1
|
Ashbacher SM, Mills Q, Sohn AL, Xie DY, Muddiman DC. Incorporation of Three Different Optical Trains into the IR-MALDESI Mass Spectrometry Imaging Platform to Characterize Artemisia annua. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1245-1252. [PMID: 38686539 DOI: 10.1021/jasms.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Artemisinin is the leading medication for the treatment of malaria and is only produced naturally in Artemisia annua. The localization of artemisinin in both the glandular and non-glandular trichomes of the plant makes it an ideal candidate for mass spectrometry imaging (MSI) as a model system for method development. Infrared matrix-assisted laser desorption electrospray ionization MSI (IR-MALDESI-MSI) has the capability to detect hundreds to thousands of analytes simultaneously, providing abundance information in conjunction with species localization throughout a sample. The development of several new optical trains and their application to the IR-MALDESI-MSI platform has improved data quality in previous proof-of-concept experiments but has not yet been applied to analysis of native biological samples, especially the MSI analysis of plants. This study aimed to develop a workflow and optimize MSI parameters, specifically the laser optical train, for the analysis of Artemisia annua with the NextGen IR-MALDESI platform coupled to an Orbitrap Exploris 240 mass spectrometer. Two laser optics were compared to the conventional set up, of which include a Schwarzschild-like reflective objective and a diffractive optical element (DOE). These optics, respectively, enhance the spatial resolution of imaging experiments or create a square spot shape for top-hat imaging. Ultimately, we incorporated and characterized three different optical trains into our analysis of Artemisia annua to study metabolites in the artemisinin pathway. These improvements in our workflow, resulted in high spatial resolution and improved ion abundance from previous work, which will allow us to address many different questions in plant biology beyond this model system.
Collapse
|
2
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Loupit G, Fonayet JV, Lorensen MDBB, Franc C, De Revel G, Janfelt C, Cookson SJ. Tissue-specific stilbene accumulation is an early response to wounding/grafting as revealed by using spatial and temporal metabolomics. PLANT, CELL & ENVIRONMENT 2023; 46:3871-3886. [PMID: 37646324 DOI: 10.1111/pce.14693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.
Collapse
Affiliation(s)
- Grégoire Loupit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Josep V Fonayet
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
- Bordeaux Metabolome Facility, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | - Marcus D B B Lorensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Céline Franc
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Gilles De Revel
- Unité de recherche Oenologie, EA 4577, USC 1366 INRAE, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah J Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
4
|
Maia M, Aziz A, Jeandet P, Carré V. Profiling and Localization of Stilbene Phytoalexins Revealed by MALDI-MSI during the Grapevine- Botrytis cinerea Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15569-15581. [PMID: 37831964 DOI: 10.1021/acs.jafc.3c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stilbene phytoalexins are among the most accumulated compounds during grapevine-pathogen interactions. However, their steady-state accumulation level and spatial distribution within the tissues to counteract Botrytis cinerea infection remain to be explored. In this work, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used to determine the spatial distribution of different phytoalexins in grapevine leaves upon infection with B. cinerea. Ultraperformance liquid chromatography-fluorescence (UPLC-FL) was also employed to monitor the accumulation pattern of these phytoalexins. This study showed that stilbene compounds accumulate in areas close to the pathogen infection sites. It was also revealed that the accumulation patterns of the stilbene phytoalexins can vary from one time point postinfection to another with specific accumulation patterns within each time point. To the best of our knowledge, this is the first time that the separate localization of grapevine stilbene phytoalexins has been revealed following B. cinerea infection.
Collapse
Affiliation(s)
- Marisa Maia
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Vincent Carré
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| |
Collapse
|
5
|
Bai X, Zhou L, Zhou L, Cang S, Liu Y, Liu R, Liu J, Feng X, Fan R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023; 28:molecules28083610. [PMID: 37110844 PMCID: PMC10140916 DOI: 10.3390/molecules28083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Blueberry is the source of a variety of bioactive substances, including phenolic compounds, such as anthocyanins, pterostilbene, phenolic acids, etc. Several studies have revealed that polyphenols in blueberry have important bioactivities in maintaining health, such as antioxidant and anti-tumor activities, immune regulation, the prevention of chronic diseases, etc. Therefore, these phenolic compounds in blueberries have been widely used in the field of healthcare, and the extraction, isolation, and purification of phenolic compounds are the prerequisites for their utilization. It is imperative to systematically review the research progress and prospects of phenolic compounds present in blueberries. Herein, the latest progress in the extraction, purification, and analysis of phenolic compounds from blueberries is reviewed, which can in turn provide a foundation for further research and usage of blueberries.
