambridge, Massachusetts, USA
| | - Revati Phalkey
- Centre for Evidence Based Healthcare, University of Nottingham, Nottingham, UK
| | - Jo Leonardi-Bee
- Centre for Evidence Based Healthcare, University of Nottingham, Nottingham, UK
| | - Esteve Fernandez
- Tobacco Control Unit, Catalan Institute of Oncology Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.,Tobacco Control Research Group, Institut d'Investigació Biomèdica de Bellvithe (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER Respiratory Diseases (CIBERES), Madrid, Spain.,Department of Clinical Sciences, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Orla Condell
- European Centre for Disease Prevention and Control (ECDC), Solna, Stockholm, Sweden
| | - Favelle Lamb
- European Centre for Disease Prevention and Control (ECDC), Solna, Stockholm, Sweden
| | - Charlotte Deogan
- European Centre for Disease Prevention and Control (ECDC), Solna, Stockholm, Sweden
| | - Jonathan E Suk
- European Centre for Disease Prevention and Control (ECDC), Solna, Stockholm, Sweden
| |
Collapse
|
13
|
Choi G, Lim AY, Choi S, Park K, Lee SY, Kim JH. Viral shedding patterns of symptomatic SARS-CoV-2 infections by periods of variant predominance and vaccination status in Gyeonggi Province, Korea. Epidemiol Health 2022; 45:e2023008. [PMID: 36596734 PMCID: PMC10581894 DOI: 10.4178/epih.e2023008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES We compared the viral cycle threshold (Ct) values of infected patients to better understand viral kinetics by vaccination status during different periods of variant predominance in Gyeonggi Province, Korea. METHODS We obtained case-specific data from the coronavirus disease 2019 (COVID-19) surveillance system, Gyeonggi in-depth epidemiological report system, and Health Insurance Review & Assessment Service from January 2020 to January 2022. We defined periods of variant predominance and explored Ct values by analyzing viral sequencing test results. Using a generalized additive model, we performed a nonlinear regression analysis to determine viral kinetics over time. RESULTS Cases in the Delta variant's period of predominance had higher viral shedding patterns than cases in other periods. The temporal change of viral shedding did not vary by vaccination status in the Omicron-predominant period, but viral shedding decreased in patients who had completed their third vaccination in the Delta-predominant period. During the Delta-predominant and Omicron-predominant periods, the time from symptom onset to peak viral shedding based on the E gene was approximately 2.4 days (95% confidence interval [CI], 2.2 to 2.5) and 2.1 days (95% CI, 2.0 to 2.1), respectively. CONCLUSIONS In one-time tests conducted to diagnose COVID-19 in a large population, although no adjustment for individual characteristics was conducted, it was confirmed that viral shedding differed by the predominant strain and vaccination history. These results show the value of utilizing hundreds of thousands of test data produced at COVID-19 screening test centers.
Collapse
Affiliation(s)
- Gawon Choi
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Sojin Choi
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Kunhee Park
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
| | - Soon Young Lee
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Korea
| | - Jong-Hun Kim
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon, Korea
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
14
|
Rubinstein R, Mei W, Cassidy CA, Streeter G, Basham C, Cerami C, Lin FC, Lin JT, Mollan KR. Transmission prevention behaviors in US households with SARS-CoV-2 cases in 2020. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.25.22282730. [PMID: 36451883 PMCID: PMC9709803 DOI: 10.1101/2022.11.25.22282730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background SARS-CoV-2 transmission frequently occurs within households, yet few studies describe which household contacts and household units are most likely to engage in transmission-interrupting behaviors. Methods We analyzed a COVID-19 prospective household transmission cohort in North Carolina (April-Oct 2020) to quantify changes in physical distancing behaviors among household contacts over 14 days. We evaluated which household contacts were most likely to ever mask at home and to ever share a bedroom with the index case between Days 7-14. Results In the presence of a household COVID-19 infection, 24% of household contacts reported ever masking at home during the week before study entry. Masking in the home between Days 7-14 was reported by 26% of household contacts, and was more likely for participants who observed their household index case wearing a mask. Participants of color and participants in high-density households were more likely to mask at home. After adjusting for race/ethnicity, living density was not as clearly associated with masking. Symptomatic household contacts were more likely to share a bedroom with the index case. Working individuals and those with comorbidities avoided sharing a bedroom with the index case. Conclusion In-home masking during household exposure to COVID-19 was infrequent in 2020. In light of ongoing transmission of SARS-CoV-2, these findings underscore a need for health campaigns to increase the feasibility and social desirability of in-home masking among exposed household members. Joint messaging on social responsibility and prevention of breakthrough infections, reinfections, and long COVID-19 may help motivate transmission-interruption behaviors.
