1
|
Kayamba F, Karpoormath R, Obakachi VA, Mahlalela M, Banda D, van Zyl RL, Lala S, Zininga T, Shonhai A, Shaik BB, Pooe OJ. A promising class of antiprotozoal agents, design and synthesis of novel Pyrimidine-Cinnamoyl hybrids. Eur J Med Chem 2025; 281:116944. [PMID: 39549508 DOI: 10.1016/j.ejmech.2024.116944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 11/18/2024]
Abstract
Malaria, caused by parasitic protozoans of the Plasmodium genus, continues to be one of the greatest global health crises, especially in Africa. The emergence of antimalarial drug resistance continues to be a health problem necessitating an urgent need for alternative and cost-effective antimalarials. Using a molecular hybridization approach, we report the design and synthesis of an efficacious novel class of antiprotozoal agents; (E)-1-(4-(4,6-diphenylpyrimidin-2-yl)piperazin-1-yl)-3-phenyl prop-2-en-1-one derivatives (8a-r). The in vitro inhibitory activity of the synthesized compounds was evaluated against the NF54 chloroquine-sensitive strain of Plasmodium falciparum. From the antiprotozoal screening, three compounds displayed propitious activity with IC50 values (0.18-0.21 μM), using quinine and chloroquine as standard antimalarials. Compounds 8o and 8l emerged as the most potent candidates with IC50 values of 0.18 ± 0.02 μM and 0.21 ± 0.001 μM with an associated good safety index of 18.59 and 16.75 to human kidney epithelial (HEK293) cells, respectively. The synthesized analogues present a new chemical architecture structurally unrelated to the current regime of antimalarial drugs, representing a valid strategy to combat resistance in P. falciparum species to current commercial drugs. We further investigated the binding affinities of the compounds against recombinant forms of two P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z, both of which are essential and promising druggable candidates. Compound 8l exhibited the highest binding affinity for PfHsp70-1 and PfHsp70-z. Furthermore, molecular docking revealed that compounds 8k, 8l, 8m, and 8o exhibited better fitness to PfHsp70-1, with compounds 8l and 8o showing the highest binding affinity of -10.5 kcal/mol and -10.1 kcal/mol, respectively. Therefore, it can be speculated that PfHsp70-1 may be a possible target of some of the inhibitors tested in this study. The presence of electron-donating groups on the phenyl ring of 4,6-pyrimidine moiety and cinnamoyl group demonstrated a positive correlation between the observed computational data and the biological activity. Taken together, this paper demonstrates the importance of using the molecular hybridization approach in the development of newer cinnamoyl clubbed with 4,6-diphenyl pyrimidine hybrids as potential antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| | - Vincent A Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Danny Banda
- Department of Chemistry and Biology, School of Natural and Applied Sciences, Mulungushi University, PO Box, 80415, Kabwe, Zambia
| | - Robyn L van Zyl
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Sahil Lala
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ofentse J Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
2
|
Pandey P, Verma M, Lakhanpal S, Pandey S, Kumar MR, Bhat M, Sharma S, Alam MW, Khan F. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers. Biopolymers 2025; 116:e23637. [PMID: 39417679 DOI: 10.1002/bip.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The utilization of nanoformulations derived from natural products for the treatment of many human diseases, including cancer, is a rapidly developing field. Conventional therapies used for cancer treatment have limited efficacy and a greater number of adverse effects. Hence, it is imperative to develop innovative anticancer drugs with superior effectiveness. Among the diverse array of natural anticancer compounds, resveratrol, curcumin, and epigallocatechin gallate (EGCG) have gained considerable attention in recent years. Despite their strong anticancer properties, medicinally significant phytochemicals such as resveratrol, curcumin, and EGCG have certain disadvantages, such as limited solubility in water, stability, and bioavailability problems. Encapsulating these phytochemicals in poly(lactic-co-glycolic acid) (PLGA), a polymer that is nontoxic, biodegradable, and biocompatible, is an effective method for delivering medication to the tumor location. In addition, PLGA nanoparticles can be modified with targeting molecules to specifically target cancer cells, thereby improving the effectiveness of phytochemicals in fighting tumors. Combining plant-based medicine (phytotherapy) with nanotechnology in a clinical environment has the potential to enhance the effectiveness of drugs and improve the overall health outcomes of patients. Therefore, it is crucial to have a comprehensive understanding of the different aspects and recent advancements in using PLGA-based nanocarriers for delivering anticancer phytochemicals. This review addresses the most recent advancements in PLGA-based delivery systems for resveratrol, EGCG, and curcumin, emphasizing the possibility of resolving issues related to the therapeutic efficacy and bioavailability of these compounds.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN. Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 2024; 14:1438040. [PMID: 39507759 PMCID: PMC11537944 DOI: 10.3389/fonc.2024.1438040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Despite advances in medical treatments, current therapeutic strategies, including radiotherapy, chemotherapy, targeted therapy, and surgical resection, have not significantly reduced the global incidence and mortality rates of cancer. Oncologists face considerable challenges in devising effective treatment plans due to the adverse side effects associated with standard therapies. Therefore, there is an urgent need for more effective and well-tolerated cancer treatments. Curcumin, a naturally occurring compound, has garnered significant attention for its diverse biological properties. Both preclinical studies and clinical trials have highlighted curcumin's potential in cancer treatment, demonstrating its ability to inhibit the proliferation of various cancer cell types through multiple cellular and molecular pathways. This paper examines the antineoplastic properties, and the therapeutic mechanisms including cell signalling pathways targeted by curcumin that are implicated in cancer development and explores the challenges in advancing curcumin as a viable anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
5
|
Liu Q, Wang C, Guo X, Du Q, Keshavarzi M. Curcumin and its nano-formulations combined with exercise: From molecular mechanisms to clinic. Cell Biochem Funct 2024; 42:e4061. [PMID: 38812287 DOI: 10.1002/cbf.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Curcumin is a strong substance derived from turmeric, a popular spice, renowned for its antioxidant and anti-inflammatory abilities. The study delved deeply into a thorough examination of various sources to evaluate the impact of both regular curcumin and nano-formulated curcumin on elements that impact physical performance, including muscular strain, discomfort, swelling, and oxidative tension. While engaging in exercise, the body experiences a rise in reactive oxygen species and inflammation. As a result, it is important to ensure a proper balance between internal and external sources of antioxidants to maintain stability in the skeletal muscle. Without this balance, there is a risk of muscle soreness, damage, and ultimately, a decline in exercise performance. Curcumin possesses the ability to enhance physical performance and reduce the symptoms of muscle fatigue and injury by virtue of its antioxidative and anti-inflammatory properties. Including curcumin supplements appears to have advantageous effects on various aspects of exercise, such as enhancing performance, assisting with recovery, lessening muscle damage and discomfort, and lowering levels of inflammation and oxidative stress. However, a thorough assessment is necessary to precisely gauge the healing advantages of curcumin in enhancing exercise ability and reducing recovery time.