Collapse
Affiliation(s)
- Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Lin Zhou
- Department of Food Science, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Song Cang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yuhan Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Rui Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Jie Liu
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
6
|
Bradshaw R. MALDI MS Imaging of Cucumbers. Methods Mol Biol 2023; 2688:63-69. [PMID: 37410284 DOI: 10.1007/978-1-0716-3319-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
There are many different methodologies in the literature for the preparation of plant material for subsequent MALDI MSI analysis. This chapter overviews preparation of cucumbers (Cucumis sativus L.), with emphasis on sample freezing, cryosectioning, and matrix deposition. This should act as a representative example of sample preparation for plant tissue, and due to wide sample variation (e.g., leaves, seeds, and fruit) and analytes of interest, method optimization will be required for different samples.
Collapse
Affiliation(s)
- Robert Bradshaw
- Biomolecular Sciences Research Centre (BMRC), Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
7
|
A consolidative synopsis of the MALDI-TOF MS accomplishments for the rapid diagnosis of microbial plant disease pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Maia M, McCann A, Malherbe C, Far J, Cunha J, Eiras-Dias J, Cordeiro C, Eppe G, Quinton L, Figueiredo A, De Pauw E, Sousa Silva M. Grapevine leaf MALDI-MS imaging reveals the localisation of a putatively identified sucrose metabolite associated to Plasmopara viticola development. FRONTIERS IN PLANT SCIENCE 2022; 13:1012636. [PMID: 36299787 PMCID: PMC9589281 DOI: 10.3389/fpls.2022.1012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Despite well-established pathways and metabolites involved in grapevine-Plasmopara viticola interaction, information on the molecules involved in the first moments of pathogen contact with the leaf surface and their specific location is still missing. To understand and localise these molecules, we analysed grapevine leaf discs infected with P. viticola with MSI. Plant material preparation was optimised, and different matrices and solvents were tested. Our data shows that trichomes hamper matrix deposition and the ion signal. Results show that putatively identified sucrose presents a higher accumulation and a non-homogeneous distribution in the infected leaf discs in comparison with the controls. This accumulation was mainly on the veins, leading to the hypothesis that sucrose metabolism is being manipulated by the development structures of P. viticola. Up to our knowledge this is the first time that the localisation of a putatively identified sucrose metabolite was shown to be associated to P. viticola infection sites.
Collapse
Affiliation(s)
- Marisa Maia
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Andréa McCann
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Cédric Malherbe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Jorge Cunha
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - José Eiras-Dias
- Estação Vitivinícola Nacional, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Torres-Vedras, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Gauthier Eppe
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (MolSys), University of Liège, Liège, Belgium
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Maia M, Carré V, Aziz A, Jeandet P. Molecular Localization of Phytoalexins at the Micron Scale: Toward a Better Understanding of Plant-Phytoalexin-Pathogen Dynamics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9243-9245. [PMID: 35852307 DOI: 10.1021/acs.jafc.2c04208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Marisa Maia
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000 Metz, France
| | - Aziz Aziz
- University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE, Reims 51100, France
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP), USC INRAE, Reims 51100, France
| |
Collapse
|
10
|
Ajith A, Milnes PJ, Johnson GN, Lockyer NP. Mass Spectrometry Imaging for Spatial Chemical Profiling of Vegetative Parts of Plants. PLANTS 2022; 11:plants11091234. [PMID: 35567235 PMCID: PMC9102225 DOI: 10.3390/plants11091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
The detection of chemical species and understanding their respective localisations in tissues have important implications in plant science. The conventional methods for imaging spatial localisation of chemical species are often restricted by the number of species that can be identified and is mostly done in a targeted manner. Mass spectrometry imaging combines the ability of traditional mass spectrometry to detect numerous chemical species in a sample with their spatial localisation information by analysing the specimen in a 2D manner. This article details the popular mass spectrometry imaging methodologies which are widely pursued along with their respective sample preparation and the data analysis methods that are commonly used. We also review the advancements through the years in the usage of the technique for the spatial profiling of endogenous metabolites, detection of xenobiotic agrochemicals and disease detection in plants. As an actively pursued area of research, we also address the hurdles in the analysis of plant tissues, the future scopes and an integrated approach to analyse samples combining different mass spectrometry imaging methods to obtain the most information from a sample of interest.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