Collapse
Affiliation(s)
- Rebecca Rubinstein
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Wenwen Mei
- Department of Biostatistics, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Caitlin A Cassidy
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | | | - Christopher Basham
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Carla Cerami
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Medical Research Council Unit, The Gambia, at the London School of Hygiene & Tropical Medicine, The Gambia
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Katie R Mollan
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
15
|
van Beek J, Teesing G, Oude Munnink BB, Meima A, Vriend HJ, Elzakkers J, de Graaf M, Langeveld J, Medema GJ, Molenkamp R, Voeten H, Fanoy E, Koopmans M. Population-based screening in a municipality after a primary school outbreak of the SARS-CoV-2 Alpha variant, the Netherlands, December 2020-February 2021. PLoS One 2022; 17:e0276696. [PMID: 36301829 PMCID: PMC9612486 DOI: 10.1371/journal.pone.0276696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
An outbreak of SARS-CoV-2 Alpha variant (Pango lineage B.1.1.7) was detected at a primary school (School X) in Lansingerland, the Netherlands, in December 2020. The outbreak was studied retrospectively, and population-based screening was used to assess the extent of virus circulation and decelerate transmission. Cases were SARS-CoV-2 laboratory confirmed and were residents of Lansingerland (November 16th 2020 until February 22th 2021), or had an epidemiological link with School X or neighbouring schools. The SARS-CoV-2 variant was determined using variant PCR or whole genome sequencing. A questionnaire primarily assessed clinical symptoms. A total of 77 Alpha variant cases were found with an epidemiological link to School X, 16 Alpha variant cases linked to the neighbouring schools, and 146 Alpha variant cases among residents of Lansingerland without a link to the schools. The mean number of self-reported symptoms was not significantly different among Alpha variant infected individuals compared to non-Alpha infected individuals. The secondary attack rate (SAR) among Alpha variant exposed individuals in households was 52% higher compared to non-Alpha variant exposed individuals (p = 0.010), with the mean household age, and mean number of children and adults per household as confounders. Sequence analysis of 60 Alpha variant sequences obtained from cases confirmed virus transmission between School X and neighbouring schools, and showed that multiple introductions of the Alpha variant had already taken place in Lansingerland at the time of the study. The alpha variant caused a large outbreak at both locations of School X, and subsequently spread to neighbouring schools, and households. Population-based screening (together with other public health measures) nearly stopped transmission of the outbreak strain, but did not prevent variant replacement in the Lansingerland municipality.
Collapse
Affiliation(s)
- Janko van Beek
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gwen Teesing
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
- The Netherlands Organization for Health Research and Development (ZonMw), The Hague, The Netherlands
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abraham Meima
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
| | - Henrike J. Vriend
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
| | - Jessica Elzakkers
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen Langeveld
- KWR Water Research Institute, Nieuwegein, The Netherlands
- Partners4UrbanWater, Nijmegen, The Netherlands
| | - Gert-Jan Medema
- KWR Water Research Institute, Nieuwegein, The Netherlands
- Sanitary Engineering, Delft University of Technology, Delft, The Netherlands
| | - Richard Molenkamp
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Helene Voeten
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout Fanoy
- Department of Infectious Disease Control, Public Health Service Rotterdam-Rijnmond, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
16
|
Raymenants J, Duthoo W, Stakenborg T, Verbruggen B, Verplanken J, Feys J, Van Duppen J, Hanifa R, Marchal E, Lambrechts A, Maes P, André E, Van den Wijngaert N, Peumans P. Exhaled breath SARS-CoV-2 shedding patterns across variants of concern. Int J Infect Dis 2022; 123:25-33. [PMID: 35932968 PMCID: PMC9349369 DOI: 10.1016/j.ijid.2022.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We performed exhaled breath (EB) and nasopharyngeal (NP) quantitative polymerase chain reaction (qPCR) and NP rapid antigen testing (NP RAT) of SARS-CoV-2 infections with different variants. METHODS We included immuno-naïve alpha-infected (n = 11) and partly boosted omicron-infected patients (n = 8) as high-risk contacts. We compared peak NP and EB qPCR cycle time (ct) values between cohorts (Wilcoxon-Mann-Whitney test). Test positivity was compared for three infection phases using Cochran Q test. RESULTS Peak median NP ct was 11.5 (interquartile range [IQR] 10.1-12.1) for alpha and 12.2 (IQR 11.1-15.3) for omicron infections. Peak median EB ct was 25.2 (IQR 24.5-26.9) and 28.3 (IQR 26.4-30.8) for alpha and omicron infections, respectively. Distributions did not differ between cohorts for NP (P = 0.19) or EB (P = 0.09). SARS-CoV-2 shedding peaked on day 1 in EB (confidence interval [CI] 0.0 - 4.5) and day 3 in NP (CI 1.5 - 6.0). EB qPCR positivity equaled NP qPCR positivity on D0-D1 (P = 0.44) and D2-D6 (P = 1.0). It superseded NP RAT positivity on D0-D1 (P = 0.003) and D2-D6 (P = 0.008). It was inferior to both on D7-D10 (P < 0.001). CONCLUSION Peak EB and nasopharynx shedding were comparable across variants. EB qPCR positivity matched NP qPCR and superseded NP RAT in the first week of infection.