Collapse
Affiliation(s)
- Qian Liu
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Chengyu Wang
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Xinyan Guo
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Qiankun Du
- School of Physical Education, Hubei Normal University, Huangshi, 435002, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Izadi M, Sadri N, Abdi A, Zadeh MMR, Jalaei D, Ghazimoradi MM, Shouri S, Tahmasebi S. Longevity and anti-aging effects of curcumin supplementation. GeroScience 2024; 46:2933-2950. [PMID: 38409646 PMCID: PMC11009219 DOI: 10.1007/s11357-024-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mahdi Ghazimoradi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shouri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chelimela N, Alavala RR, Satla SR. Curcumin - Bioavailability Enhancement by Prodrug Approach and Novel Formulations. Chem Biodivers 2024; 21:e202302030. [PMID: 38401117 DOI: 10.1002/cbdv.202302030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Curcumin is a diverse natural pharmacological agent involved in various signal transduction mechanisms. Therapeutically, this potent molecule faces different challenges and issues related to low bioavailability due to its poor aqueous solubility, less permeability, faster elimination and clearance. Experts in synthetic chemistry and pharmaceuticals are continuously sparing their efforts to overcome these pharmacokinetic challenges by using different structural modification strategies and developing novel drug delivery systems. In this mini-review article, we are focusing on development of curcumin derivatives by different possible routes like conjugation with biomolecules, natural polymers, synthetic polymers, natural products, metal conjugates and co- administration with natural metabolic inhibitors. In addition to that, it was also focused on the preparation of modified formulations such as micelles, microemulsions, liposomes, complexes with phospholipids, micro and nanoemulsions, solid lipid nanoparticles, nano lipid carriers, biopolymer nanoparticles and microgels to improve the pharmacokinetic properties of the curcumin without altering its pharmacodynamics activity. This review helps to understand the problems associated with curcumin and different strategies to improve its pharmacokinetic profile.
Collapse
Affiliation(s)
- Narsaiah Chelimela
- Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Shobha Rani Satla
- Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, India
| |
Collapse
|
8
|
Periwal P, Verma V, Kumar D, Kumar A, Bhatia M, Thakur S, Parshad M. Novel azole-sulfonamide conjugates as potential antimicrobial candidates: synthesis and biological assessment. Future Med Chem 2024; 16:157-171. [PMID: 38205647 DOI: 10.4155/fmc-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Azole and sulfonamide molecular frameworks are endowed with potent antimicrobial activity. Materials & methods: A series of azole-sulfonamide conjugates were synthesized using click reaction of N-propargylated imidazole with azide of sulfonamide and its antimicrobial efficacy was evaluated. Results: The compounds 7c, 7i and 7r displayed promising antibacterial activities, better than the standards sulfonamide and norfloxacin. All molecules exhibited promising antifungal activity, more potent than fluconazole. Docking studies of the active conjugates signified the importance of hydrophobic interactions in hosting the molecules in the active site of dihydrofolate reductase. Conclusion: Azole-sulfonamide conjugates are more active than single sulfonamide moieties and 7c, 7i and 7r may prove valuable leads for further optimization as novel antimicrobial agents.
Collapse
Affiliation(s)
- Pratibha Periwal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Devinder Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry & Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Mahavir Parshad
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, India
| |
Collapse
|
9
|
Zhao J, Sun Y, Ren L, Huang S, Zhang J. Antagonism of androgen receptor signaling by aloe-emodin. Food Chem Toxicol 2023; 181:114092. [PMID: 37806336 DOI: 10.1016/j.fct.2023.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Over the past decades, androgen receptor (AR) signaling has been a key driver of both primary and recurrent prostate cancer. In this work, aloe-emodin was identified as a novel AR antagonist, effectively inhibiting AR signaling. Firstly, aloe-emodin can inhibit LNCaP cell growth by promoting apoptosis. Then, the results of Western blot and quantitative real-time PCR further confirmed that aloe-emodin modulated AR protein levels by promoting AR proteasomal degradation, and also inhibited the transcription of the AR downstream target genes, including PSA, KLK2, and TMPRSS2. Furthermore, the result of immunofluorescence showed that aloe-emodin prevented the nuclear translocation of AR. Molecular docking and molecular dynamics simulation suggested that aloe-emodin combined with AR to form stable complexes, which might explain that aloe-emodin prevented the translocation of AR from the cytoplasm to the nucleus by affecting the ligand binding of AR. Therefore, aloe-emodin as a novel AR antagonist may play a crucial role in promoting cancer prevention or complementing pharmacological therapies in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Sowa-Kasprzak K, Józkowiak M, Olender D, Pawełczyk A, Piotrowska-Kempisty H, Zaprutko L. Curcumin-Triterpene Type Hybrid as Effective Sonosensitizers for Sonodynamic Therapy in Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:2008. [PMID: 37514194 PMCID: PMC10385809 DOI: 10.3390/pharmaceutics15072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Sonodynamic therapy (SDT) is a non-invasive therapeutic modality in cancer treatment that combines low-intensity ultrasound (US) and sonosensitizers. Tumor cells are destroyed through the synergistic effects of ultrasound and a chemical sonosensitizer. This study focused on the synthesis and in vitro evaluation of the sonodynamic effect of natural curcumin, triterpene oleanolic acid, and their semi-synthetic derivatives on tongue cancer SCC-25 and hypopharyngeal FaDu cell lines. The combination of the tested compounds with sonication showed a synergistic increase in cytotoxicity. In the group of oleanolic acid derivatives, oleanoyl hydrogen succinate (6) showed the strongest cytotoxic effect both in the SCC-25 and FaDu cell lines. Comparing curcumin (4) and its pyrazole derivative (5), curcumin showed a better cytotoxic effect on SCC-25 cells, while curcumin pyrazole was more potent on FaDu cells. The highest sonotherapeutic activity, compared to its individual components, was demonstrated by a structural linker mode hybrid containing both curcumin pyrazole-oleanoyl hydrogen succinate units within one complex molecule (7). This study can be beneficial in the context of new perspectives in the search for effective sonosensitizers among derivatives of natural organic compounds.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Str., 61-131 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Str., 61-131 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