| | - Phillip J. Milnes
- Syngenta, Jeolott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PY, UK;
| | - Nicholas P. Lockyer
- Department of Chemistry, Photon Science Institute, University of Manchester, Manchester M13 9PL, UK;
- Correspondence:
| |
Collapse
|
11
|
UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. SEPARATIONS 2022. [DOI: 10.3390/separations9030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the plants used in Indonesian traditional medicine, namely, Patiwala (Lantana camara), is traditionally used to treat some diseases, including itching, wounds, ulcers, swelling, eczema, tetanus, malaria, tumors, rheumatism, and headaches. This study aimed to characterize the compound nonpolar fraction of Patiwala leaf capable of scavenging free radicals. The characterization of compound was carried out using the Ultra-Performance Liquid Chromatography–tandem Mass Spectrometry (UPLC-MS/MS) with positive ion method, while the antioxidant testing was carried out using the radical DPPH (2,2-diphenyl-1-picrylhidrazyl) and FRAP (ferric reducing antioxidant power) methods. The results showed that the nonpolar fraction of the methanol extract of L. camara leaves was very strong toward DPPH radicals (IC50 34.65 ± 1.26 μg/mL and 40.23 ± 0.18 μg/mL), and FRAP radical (IC50 4.93 ± 0.22 μg/mL and 12.79 ± 0.09 μg/mL). Nineteen compounds identified by UPLC-MS/MS method were Resveratrol dimer, iso-humolones, oleuropein glucoside, quercetin-3-O-glycoside, myricetin, oleuropein, 12-deoxy-16-hydroxy-phorbol, aloeresin A, humulones, ursolic acid, viniferin, Epicatechin, oleanolic acid, 5-hydroxy-3′,4′,7-trimerthoxy-flavanone, Apigenin-6,8-di-C-β-D-glucoside, procyanidin A2, caffeoyl-O-hexoside, tansihnone IIA, and phillyrin. The methanolic extract of L. camara leaves can be developed as a source of antioxidants from natural ingredients.
Collapse
|
12
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
13
|
Komkleow S, Niyomploy P, Sangvanich P. Maldi-mass Spectrometry Imaging for Phytoalexins Detection in RD6 Thai Rice. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
15
|
Nara S, Kandpal R, Jaiswal V, Augustine S, Wahie S, Sharma JG, Takeuchi R, Takenaka S, Malhotra BD. Exploring Providencia rettgeri for application to eco-friendly paper based microbial fuel cell. Biosens Bioelectron 2020; 165:112323. [DOI: 10.1016/j.bios.2020.112323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/02/2023]
|
16
|
A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine ( Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants (Basel) 2020; 9:antiox9050398. [PMID: 32397203 PMCID: PMC7278806 DOI: 10.3390/antiox9050398] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/19/2023] Open
Abstract
Due to their biological activities, both in plants and in humans, there is a great interest in finding natural sources of phenolic compounds or ways to artificially manipulate their levels. During the last decade, a significant amount of these compounds has been reported in the vegetative organs of the vine plant. In the roots, woods, canes, stems, and leaves, at least 183 phenolic compounds have been identified, including 78 stilbenes (23 monomers, 30 dimers, 8 trimers, 16 tetramers, and 1 hexamer), 15 hydroxycinnamic acids, 9 hydroxybenzoic acids, 17 flavan-3-ols (of which 9 are proanthocyanidins), 14 anthocyanins, 8 flavanones, 35 flavonols, 2 flavones, and 5 coumarins. There is great variability in the distribution of these chemicals along the vine plant, with leaves and stems/canes having flavonols (83.43% of total phenolic levels) and flavan-3-ols (61.63%) as their main compounds, respectively. In light of the pattern described from the same organs, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and caftaric acid are the main flavonols and hydroxycinnamic acids in the leaves; the most commonly represented flavan-3-ols and flavonols in the stems and canes are catechin, epicatechin, procyanidin B1, and quercetin-3-O-galactoside. The main stilbenes (trans-ε-viniferin, trans-resveratrol, isohopeaphenol/hopeaphenol, vitisin B, and ampelopsins) accumulate primarily in the woods, followed by the roots, the canes, and the stems, whereas the leaves, which are more exposed to environmental stresses, have a low concentration of these compounds. Data provided in this review could be used as (i) a metabolomic tool for screening in targeted and untargeted analyses and (ii) a reference list in studies aimed at finding ways to induce naturally occurring polyphenols on an industrial scale for pant and human disease control.