Collapse
Affiliation(s)
- Joren Raymenants
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium; Department of general internal medicine, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Wout Duthoo
- Imec Solutions department, imec, 3001, Leuven, Belgium
| | - Tim Stakenborg
- Life Science Technologies department, imec, 3001, Leuven, Belgium
| | | | - Julien Verplanken
- Enabling Digital Transformations department, imec, 9000, Ghent, Belgium
| | - Jos Feys
- Department of Clinical and Epidemiological Virology (Rega Institute), 3000, Leuven, Belgium
| | - Joost Van Duppen
- Life Science Technologies department, imec, 3001, Leuven, Belgium
| | - Rabea Hanifa
- Life Science Technologies department, imec, 3001, Leuven, Belgium
| | | | | | | | - Emmanuel André
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium; Department of laboratory medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | - Peter Peumans
- Life Science Technologies department, imec, 3001, Leuven, Belgium
| |
Collapse
|
17
|
Vanbesien M, Molenberghs G, Geenen C, Thibaut J, Gorissen S, André E, Raymenants J. Risk factors for SARS-CoV-2 transmission in student residences: a case-ascertained study. Arch Public Health 2022; 80:212. [PMID: 36131328 PMCID: PMC9491668 DOI: 10.1186/s13690-022-00966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background We aimed to investigate the overall secondary attack rates (SAR) of COVID-19 in student residences and to identify risk factors for higher transmission. Methods We retrospectively analysed the SAR in living units of student residences which were screened in Leuven (Belgium) following the detection of a COVID-19 case. Students were followed up in the framework of a routine testing and tracing follow-up system. We considered residence outbreaks followed up between October 30th 2020 and May 25th 2021. We used generalized estimating equations (GEE) to evaluate the impact of delay to follow-up, shared kitchen or sanitary facilities, the presence of a known external infection source and the recent occurrence of a social gathering. We used a generalized linear mixed model (GLMM) for validation. Results We included 165 student residences, representing 200 residence units (N screened residents = 2324). Secondary transmission occurred in 68 units which corresponded to 176 secondary cases. The overall observed SAR was 8.2%. In the GEE model, shared sanitary facilities (p = 0.04) and the recent occurrence of a social gathering (p = 0.003) were associated with a significant increase in SAR in a living unit, which was estimated at 3% (95%CI 1.5-5.2) in the absence of any risk factor and 13% (95%CI 11.4-15.8) in the presence of both. The GLMM confirmed these findings. Conclusions Shared sanitary facilities and the occurrence of social gatherings increase the risk of COVID-19 transmission and should be considered when screening and implementing preventive measures. Supplementary Information The online version contains supplementary material available at 10.1186/s13690-022-00966-4.