11
|
Sowa-Kasprzak K, Totoń E, Kujawski J, Olender D, Lisiak N, Zaprutko L, Rubiś B, Kaczmarek M, Pawełczyk A. Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid. Biomedicines 2023; 11:1506. [PMID: 37371601 DOI: 10.3390/biomedicines11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value (24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the range of 20.6-94.4 µM, in comparison to curcumin 15.6-57.2 µM). Additionally, in silico studies were also performed. The computations determined the activity of the tested compounds towards proteins selected due to their similar binding modes and the nature of hydrogen bonds formed within the cavity of ligand-protein complexes. Overall, the curcumin-triterpene hybrids represent an important class of compounds for the development of effective anticancer agents also without the diketone moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have led to obtaining more information about different chemical and biological activities. Results obtained may be of interest for further research into combinations of curcumin and oleanolic acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Str., 61-866 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
12
|
Alharthy RD, Rashid F, Ashraf A, Shafiq Z, Ford S, Al-Rashida M, Yaqub M, Iqbal J. Pyrazole derivatives of pyridine and naphthyridine as proapoptotic agents in cervical and breast cancer cells. Sci Rep 2023; 13:5370. [PMID: 37005457 PMCID: PMC10067956 DOI: 10.1038/s41598-023-32489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The increasing prevalence and resistance to chemotherapy is responsible for driving the search of novel molecules to combat this disease. In search of novel compounds with pro-apoptotic potential, pyrazolo-pyridine and pyrazolo-naphthyridine derivatives were investigated against cervical cancer (HeLa) and breast cancer (MCF-7) cells. The anti-proliferative activity was determined through the MTT assay. Potent compounds were then analyzed for their cytotoxic and apoptotic activity through a lactate dehydrogenase assay and fluorescence microscopy after propidium iodide and DAPI staining. Flow cytometry was used to determine cell cycle arrest in treated cells and pro-apoptotic effect was verified through measurement of mitochondrial membrane potential and activation of caspases. Compounds 5j and 5k were found to be most active against HeLa and MCF-7 cells, respectively. G0/G1 cell cycle arrest was observed in treated cancer cells. Morphological features of apoptosis were also confirmed, and an increased oxidative stress indicated the involvement of reactive oxygen species in apoptosis. The compound-DNA interaction studies demonstrated an intercalative mode of binding and the comet assay confirmed the DNA damaging effects. Finally, potent compounds demonstrated a decrease in mitochondrial membrane potential and increased levels of activated caspase-9 and -3/7 confirmed the induction of apoptosis in treated HeLa and MCF-7 cells. The present work concludes that the active compounds 5j and 5k may be used as lead candidates for the development of lead drug molecules against cervical and breast cancer.
Collapse
Affiliation(s)
- Rima D Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Abida Ashraf
- Department of Chemistry, Kutchery Campus, The Women University Multan, Multan, 60000, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Steven Ford
- Department of Pharmaceutical Sciences, Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
13
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
14
|
Gielecińska A, Kciuk M, Mujwar S, Celik I, Kołat D, Kałuzińska-Kołat Ż, Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023; 12:986. [PMID: 37048059 PMCID: PMC10092955 DOI: 10.3390/cells12070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Continuous monitoring of the population's health is the main method of learning about disease prevalence. National and international data draw attention to the persistently high rates of cancer incidence. This necessitates the intensification of efforts aimed at developing new, more effective chemotherapeutic and chemopreventive drugs. Plants represent an invaluable source of natural substances with versatile medicinal properties. Multidirectional activities exhibited by natural substances and their ability to modulate key signaling pathways, mainly related to cancer cell death, make these substances an important research direction. This review summarizes the information regarding plant-derived chemotherapeutic drugs, including their mechanisms of action, with a special focus on selected anti-cancer drugs (paclitaxel, irinotecan) approved in clinical practice. It also presents promising plant-based drug candidates currently being tested in clinical and preclinical trials (betulinic acid, resveratrol, and roburic acid).
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
15
|
Islamov II, Yusupova AV, D’yakonov VA, Dzhemilev UM. Synthesis of New Hybrid Molecules Based on Isomerically Pure 5Z,9Z-Alkadienoic Acids and Monocarbonyl Curcumin Analog. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Chen PN, Lin CW, Yang SF, Chang YC. CLEFMA Induces the Apoptosis of Oral Squamous Carcinoma Cells through the Regulation of the P38/HO-1 Signalling Pathway. Cancers (Basel) 2022; 14:cancers14225519. [PMID: 36428612 PMCID: PMC9688613 DOI: 10.3390/cancers14225519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The purpose of this research was to evaluate the impact and the underlying molecular mechanism of CLEFMA-induced cell death in human OSCC. The anti-tumour properties of CLEFMA in oral cancer were explored using colony formation, flow cytometry, human apoptosis array, Western blot, and immunohistochemistry assays. The in vivo anti-tumour effect of CLEFMA administered by oral gavage was evaluated using SCC-9-derived xenograft-bearing nude mouse models. CLEFMA significantly suppressed colony formation and elicited cellular apoptosis in oral cancer cells. CLEFMA treatment remarkably increased phosphorylated p38 and HO-1 along with cleavage of poly ADP-ribose polymerase and activation of caspase-8, -9, and -3 in HSC-3 and SCC-9 cells. Administration of HO-1 small interfering RNA significantly protected the cells from CLEFMA-induced caspase-3, -8, and -9 activation. Attenuation of p38 activity by the pharmacologic inhibitor SB203580 dramatically reduced CLEFMA-induced caspase-3, -8, and -9 activation and HO-1 expression in OSCC. The subcutaneous murine xenograft models showed that CLEFMA in vivo suppressed tumour growth in implanted SCC-9 cells. All of these findings indicated that CLEFMA induced apoptosis through the p38-dependent rise in HO-1 signal transduction cascades in OSCC.