Collapse
|
17
|
Loupit G, Cookson SJ. Identifying Molecular Markers of Successful Graft Union Formation and Compatibility. FRONTIERS IN PLANT SCIENCE 2020; 11:610352. [PMID: 33343610 PMCID: PMC7738326 DOI: 10.3389/fpls.2020.610352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Grafting is a technique used for millennia for vegetative propagation, especially in perennial fruit crops. This method, used on woody and herbaceous plants, can improve several agronomic characteristics, such as yield or vigor, as well as tolerance to biotic and abiotic stresses. However, some scion/rootstock combinations suffer from poor graft compatibility, i.e., they are unable to form and/or sustain a successful graft union. Identifying symptoms of graft incompatibility is difficult because they are not always present in the first years after grafting and in most cases the causes of incompatibility are still poorly understood. Studies of changes in transcript abundance during graft union formation indicate that grafting responses are similar to responses to wounding and include the differential expression of genes related to hormone signaling, oxidative stress, formation of new vascular vessels, cell development, and secondary metabolites, in particular polyphenols. This review summarizes current knowledge of the changes in transcript abundance, redox status and metabolites accumulation during graft union formation and in cases of graft incompatibility. The goal of this review is to discuss the possibility of identifying marker transcripts, enzyme activities and/or metabolites of grafting success and graft compatibility which could be used to score grafting success for genetic research and in breeding programs. We highlight gaps in current knowledge and potential research directions in this field.
Collapse
|
18
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
19
|
Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA. Mass Spectrometry Based Imaging of Labile Glucosides in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:892. [PMID: 30002667 PMCID: PMC6031732 DOI: 10.3389/fpls.2018.00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/19/2023]
Abstract
Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered sample preparation the limiting step for further improvements. Sample preparation involves sectioning and mounting followed by selection and application of matrix. In plant tissues, labile small molecules and specialized metabolites are subject to degradation upon mechanical disruption of plant tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and optimal application of the matrix to improve the results from MALDI mass spectrometry imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the samples frozen throughout the sectioning process and preparation of the samples by freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of the matrix by sublimation improved the spatial information obtained compared to spray. The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in the vascular tissues in old stems of M. esculenta and in the periderm and vascular tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid of hydroxynitrile glucosides were used as negative controls to verify the assignment of the observed masses to linamarin, lotaustralin, and linamarin acid.
Collapse
Affiliation(s)
- Frederik Bøgeskov Schmidt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dinaiz Thinagaran
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Birger Lindberg Møller,
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Berin A. Boughton
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Wang H, Wang Y, Wang G, Hong L. Matrix-assisted laser-desorption/ionization mass spectrometric imaging of olanzapine in a single hair using esculetin as a matrix. J Pharm Biomed Anal 2017; 141:123-131. [DOI: 10.1016/j.jpba.2017.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/11/2022]
|
21
|
Becker L, Bellow S, Carré V, Latouche G, Poutaraud A, Merdinoglu D, Brown SC, Cerovic ZG, Chaimbault P. Correlative Analysis of Fluorescent Phytoalexins by Mass Spectrometry Imaging and Fluorescence Microscopy in Grapevine Leaves. Anal Chem 2017; 89:7099-7106. [PMID: 28570053 DOI: 10.1021/acs.analchem.7b01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Plant response to their environment stresses is a complex mechanism involving secondary metabolites. Stilbene phytoalexins, namely resveratrol, pterostilbene, piceids and viniferins play a key role in grapevine (Vitis vinifera) leaf defense. Despite their well-established qualities, conventional analyses such as HPLC-DAD or LC-MS lose valuable information on metabolite localization during the extraction process. To overcome this issue, a correlative analysis combining mass spectroscopy imaging (MSI) and fluorescence imaging was developed to localize in situ stilbenes on the same stressed grapevine leaves. High-resolution images of the stilbene fluorescence provided by macroscopy were supplemented by specific distributions and structural information concerning resveratrol, pterostilbene, and piceids obtained by MSI. The two imaging techniques led to consistent and complementary data on the stilbene spatial distribution for the two stresses addressed: UV-C irradiation and infection by Plasmopara viticola. Results emphasize that grapevine leaves react differently depending on the stress. A rather uniform synthesis of stilbenes is induced after UV-C irradiation, whereas a more localized synthesis of stilbenes in stomata guard cells and cell walls is induced by P. viticola infection. Finally, this combined imaging approach could be extended to map phytoalexins of various plant tissues with resolution approaching the cellular level.