Collapse
|
18
|
Wang H, Churqui MP, Tunovic T, Enache L, Johansson A, Kärmander A, Nilsson S, Lagging M, Andersson M, Dotevall L, Brezicka T, Nyström K, Norder H. The amount of SARS-CoV-2 RNA in wastewater relates to the development of the pandemic and its burden on the health system. iScience 2022; 25:105000. [PMID: 36035197 PMCID: PMC9398557 DOI: 10.1016/j.isci.2022.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Virus surveillance in wastewater can be a useful indicator of the development of the COVID-19 pandemic in communities. However, knowledge about how the amount of SARS-CoV-2 RNA in wastewater relates to different data on the burden on the health system is still limited. Herein, we monitored the amount of SARS-CoV-2 RNA and the spectrum of virus variants in weekly pooled wastewater samples for two years from mid-February 2020 and compared with several clinical data. The two-year monitoring showed the weekly changes in the amount of viral RNA in wastewater preceded the hospital care needs for COVID-19 and the number of acute calls on adult acute respiratory distress by 1-2 weeks during the first three waves of COVID-19. Our study demonstrates that virus surveillance in wastewater can predict the development of a pandemic and its burden on the health system, regardless of society's test capacity and possibility of tracking infected cases.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Ambjörn Kärmander
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Institute of Biomedicine, Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lagging
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Maria Andersson
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Leif Dotevall
- Department of Communicable Disease Control, Region Västra Götaland, Gothenburg, Sweden
| | - Thomas Brezicka
- Sahlgrenska University Hospital, Department of Quality and Patient Safety, Region Västra Götaland, Gothenburg, Sweden
| | - Kristina Nyström
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Heléne Norder
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
19
|
Sumner KM, Karron RA, Stockwell MS, Dawood FS, Stanford JB, Mellis A, Hacker E, Thind P, Castro MJE, Harris JP, Deloria Knoll M, Schappell E, Hetrich MK, Duque J, Jeddy Z, Altunkaynak K, Poe B, Meece J, Stefanski E, Tong S, Lee JS, Dixon A, Veguilla V, Rolfes MA, Porucznik CA. Impact of Age and Symptom Development on SARS-CoV-2 Transmission in Households With Children-Maryland, New York, and Utah, August 2020-October 2021. Open Forum Infect Dis 2022; 9:ofac390. [PMID: 35991589 PMCID: PMC9384637 DOI: 10.1093/ofid/ofac390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Households are common places for spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated factors associated with household transmission and acquisition of SARS-CoV-2. Methods Households with children age <18 years were enrolled into prospective, longitudinal cohorts and followed from August 2020 to August 2021 in Utah, September 2020 to August 2021 in New York City, and November 2020 to October 2021 in Maryland. Participants self-collected nasal swabs weekly and with onset of acute illness. Swabs were tested for SARS-CoV-2 using reverse transcription polymerase chain reaction. We assessed factors associated with SARS-CoV-2 acquisition using a multilevel logistic regression adjusted for household size and clustering and SARS-CoV-2 transmission using a logistic regression adjusted for household size. Results Among 2053 people (513 households) enrolled, 180 people (8.8%; in 76 households) tested positive for SARS-CoV-2. Compared with children age <12 years, the odds of acquiring infection were lower for adults age ≥18 years (adjusted odds ratio [aOR], 0.34; 95% CI, 0.14-0.87); however, this may reflect vaccination status, which protected against SARS-CoV-2 acquisition (aOR, 0.17; 95% CI, 0.03-0.91). The odds of onward transmission were similar between symptomatic and asymptomatic primary cases (aOR, 1.00; 95% CI, 0.35-2.93) and did not differ by age (12-17 years vs <12 years: aOR, 1.08; 95% CI, 0.20-5.62; ≥18 years vs <12 years: aOR, 1.70; 95% CI, 0.52-5.83). Conclusions Adults had lower odds of acquiring SARS-CoV-2 compared with children, but this association might be influenced by coronavirus disease 2019 (COVID-19) vaccination, which was primarily available for adults and protective against infection. In contrast, all ages, regardless of symptoms and COVID-19 vaccination, had similar odds of transmitting SARS-CoV-2. Our findings underscore the importance of SARS-CoV-2 mitigation measures for persons of all ages.