Collapse
Affiliation(s)
- Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
18
|
Synthetic Mono-Carbonyl Curcumin Analogues Attenuate Oxidative Stress in Mouse Models. Biomedicines 2022; 10:biomedicines10102597. [PMID: 36289859 PMCID: PMC9599840 DOI: 10.3390/biomedicines10102597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease is the commonest form of dementia associated with short-term memory loss and impaired cognition and, worldwide, it is a growing health issue. A number of therapeutic strategies have been studied to design and develop an effective anti-Alzheimer drug. Curcumin has a wide spectrum of biological properties. In this regard, the antioxidant potentials of mono-carbonyl curcumin analogues (h1−h5) were investigated using in vitro antioxidant assays and hippocampal-based in vivo mouse models such as light−dark box, hole board, and Y-maze tests. In the in vitro assay, mono-carbonyl curcumin analogues h2 and h3 with methoxy and chloro-substituents, respectively, showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis-3-ethylbenzothiazo-line-6-sulfonate (ABTS) free radical scavenging activities. In the in vivo studies, scopolamine administration significantly (p < 0.001) induced oxidative stress and memory impairment in mice, in comparison to the normal control group. The pretreatment with mono-carbonyl curcumin analogues, specifically h2 and h3, significantly decreased (123.71 ± 15.23 s (p < 0.001), n = 8; 156.53 ± 14.13 s (p < 0.001), n = 8) the duration of time spent in the light chamber and significantly enhanced (253.95 ± 19.05 s (p < 0.001), n = 8, and 239.57 ± 9.98 s (p < 0.001), n = 8) the time spent in the dark compartment in the light−dark box arena. The numbers of hole pokings were significantly (p < 0.001, n = 8) enhanced in the hole board test and substantially increased the percent spontaneous alternation performance (SAP %) in the Y-maze mouse models in comparison to the stress control group. In the biomarker analysis, the significant reduction in the lipid peroxidation (MDA) level and enhanced catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) activities in the brain hippocampus reveal their antioxidant and memory enhancing potentials. However, further research is needed to find out the appropriate mechanism of reducing oxidative stress in pathological models.
Collapse
|
19
|
Mohd Badri PEA, Rismayuddin NAR, Kenali NM, Darnis DS, Arzmi MH. Characterization of Cervus timorensis Velvet Antler and its Effect on Biofilm Formation of Candida Species. Med Mycol 2022; 60:6696968. [PMID: 36099875 DOI: 10.1093/mmy/myac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Oral biofilms comprise extracellular polysaccharides and polymicrobial microorganisms. The objectives of the study were to characterize the deer velvet antler (DVA) compounds and their effect on Candida species biofilm formation with the hypothesis that DVA inhibits the biofilm of Candida spp. Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS) was conducted to characterize the DVA compounds. To study the effect of DVA on biofilm, Candida albicans ATCC MYA-4901 (ALT5), AIDS isolate (ALC2), oral cancer isolate (ALC3), C. dubliniensis ATCC MYA-2975, C. glabrata ATCC 90030, C. krusei 14 243, C. lusitaniae ATCC 34449, C. parapsilosis ATCC 22019, and C. tropicalis ATCC 13803 were inoculated with DVA in separate wells of a 96-well plate containing RPMI-1640 followed by 72 h incubation. A total of 45 compounds were detected in the DVA extract. C. lusitaniae exhibited a higher percentage of biofilm biomass reduction when treated with DVA extract (66.10% ± 5.33), followed by ALC3 (44.12% ± 6.24). However, C. glabrata, C. krusei, and C. parapsilosis showed no reduction in biofilm biomass after being treated with DVA extract. Most Candida strains also exhibited decreased total cell count when treated with DVA extract, except for ALC3 and C. krusei. ALT5 had the lowest total cell count (0.17 × 105 cells/mL) when cultured with DVA extract. In conclusion, DVA extract inhibits Candida spp. biofilm formation except for C. glabrata, C. krusei, and C. parapsilosis.