Collapse
Affiliation(s)
- Loïc Becker
- Université de Lorraine. Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), EA 4632, Institut Jean Barriol - Fédération de Recherche 2843; ICPM 1, Boulevard Arago , Metz Technopole Cedex 03, F-57078, France
| | - Sébastien Bellow
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay , 91400, Orsay, France
| | - Vincent Carré
- Université de Lorraine. Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), EA 4632, Institut Jean Barriol - Fédération de Recherche 2843; ICPM 1, Boulevard Arago , Metz Technopole Cedex 03, F-57078, France
| | - Gwendal Latouche
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay , 91400, Orsay, France
| | - Anne Poutaraud
- INRA , Laboratoire Agronomie et Environnement, UMR 1121, Colmar, 29 rue de Herrlisheim, F68021 Colmar Cedex, France.,Université de Lorraine , Laboratoire Agronomie et Environnement, UMR 1121, 2 Avenue de la forêt de Haye - TSA, 40602 - F54518 Vandœuvre-lès-Nancy Cedex, France
| | - Didier Merdinoglu
- INRA , UMR 1131, SVQV, F-68000 Colmar, France.,Université de Strasbourg , UMR 1131, SVQV, F-68000 Colmar, France
| | - Spencer C Brown
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay , 91198, Gif-sur-Yvette cedex, France
| | - Zoran G Cerovic
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay , 91400, Orsay, France
| | - Patrick Chaimbault
- Université de Lorraine. Laboratoire de Chimie et Physique-Approche Multi échelle des Milieux Complexes (LCP-A2MC), EA 4632, Institut Jean Barriol - Fédération de Recherche 2843; ICPM 1, Boulevard Arago , Metz Technopole Cedex 03, F-57078, France
| |
Collapse
|
22
|
Ho YN, Shu LJ, Yang YL. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28488813 DOI: 10.1002/wsbm.1387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Imaging mass spectrometry (IMS) allows the study of the spatial distribution of small molecules in biological samples. IMS is able to identify and quantify chemicals in situ from whole tissue sections to single cells. Both vacuum mass spectrometry (MS) and ambient MS systems have advanced considerably over the last decade; however, some limitations are still hard to surmount. Sample pretreatment, matrix or solvent choices, and instrument improvement are the key factors that determine the successful application of IMS to different samples and analytes. IMS with innovative MS analyzers, powerful MS spectrum databases, and analysis tools can efficiently dereplicate, identify, and quantify natural products. Moreover, multimodal imaging systems and multiple MS-based systems provide additional structural, chemical, and morphological information and are applied as complementary tools to explore new fields. IMS has been applied to reveal interactions between living organisms at molecular level. Recently, IMS has helped solve many previously unidentifiable relations between bacteria, fungi, plants, animals, and insects. Other significant interactions on the chemical level can also be resolved using expanding IMS techniques. WIREs Syst Biol Med 2017, 9:e1387. doi: 10.1002/wsbm.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Wang H, Wang Y. Matrix-assisted laser desorption/ionization mass spectrometric imaging for the rapid segmental analysis of methamphetamine in a single hair using umbelliferone as a matrix. Anal Chim Acta 2017; 975:42-51. [PMID: 28552305 DOI: 10.1016/j.aca.2017.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022]
Abstract
Segmental hair analysis offers a longer period for retrospective drug detection than blood or urine. Hair is a keratinous fiber and is strongly hydrophobic. The embedding of drugs in hydrophobic hair at low concentrations makes it difficult for extraction and detection with matrix-assisted laser desorption/ionization (MALDI) coupled with mass spectrometric imaging (MSI). In this study, a single scalp hair was longitudinally cut with a cryostat section to a length of 4 mm and fixed onto a stainless steel MALDI plate. Umbelliferone was used as a new hydrophobic matrix to enrich and assist the ionization efficiency of methamphetamine in the hair sample. MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS profiling and imaging were performed for direct detection and mapping of methamphetamine on the longitudinal sections of the single hair sample in positive ion mode. Using MALDI-MSI, the distribution of methamphetamine was observed throughout five longitudinally sectioned hair samples from a drug abuser. The changes of methamphetamine were also semi-quantified by comparing the ratios of methamphetamine/internal standard (I.S). This method improves the detection sensitivity of target drugs embedded in a hair matrix for imaging with mass spectrometry. The method could provide a detection level of methamphetamine down to a nanogram per milligram incorporated into hair. The results were also compared with the conventional high performance liquid chromatography -tandem mass spectrometry (HPLC-MS/MS) method. Changes in the imaging results over time by the MSI method showed good semi-quantitative correlation to the results from the HPLC-MS/MS method. This study provides a powerful tool for drug abuse control and forensic medicine analysis in a narrow time frame, and a reduction in the sample amount required.