Collapse
Affiliation(s)
- Kelsey M Sumner
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ruth A Karron
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York, USA
| | - Fatimah S Dawood
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Joseph B Stanford
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexandra Mellis
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Emily Hacker
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Priyam Thind
- Division of Child and Adolescent Health, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Maria Julia E Castro
- Division of Child and Adolescent Health, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - John Paul Harris
- Division of Child and Adolescent Health, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth Schappell
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marissa K Hetrich
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Zuha Jeddy
- Abt Associates, Cambridge, Massachusetts, USA
| | | | - Brandon Poe
- Abt Associates, Cambridge, Massachusetts, USA
| | - Jennifer Meece
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Elisha Stefanski
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Suxiang Tong
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Justin S Lee
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Ashton Dixon
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Melissa A Rolfes
- Centers for Disease Control and Prevention COVID-19 Response, Atlanta, Georgia, USA
| | - Christina A Porucznik
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Wang C, Xu J, Fu S, Chao CY. Airborne infection risk of nearby passengers in a cabin environment and implications for infection control. Travel Med Infect Dis 2022; 47:102285. [DOI: 10.1016/j.tmaid.2022.102285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/28/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
|
21
|
Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household secondary attack rates of SARS-CoV-2 by variant and vaccination status: an updated systematic review and meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.09.22268984. [PMID: 35043125 PMCID: PMC8764734 DOI: 10.1101/2022.01.09.22268984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously reported a household secondary attack rate (SAR) for SARS-CoV-2 of 18.9% through June 17, 2021. To examine how emerging variants and increased vaccination have affected transmission rates, we searched PubMed from June 18, 2021, through January 7, 2022. Meta-analyses used generalized linear mixed models to obtain SAR estimates and 95%CI, disaggregated by several covariates. SARs were used to estimate vaccine effectiveness based on the transmission probability for susceptibility ( VE S,p ), infectiousness ( VE I,p ), and total vaccine effectiveness ( VE T,p ). Household SAR for 27 studies with midpoints in 2021 was 35.8% (95%CI, 30.6%-41.3%), compared to 15.7% (95%CI, 13.3%-18.4%) for 62 studies with midpoints through April 2020. Household SARs were 38.0% (95%CI, 36.0%-40.0%), 30.8% (95%CI, 23.5%-39.3%), and 22.5% (95%CI, 18.6%-26.8%) for Alpha, Delta, and Beta, respectively. VE I,p , VE S,p , and VE T,p were 56.6% (95%CI, 28.7%-73.6%), 70.3% (95%CI, 59.3%-78.4%), and 86.8% (95%CI, 76.7%-92.5%) for full vaccination, and 27.5% (95%CI, -6.4%-50.7%), 43.9% (95%CI, 21.8%-59.7%), and 59.9% (95%CI, 34.4%-75.5%) for partial vaccination, respectively. Household contacts exposed to Alpha or Delta are at increased risk of infection compared to the original wild-type strain. Vaccination reduced susceptibility to infection and transmission to others. SUMMARY Household secondary attack rates (SARs) were higher for Alpha and Delta variants than previous estimates. SARs were higher to unvaccinated contacts than to partially or fully vaccinated contacts and were higher from unvaccinated index cases than from fully vaccinated index cases.
Collapse
Affiliation(s)
| | - Yang Yang
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Ira M. Longini
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - M. Elizabeth Halloran
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Natalie E. Dean
- Department of Biostatistics, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Nakel J, Robitaille A, Günther T, Rosenau L, Czech-Sioli M, Plenge-Bönig A, Bühler S, Wille A, Jakubowski E, Pruskil S, Wahlen M, Indenbirken D, Nörz D, Lütgehetmann M, Aepfelbacher M, Grundhoff A, Grolle B, Fischer N. Comparing susceptibility and contagiousness in concurrent outbreaks with a non-VOC and the VOC SARS-CoV-2 variant B.1.1.7 in daycare centers in Hamburg, Germany. Int J Hyg Environ Health 2022; 240:113928. [PMID: 35093719 PMCID: PMC8784653 DOI: 10.1016/j.ijheh.2022.113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
We describe two outbreaks of SARS-CoV-2 in daycare centers in the metropolitan area of Hamburg, Germany. The outbreaks occurred in rapid chronological succession, in neighborhoods with a very similar sociodemographic structure, thus allowing for cross-comparison of these events. We combined classical and molecular epidemiologic investigation methods to study infection entry, spread within the facilities, and subsequent transmission of infections to households. Epidemiologic and molecular evidence suggests a superspreading event with a non-variant of concern (non-VOC) SARS CoV-2 strain at the root of the first outbreak. The second outbreak involved two childcare facilities experiencing infection activity with the variant of concern (VOC) B.1.1.7 (Alpha). We show that the index cases in all outbreaks had been childcare workers, and that children contributed substantially to secondary transmission of SARS-CoV-2 infection from childcare facilities to households. The frequency of secondary transmissions in households originating from B.1.1.7-infected children was increased compared to children with non-VOC infections. Self-reported symptoms, particularly cough and rhinitis, occurred more frequently in B.1.1.7-infected children. Especially in light of the rapidly spreading VOC B.1.617.2 (Delta), our data underline the notion that rigorous SARS-CoV-2 testing in combination with screening of contacts regardless of symptoms is an important measure to prevent SARS-CoV-2 infection of unvaccinated individuals in daycare centers and associated households.
Collapse
|