Collapse
Affiliation(s)
- Puteri Elysa Alia Mohd Badri
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia.,Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Nurul Alia Risma Rismayuddin
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Norzaiti Mohd Kenali
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia.,Department of Paediatric Dentistry and Dental Public Health, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Deny Susanti Darnis
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia.,Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
20
|
Kop TJ, Bjelaković MS, Živković L, Žekić A, Milić DR. Stable colloidal dispersions of fullerene C60, curcumin and C60-curcumin in water as potential antioxidants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Smirnov GA, Gordeev PB, Chernoburova EI, Zavarzin IV. Synthesis of steroids containing N’-alkoxydiazene N-oxide groups. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Tambawala H, Batra S, Shirapure Y, More AP. Curcumin- A Bio-based Precursor for Smart and Active Food Packaging Systems: A Review. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:2177-2208. [DOI: 10.1007/s10924-022-02372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/04/2025]
|
23
|
Dhuguru J, Ghoneim OA. Quinazoline Based HDAC Dual Inhibitors as Potential Anti-Cancer Agents. Molecules 2022; 27:2294. [PMID: 35408693 PMCID: PMC9000668 DOI: 10.3390/molecules27072294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the most devastating disease and second leading cause of death around the world. Despite scientific advancements in the diagnosis and treatment of cancer which can include targeted therapy, chemotherapy, endocrine therapy, immunotherapy, radiotherapy and surgery in some cases, cancer cells appear to outsmart and evade almost any method of treatment by developing drug resistance. Quinazolines are the most versatile, ubiquitous and privileged nitrogen bearing heterocyclic compounds with a wide array of biological and pharmacological applications. Most of the anti-cancer agents featuring quinazoline pharmacophore have shown promising therapeutic activity. Therefore, extensive research is underway to explore the potential of these privileged scaffolds. In this context, a molecular hybridization approach to develop hybrid drugs has become a popular tool in the field of drug discovery, especially after witnessing the successful results during the past decade. Histone deacetylases (HDACs) have emerged as an important anti-cancer target in the recent years given its role in cellular growth, gene regulation, and metabolism. Dual inhibitors, especially based on HDAC in particular, have become the center stage of current cancer drug development. Given the growing significance of dual HDAC inhibitors, in this review, we intend to compile the development of quinazoline based HDAC dual inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Mitchell Cancer Institute, University of South Alabama, 1660 SpringHill Ave., Mobile, AL 36604, USA
| | - Ola A. Ghoneim
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, USA;
| |
Collapse
|
24
|
Oueslati Y, Kansız S, Dege N, de la Torre Paredes C, Llopis-Lorente A, Martínez-Máñez R, Sta WS. Growth, crystal structure, Hirshfeld surface analysis, DFT studies, physicochemical characterization, and cytotoxicity assays of novel organic triphosphate. J Mol Model 2022; 28:65. [DOI: 10.1007/s00894-022-05047-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
|
25
|
Khalaf MM, Hassanein EHM, Shalkami AGS, Hemeida RAM, Mohamed WR. Diallyl Disulfide Attenuates Methotrexate-Induced Hepatic Oxidative Injury, Inflammation and Apoptosis and Enhances its Anti-Tumor Activity. Curr Mol Pharmacol 2022; 15:213-226. [PMID: 34042041 DOI: 10.2174/1874467214666210525153111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. OBJECTIVES The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. METHODS Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. RESULTS DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2 - contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF- κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX antitumor efficacy. CONCLUSION DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| |
Collapse
|
26
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
27
|
Cruz-Hernández C, López-Méndez LJ, Guadarrama P. Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications. Eur J Med Chem 2021; 229:113988. [PMID: 34801269 DOI: 10.1016/j.ejmech.2021.113988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023]
Abstract
Nanomedicine is an emerging area that largely influences the efficacy of various therapies through the rational design of new materials exhibiting more targeted behavior. The synthetic effort, the amount of used material, and the cost are critical parameters to bear in mind if the production of the designed material is intended to be scaled for their widespread use. Even though materials science offers diverse options for different types of therapies, it is a difficult task to meet all the parameters mentioned above. The dendronization appears as an insightful approach to incorporate all the known benefits of the dendritic architecture by the attachment of dendrons to therapeutic agents, but in a much more affordable manner in terms of synthetic effort, amount of material, and cost. As will be presented, the most common dendrons used for biomedical applications are polyamide, polyester, carbosilane, polyether, and glycol-type, which are bonded to biological active molecules (BAMs), or molecular nanoplatforms (MPs) by hydrolysable bonds. Also relevant is the fact that the incorporation of dendrons not larger than third generation (G3) is sufficient to improve essential properties of these molecular systems, such as aqueous solubility, stability, and cellular internalization, among others. The type of dendron and its location on the BAMs or MPs, similar to placing a Lego piece on a model, will be decisive for obtaining the desired properties.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Luis José López-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
28
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
29
|
Benreka S, Zradni FZ, Madi F, Kirsch G, Kasmi-Mir S. Synthesis of thiazolylidenethiazoloquinazolinone hybrids from monocarbonyl curcumin analogues. Characterization, bio-evaluation and DFT study. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1971669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Soufiane Benreka
- Université Blida1, Laboratoire de Chimie Physique Moléculaire et Macromoléculaire (LCPMM), Faculté des Sciences, Blida, Algérie
| | - Fatima-Zohra Zradni
- Université des Sciences et de la Technologie d’Oran, Laboratoire de Synthèse organique, Physicochimie, Biomolécules et Environnement (LSPBE)
| | - Fatiha Madi
- Laboratoire de Chimie Computationnelle et Nanostructure, Département des Sciences de la Matière, Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière. Université 08 mai 1945 Guelma, Algérie
| | | | - Souad Kasmi-Mir
- Université Blida1, Laboratoire de Chimie Physique Moléculaire et Macromoléculaire (LCPMM), Faculté des Sciences, Blida, Algérie
- Université Ibn Khaldoun de Tiaret, Laboratoire Synthèse et Catalyse, Algérie
| |
Collapse
|
30
|
Kumar V, Haldar S, Das NS, Ghosh S, Dhankhar P, Sircar D, Roy P. Pterostilbene-isothiocyanate inhibits breast cancer metastasis by selectively blocking IKK-β/NEMO interaction in cancer cells. Biochem Pharmacol 2021; 192:114717. [PMID: 34352281 DOI: 10.1016/j.bcp.2021.114717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/11/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
Metastasis, the main cause of breast cancer-associated fatalities, relies on many regular pathways involved in normal cell physiology and metabolism, thus, making it challenging to identify disease-specific therapeutic target(s). Chemically synthesized anti-metastatic agents are preferred for their fast and robust actions. However, these agents have adverse side effects, thus, increasingly favouring the identification of phytocompounds as suitable alternatives. Resveratrol and pterostilbene have long been established as potent anti-cancer agents. Earlier studies from our laboratory documented the anti-cancer activities associated with pterostilbene-isothiocyanate (PTER-ITC), a derivative of pterostilbene. The current study focuses on evaluating the anti-metastatic property of PTER-ITC and the underlying mechanism, by employing in silico, in vitro, and in vivo approaches. The significant anti-metastatic activity of PTER-ITC was observed in vitro against breast cancer metastatic cell line (MDA-MB-231) and in vivo in the 4T1 cell-induced metastatic mice model. Epithelial-mesenchymal transition (EMT), a hallmark of metastasis regulated by the transcription factors, Snail1 and Twist, was found to be reverted in vitro by PTER-ITC treatment. PTER-ITC blocked the activation of NF-κB/p65 and its concomitant nuclear translocation, resulting in the transcriptional repression of its target genes, Snail1 and Twist. PTER-ITC prevented the formation of IKK complex, central to NF-κB activation, by binding to the NEMO-binding domain (NBD) of IKK-β and inhibiting its interaction with NEMO (NF-κB essential modulator). According to our observations, PTER-ITC attenuated NF-κB activation selectively in cancerous cells. In conclusion, this study demonstrated that PTER-ITC is a potent anti-metastatic agent capable of targeting physiologically important pathways in a cancer-specific manner.
