1
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
2
|
Klimchak AC, Signorovitch J, Innis B, Laverty CG, Gooch K. Assessment of Phosphorodiamidate Morpholino Oligomer Treatment Patterns for Patients with Duchenne Muscular Dystrophy: A MarketScan Claims Analysis. Adv Ther 2024:10.1007/s12325-024-03044-z. [PMID: 39527337 DOI: 10.1007/s12325-024-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Phosphorodiamidate morpholino oligomers (PMOs), weight-based treatments administered weekly by intravenous infusion, are approved in the US for patients with Duchenne muscular dystrophy (DMD) amenable to certain exon skipping. Evidence regarding PMO treatment patterns in real-world settings is limited. This study used longitudinal administrative claims data to characterize PMO treatment patterns among US patients with DMD. METHODS MarketScan® commercial and Medicaid data (January 1, 2018-December 31, 2021) were used to identify claims for PMO treatments (eteplirsen, golodirsen, viltolarsen, casimersen). The proportion of days covered (PDC), proportion with continuous PMO claims coverage (no gaps in claims ≥ 30 days), and time to subsequent PMO claims after a ≥ 30-day gap in PMO claims were described. RESULTS One hundred thirty-three patients with ≥ 1 PMO claim were identified. Multiple codes were needed to identify PMO treatment coverage. Mean age was 14.1 years; all patients were male. Mean continuous follow-up duration was 669.3 days. Median PDC was 83.4%. Seventy-four (55.6%) patients had continuous PMO claims coverage (no ≥ 30-day gaps in claims). Of the 59 patients with ≥ 1 gap in PMO claims of ≥ 30 days, 39 had ≥ 1 subsequent PMO claim. Accounting for censoring via Kaplan-Meier analysis, 75.5% had a subsequent PMO claim within 1 year after a ≥ 30-day gap, with a median time of 64 days (including the qualifying 30 days). CONCLUSION Understanding treatment patterns is important for characterizing real-world utilization of precision genetic medicines. This study observed a high PDC for PMO treatments for DMD. Most patients had continuous PMO claims coverage, and most patients with a gap in PMO claims had a subsequent PMO claim. Nonetheless, the observed persistence may have been underestimated given shortcomings of claims data and payer coverage considerations. Caution should be exercised when inferring treatment effectiveness or tolerability based on observed treatment patterns from claims data alone for weight-based, infused PMO treatments.
Collapse
Affiliation(s)
| | | | - Bryan Innis
- Sarepta Therapeutics, Inc, Cambridge, MA, 02142, USA
| | | | | |
Collapse
|
3
|
Gregg J, Wilson C, Curran D, Hanna D. Neurocognitive functioning among children and young people with Duchenne Muscular Dystrophy: A systematic review and meta-analysis. Clin Neuropsychol 2024; 38:1806-1833. [PMID: 38509463 DOI: 10.1080/13854046.2024.2324500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Objective: The neurocognitive aspects of DMD have received less attention than the physiological sequalae. This study conducted a systematic review and meta-analysis of available literature on the neurocognitive profile of children and young people with DMD. Method: Five databases (EMBASE, Medline, PsycInfo, Scopus and Web of Science) and the grey literature was searched on 27th January 2023. Eligible articles were available in English and reported neurocognitive outcomes. Neurocognitive domains reported in a comparable way across a minimum of three studies were included. The neurocognitive domains of Full-Scale IQ (FSIQ), Verbal IQ (VIQ), Performance IQ (PIQ) and Working memory (WMI) derived from Wechsler scales and receptive vocabulary ability derived from the Peabody Picture Verbal Test (PPVT) were included. A single mean meta-analysis was completed. Results: Relevant data was extracted and presented for 38 eligible studies; 2 of which are from grey literature. Results suggest children with DMD perform around 1SD below non-clinical norms for FSIQ, PIQ, VIQ and WMI. Unlike VIQ, scores derived from the PPVT were within the non-clinical norms. Studies were of moderate - high quality, there was significant heterogeneity and no publication bias. Conclusion: A systematic review of working memory has not previously been completed, it appears that children with DMD perform around 1SD below the mean, like FSIQ, PIQVIQ and WMI. The PPVT is a measure of receptive verbal ability and caution is recommended around the interchangeability of PPVT scores and the wider construct of verbal intelligence.