Collapse
Affiliation(s)
- Hang Wang
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, PR China; Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, PR China.
| | - Ying Wang
- Narcotics Control Commission, Nanjing Municipal Public Security Bureau, Nanjing, 210012, PR China
| |
Collapse
|
24
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Spatial Metabolite Profiling by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:291-321. [DOI: 10.1007/978-3-319-47656-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Yoshimura Y, Goto-Inoue N, Moriyama T, Zaima N. Significant advancement of mass spectrometry imaging for food chemistry. Food Chem 2016; 210:200-11. [DOI: 10.1016/j.foodchem.2016.04.096] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/17/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
|
27
|
Dong Y, Li B, Aharoni A. More than Pictures: When MS Imaging Meets Histology. TRENDS IN PLANT SCIENCE 2016; 21:686-698. [PMID: 27155743 DOI: 10.1016/j.tplants.2016.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/29/2016] [Accepted: 04/07/2016] [Indexed: 05/28/2023]
Abstract
Attaining high-resolution spatial information is a recurrent challenge in biological research, particularly in the case of small-molecule distribution. Mass spectrometry imaging (MSI) is an innovative molecular histology technique that could provide such information. It allows in situ and label-free measurement of both the abundance and distribution of a variety of molecules at the tissue or single cell level. The application of MSI in plant research has received considerable attention; thus, in this review, we describe the current state of MSI in plants. In particular, we present an overview of MSI approaches, highlight the recent technical and methodological developments, and discuss a range of applications contributing to the field of plant science.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review. FRONTIERS IN PLANT SCIENCE 2016; 7:60. [PMID: 26904042 PMCID: PMC4748743 DOI: 10.3389/fpls.2016.00060] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 05/18/2023]
Abstract
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
Collapse
Affiliation(s)
- Yonghui Dong
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovot, Israel
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical EcologyJena, Germany
| | - Pietro Franceschi
- Biostatistics and Data Management, Research and Innovation Centre - Fondazione Edmund MachS. Michele all'Adige, Italy
- *Correspondence: Pietro Franceschi
| |
Collapse
|
29
|
Li B, Dunham SJ, Dong Y, Yoon S, Zeng M, Sweedler JV. Analytical capabilities of mass spectrometry imaging and its potential applications in food science. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2015; 15:445-488. [PMID: 27340381 PMCID: PMC4870303 DOI: 10.1007/s11101-015-9440-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/25/2015] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
Collapse
Affiliation(s)
- Berin A. Boughton
- />Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Dinaiz Thinagaran
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Daniel Sarabia
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Antony Bacic
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
- />ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC 3010 Australia
- />Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ute Roessner
- />School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
31
|
|
32
|
Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 2014; 19:18033-56. [PMID: 25379642 PMCID: PMC6271817 DOI: 10.3390/molecules191118033] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such they take part in an intricate defense system which enables plants to control invading microorganisms. In this review we present the key features of this diverse group of molecules, namely their chemical structures, biosynthesis, regulatory mechanisms, biological activities, metabolism and molecular engineering.
Collapse
|