Collapse
Affiliation(s)
- Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Neeladri Singha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Tissue Engineering Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Poonam Dhankhar
- Structural and Protein Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
31
|
Khairunisa SQ, Indriati DW, Tumewu L, Widyawaruyanti A, Nasronudin N. Screening of anti-HIV activities in ethanol extract and fractions from Ficus fistulosa leaves. J Basic Clin Physiol Pharmacol 2021; 32:737-742. [PMID: 34214379 DOI: 10.1515/jbcpp-2020-0413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Human immunodeficiency virus (HIV) infection is considered as a major immunosuppressive disease linked to malignancies and other opportunistic infections. Recently, the high prevalence of HIV drug-resistant strains required a high demand for novel antiviral drug development, especially in herbal medicine approaches. The objective of this study was to evaluate the possibility of Ficus fistulosa leaves can inhibit HIV replication in ethanol extract form as well as its fractions using chloroform, ethyl acetate, and butanol solvents. METHODS F. fistulosa leaves were extracted using ethanol as a solvent and further gradually fractionated in chloroform, ethyl acetate, and butanol solvents. The targeted persistently infected virus (MT4/HIV) cell lines were cocultured with ethanol extract and fractions at different time points. The syncytium formation and cytotoxicity assays were performed to evaluate the potential antiviral activity of F. fistulosa leaves. RESULTS One of the four tested extract/fractions showed antiviral activity against HIV. The ethanol extract showed weak inhibition with a high level of toxicity (IC50 = 8.96 μg/mL, CC50 ≥50 μg/mL, and SI = 5.58). Meanwhile, chloroform fraction effectively inhibited the MT4/HIV cell proliferation while keeping the toxicity to a minimal level (IC50 = 3.27 μg/mL, CC50 = 29.30 μg/mL, and SI = 8.96). In contrast of ethyl acetate fraction and butanol fraction showed no anti HIV activity with a high level of toxicity (CC50 ≥50 μg/mL) and low SI value (>2.17 μg/mL and >0.97 μg/mL). CONCLUSIONS Chloroform fraction of F. fistulosa leaves showed effectively as anti-viral activity against MT4/HIV cells.
Collapse
Affiliation(s)
| | - Dwi Wahyu Indriati
- HIV Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Departement of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Lidya Tumewu
- Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Aty Widyawaruyanti
- Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Nasronudin Nasronudin
- HIV Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Airlangga University Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
32
|
Yerer MB, Dayan S, Han MI, Sharma A, Tuli HS, Sak K. Nanoformulations of Coumarins and the Hybrid Molecules of Coumarins with Potential Anticancer Effects. Anticancer Agents Med Chem 2021; 20:1797-1816. [PMID: 32156246 DOI: 10.2174/1871520620666200310094646] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/04/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Coumarins are the secondary metabolites of some plants, fungi, and bacteria. Coumarins and the hybrid molecules of coumarins are the compounds which have been widely studied for their potential anticancer effects. They belong to benzopyrone chemical class, more precisely benzo-α-pyrones, where benzene ring is fused to pyrone ring. In nature, coumarins are found in higher plants like Rutaceae and Umbelliferae and some essential oils like cinnamon bark oil, cassia leaf oil and lavender oil are also rich in coumarins. The six main classes of coumarins are furanocoumarins, dihydrofuranocoumarins, pyrano coumarins, pyrone substituted coumarins, phenylcoumarins and bicoumarins. As well as their wide range of biological activities, coumarins and the hybrid molecules of coumarins are proven to have an important role in anticancer drug development due to the fact that many of its derivatives have shown an anticancer activity on various cell lines. Osthol, imperatorin, esculetin, scopoletin, umbelliprenin, angelicine, bergamottin, limettin, metoxhalen, aurapten and isopimpinellin are some of these coumarins. This review summarizes the anticancer effects of coumarins and their hybrid molecules including the novel pharmaceutical formulations adding further information on the topic for the last ten years and basically focusing on the structureactivity relationship of these compounds in cancer.
Collapse
Affiliation(s)
- Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Serkan Dayan
- Drug Application and Research Center, Erciyes University, Kayseri, Turkey
| | - M Ihsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana-133207, India
| | | |
Collapse
|
33
|
Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D. Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytother Res 2021; 35:4913-4929. [PMID: 33837579 DOI: 10.1002/ptr.7121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Cancer is the second-leading cause of death worldwide. Till date, many such effective treatments are available, for example chemotherapy, surgery, and radiation therapy, but there are severe associated side effects, such as increased infection risk, constipation, hair loss, anaemia, among others. Thus, the need for effective therapeutic strategies and screening methodology arises. Researchers around the world are increasingly trying to discover anticancer therapies with as few side effects as possible and many are now focusing on phytochemicals, like curcumin. Curcumin is a bright yellow substance isolated from the plant rhizomes of Curcuma longa L. To this molecule a high therapeutic benefit has been underlined, being able to alter the development of cancer by different mechanisms, such as regulating multiple microRNA expression, modifying a series of signalling pathways, that is, Akt, Bcl-2, PTEN, p53, Notch, and Erbb. Another major pathway that curcumin targets is the matrix metalloproteinase (MMP) gene expression. In fact, MMPs are responsible for the degradation of the cell-extracellular matrix, which can lead to the diseased condition and many different pathways contribute to its activity, such as JAK/STAT, NF-κB, MAPK/ERK, COX-2, ROS, TGF-β, among others. In this review, we have attempted to describe the curcumin regulatory effect on different cell signalling pathways involved in the progression of different types of cancers.
Collapse
Affiliation(s)
- Muskan Bhatia
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Mihir Bhalerao
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Dileep Kumar
- Poona college of pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
34
|
Zhao Y, Wang K, Zheng Y, Zeng X, Lim YC, Liu T. Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial-Mesenchymal Transition. Front Chem 2021; 8:601649. [PMID: 33520933 PMCID: PMC7843432 DOI: 10.3389/fchem.2020.601649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant cancer is a devastating disease often associated with a poor clinical prognosis. For decades, modern drug discoveries have attempted to identify potential modulators that can impede tumor growth. Cancer stem cells however are more resistant to therapeutic intervention, which often leads to treatment failure and subsequent disease recurrence. Here in this study, we have developed a specific multi-target drug delivery nanoparticle system against breast cancer stem cells (BCSCs). Therapeutic agents curcumin and salinomycin have complementary functions of limiting therapeutic resistance and eliciting cellular death, respectively. By conjugation of CD44 cell-surface glycoprotein with poly(lactic-co-glycolic acid) (PLGA) nanoparticles that are loaded with curcumin and salinomycin, we investigated the cellular uptake of BCSCs, drug release, and therapeutic efficacy against BCSCs. We determined CD44-targeting co-delivery nanoparticles are highly efficacious against BCSCs by inducing G1 cell cycle arrest and limiting epithelial–mesenchymal transition. This curcumin and salinomycin co-delivery system can be an efficient treatment approach to target malignant cancer without the repercussion of disease recurrence.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Yuanlin Zheng
- School of Pharmacy, Nantong University, Nantong, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong, China
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
35
|
A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem Biophys Rep 2021; 25:100908. [PMID: 33506115 PMCID: PMC7815660 DOI: 10.1016/j.bbrep.2021.100908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Inflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats. Material and methods The animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered. Results Administration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001). Conclusion Based on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system. The aim of the present study was to investigate the cardiovascular protective effects of curcumin in lipopolysaccharide (LPS) challenged rats Lipopolysaccharide (LPS) induced inflammation model in rats LPS injection was followed by inflammation and induced oxidative stress status in the serum, aorta and heart. Administration of curcumin attenuated oxidative stress and inflammation in the serum, aorta and heart tissues induced by LPS.
Collapse
|
36
|
Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem 2020; 210:113072. [PMID: 33310285 DOI: 10.1016/j.ejmech.2020.113072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Curcumin, as a natural compound, extracted from plant Curcuma longa, is abundant in the Indian subcontinent and Southeast Asia, and have been used in a diverse array of pharmacological activities. Although curcumin has some limitations like low stability and low bioavailability, it has been proved that this compound induced apoptosis signaling and is also known to block cell proliferation signaling pathway. Recently, extensive research has been carried out to study the application of curcumin as a health improving agent, and devise new methods to overcome to the curcumin limitations and incorporate this functional ingredient into foods. Combinational chemotherapy is one of the basic strategies is using for 60 years for the treatment of various health problems like cancer, malaria, inflammation, diabetes and etc. Molecular hybridization is another strategy to make multi-pharmacophore or conjugated drugs with more synergistic effect than the parent compounds. The aim of this review is to provide an overview of the pharmacological activity of curcumin and its analogs in combination with other bioactive compounds and cover more recent reports of anti-cancer, anti-malarial, and anti-inflammatory activities of these analogs.
Collapse
|
37
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
38
|
Synthesis of new symmetric cyclic and acyclic halocurcumin analogues typical precursors for hybridization. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Hanikoglu A, Ozben H, Hanikoglu F, Ozben T. Hybrid Compounds & Oxidative Stress Induced Apoptosis in Cancer Therapy. Curr Med Chem 2020; 27:2118-2132. [PMID: 30027838 DOI: 10.2174/0929867325666180719145819] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Elevated Reactive Oxygen Species (ROS) generated by the conventional cancer therapies and the endogenous production of ROS have been observed in various types of cancers. In contrast to the harmful effects of oxidative stress in different pathologies other than cancer, ROS can speed anti-tumorigenic signaling and cause apoptosis of tumor cells via oxidative stress as demonstrated in several studies. The primary actions of antioxidants in cells are to provide a redox balance between reduction-oxidation reactions. Antioxidants in tumor cells can scavenge excess ROS, causing resistance to ROS induced apoptosis. Various chemotherapeutic drugs, in their clinical use, have evoked drug resistance and serious side effects. Consequently, drugs having single-targets are not able to provide an effective cancer therapy. Recently, developed hybrid anticancer drugs promise great therapeutic advantages due to their capacity to overcome the limitations encountered with conventional chemotherapeutic agents. Hybrid compounds have advantages in comparison to the single cancer drugs which have usually low solubility, adverse side effects, and drug resistance. This review addresses two important treatments strategies in cancer therapy: oxidative stress induced apoptosis and hybrid anticancer drugs.
Collapse
Affiliation(s)
- Aysegul Hanikoglu
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Hakan Ozben
- Department of Orthopaedics and Traumatology, Hand and Microsurgery Unit, Koc University School of Medicine, Istanbul, Turkey
| | - Ferhat Hanikoglu
- Faculty of Pharmacy, Department of Biochemistry, Biruni University, Istanbul, Turkey
| | - Tomris Ozben
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
41
|
Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 2020; 256:117984. [PMID: 32593707 DOI: 10.1016/j.lfs.2020.117984] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzia, Istanbul 34956, Turkey
| | - Farid Hashemi
- DVM, Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
43
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
44
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020; 18:13. [PMID: 32363509 PMCID: PMC7196577 DOI: 10.1186/s43141-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- grid.462079.e0000 0004 4699 2981Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Zeinab M. Geba
- grid.462079.e0000 0004 4699 2981Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A. Tabll
- grid.419725.c0000 0001 2151 8157Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622 Egypt
| | - Mohammad M. Mashaly
- grid.462079.e0000 0004 4699 2981Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
45
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020. [PMID: 32363509 DOI: 10.1186/s43141-020-00027-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt.
| | - Zeinab M Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622, Egypt
| | - Mohammad M Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
46
|
Zhang X, Bai R, Xiong H, Xu H, Hou W. Meeting organometallic chemistry with drug discovery: C H activation enabled discovery of a new ring system of 12H-Indazolo[2,1-a]cinnolin-12-ones with anti-proliferation activity. Bioorg Med Chem Lett 2020; 30:126916. [DOI: 10.1016/j.bmcl.2019.126916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
|
47
|
Hirata Y, Ito Y, Takashima M, Yagyu K, Oh-hashi K, Suzuki H, Ono K, Furuta K, Sawada M. Novel Oxindole-Curcumin Hybrid Compound for Antioxidative Stress and Neuroprotection. ACS Chem Neurosci 2020; 11:76-85. [PMID: 31799835 DOI: 10.1021/acschemneuro.9b00619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. The oxindole compound GIF-2165X-G1 is a hybrid molecule composed of the oxindole skeleton of the neuroprotective compound GIF-0726-r and the polyphenolic skeleton of the antioxidant curcumin. We previously reported that novel oxindole derivatives such as GIF-0726-r and GIF-2165X-G1 prevent endogenous oxidative stress-induced cell death in mouse hippocampal HT22 cells. In this study, we present a detailed investigation of the effect of GIF-2165X-G1 on endogenous oxidative stress in HT22 cells in comparison with GIF-0726-r and curcumin. GIF-2165X-G1 exhibited more potent neuroprotective activity than GIF-0726-r or curcumin and had less cytotoxicity than that observed with curcumin. Both GIF-0726-r and GIF-2165X-G1 were found to have ferrous ion chelating activity similar to that exhibited by curcumin. GIF-2165 X-G1 and curcumin induced comparable antioxidant response element transcriptional activity. Although the induction of heme oxygenase-1, an antioxidant response element-regulated gene product, was much stronger in curcumin-treated cells than in GIF-2165X-G1-treated cells, it turned out that the induction of heme oxygenase-1 is dispensable for neuroprotection. These results demonstrate that the introduction of the polyphenol skeleton of curcumin to the oxindole GIF-0726-r improves neuroprotective features. Furthermore, intrastriatal injection of GIF-2165X-G1 alleviated apomorphine-induced rotation and prevented dopaminergic neuronal loss in a 6-hydroxydopamine mouse model of Parkinson's diseases. Collectively, our novel findings indicate that the novel oxindole compound GIF-2165X-G1 serves to delay the progression of Parkinson's disease by suppressing oxidative stress.
Collapse
|
48
|
Musib D, Pal M, Raza MK, Roy M. Photo-physical, theoretical and photo-cytotoxic evaluation of a new class of lanthanide(iii)–curcumin/diketone complexes for PDT application. Dalton Trans 2020; 49:10786-10798. [DOI: 10.1039/d0dt02082f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Improved ISC in La(iii) complex of curcumin, on activation with visible light, has resulted in high yield of 1O2 in HeLa/MCF-7 cells, leading to the oxidative stress which was responsible for remarkable caspase 3/7-dependent apoptotic photocytotoxicity.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Mrityunjoy Pal
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Mithun Roy
- Department of Chemistry
- National Institute of Technology Manipur
- Imphal
- India
| |
Collapse
|
49
|
Bulboacă AE, Boarescu PM, Bolboacă SD, Blidaru M, Feștilă D, Dogaru G, Nicula CA. Comparative Effect Of Curcumin Versus Liposomal Curcumin On Systemic Pro-Inflammatory Cytokines Profile, MCP-1 And RANTES In Experimental Diabetes Mellitus. Int J Nanomedicine 2019; 14:8961-8972. [PMID: 31819412 PMCID: PMC6873975 DOI: 10.2147/ijn.s226790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Anti-inflammatory proprieties of curcumin were proved to be useful in various diseases, including diabetes mellitus. The aim of this study was to assess the anti-inflammatory comparative effect of curcumin solution with liposomal curcumin formula, regarding the improvement of serum levels of TNF-α (tumor necrosis factor-alpha), IL-6 (interleukin), IL-1α, IL-1β, MCP-1 (monocyte chemoattractant protein-1) and RANTES in experimental diabetes, induced by streptozotocin (STZ), in rats. Materials and methods Six groups of 7 rats were investigated regarding the effect of i.p. (intraperitoneal) administration of two concentrations of curcumin solution (CC1 and CC2) and two concentrations of liposomal curcumin (LCC1 and LCC2): group 1 – control group with i.p. administration of 1 mL saline solution, group 2 – i.p. STZ administration (60mg/kg bw, bw=body weight), group 3 – STZ+CC1 administration, group 4 – STZ+CC2 administration, group 5 – STZ+ LCC1 administration and group 6 – STZ+ LCC2 administration. The concentrations of curcumin formulas were 1 mg/0.1 kg bw for CC1 and LCC1 and 2 mg/0.1 kg bw for CC2 and LCC2, respectively. Serum levels of C-peptide (as an indicator of pancreatic function) and TNF-α, IL-6, IL-1α, IL-1β, MCP-1, and RANTES (as biomarkers for systemic inflammation) were assessed for each group. Results The plasma level of C-peptide showed significant improvements when LCC was administrated, with better results for LCC2 when compared to LCC1 (P<0.003). LCC2 pretreatment proved to be more efficient in reducing the level of TNF-α (P<0.003) and RANTES (P<0.003) than CC2 pretreatment. Upon comparing LCC2 with LCC1 formulas, the differences were significant for TNF-α (P=0.004), IL-1β (P=0.022), and RANTES (P=0.003) levels. Conclusion Liposomal curcumin in a dose of 2 mg/0.1 kg bw proved to have an optimum therapeutic effect as a pretreatment in DM induced by STZ. This result can constitute a base for clinical studies for curcumin efficiency as adjuvant therapy in type 1 DM.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Paul Mihai Boarescu
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine And Pharmacy, Cluj-Napoca, Romania
| | - Mihai Blidaru
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Maxillofacial Surgery and Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
50
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|