Collapse
Affiliation(s)
- Jayne Gregg
- Regional Neurosciences, Royal Victoria Hospital
| | - Colin Wilson
- Regional Acquired Brain Injury Unit, Musgrave Park Hospital, Belfast HSC Trust
| | - David Curran
- School of Psychology, Queens University Belfast/Northern HSC Trust
| | | |
Collapse
|
4
|
Geuens S, Van Dessel J, Kan HE, Govaarts R, Niks EH, Goemans N, Lemiere J, Doorenweerd N, De Waele L. Genotype and corticosteroid treatment are distinctively associated with gray matter characteristics in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2024; 45:105238. [PMID: 39522443 DOI: 10.1016/j.nmd.2024.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
This study investigated if structural variation in specific gray matter areas is associated with corticosteroid treatment or genotype, and if cerebral morphological variations are related to neuropsychological and behavioral outcomes. The CAT12 toolbox in SPM was used for MRI segmentations, assessing subcortical structures, cortical thickness, gyrification, and sulci depths for DMD patients (n = 40; 9-18 years) and age-matched controls (n = 40). Comparisons were made between DMD vs. controls, daily vs. intermittent corticosteroid treatment (n = 20 each), and Dp140+ vs. Dp140- gene mutations (n = 15 vs. 25). MANCOVA, CAT12 3D statistics and Pearson correlations were conducted. DMD patients showed differences in volumes of distinct subcortical structures, left hemisphere cortical thickness, and gyrification in multiple brain areas compared with healthy controls. The daily treated DMD group exhibited differences in subcortical volumes and different patterns of cortical thickness, sulci depth, and gyrification compared to the intermittent treated DMD group. DMD Dp140+ patients displayed altered gyrification and sulci depth compared to DMD Dp140- patients. Finally, we found correlations between neurobehavioral outcomes and brain areas that showed differences in cortical morphology associated with corticosteroid treatment. Both genotype and corticosteroid treatment are associated with variations in subcortical volumes and cortical morphology, albeit in different ways. Corticosteroid treatment appears to have a more profound association with differences in gray matter characteristics of brain regions that are associated with functional outcomes.
Collapse
Affiliation(s)
- Sam Geuens
- University Hospitals Leuven, Child Neurology, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Leuven, Belgium.
| | - Jeroen Van Dessel
- Center for Developmental Psychiatry, Department of Neurosciences, UPC-KU Leuven, Belgium
| | - Hermien E Kan
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands; Duchenne Center Netherlands
| | - Rosanne Govaarts
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands; Duchenne Center Netherlands
| | - Erik H Niks
- Duchenne Center Netherlands; Leiden University Medical Center, Department of Neurology, Netherlands
| | | | - Jurgen Lemiere
- University Hospitals Leuven, Pediatric Hemato-Oncology, Belgium; KU Leuven, Department Oncology, Pediatric Oncology, Belgium
| | - Nathalie Doorenweerd
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands
| | - Liesbeth De Waele
- University Hospitals Leuven, Child Neurology, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
5
|
Öztürk D, Karaduman AA, Akbayrak T. Lower urinary tract symptoms in children with Duchenne muscular dystrophy: An evaluation in terms of functional level, posture, and muscle strength. Neurourol Urodyn 2024; 43:2130-2139. [PMID: 39149820 DOI: 10.1002/nau.25575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
AIM To examine factors associated with lower urinary tract symptoms (LUTS) and lower urinary tract dysfunction (LUTD) in children with Duchenne muscular dystrophy (DMD). METHODS This cross-sectional study included 45 individuals diagnosed with DMD between the ages of 5 and 18 years. LUTS were evaluated with the Dysfunctional Voiding and Incontinence Scoring System, functional levels with the Brooke Upper Extremity Functional Classification and the Vignos Scale, lumbar lordosis angle with a bubble inclinometer, pelvic inclination angles with a digital inclinometer, and muscle strength with a hand-held dynamometer. RESULTS The mean age of the children was calculated as 9.00 ± 3.32 years, body weight as 31.10 ± 12.59 kg, and height as 125.87 ± 18.46 cm. LUTD was detected in 20 children (44.44%). There was an association between high LUTD severity and low strength of the following muscles: bilateral hip flexor (Dominant: r = -0.338, p = 0.023; nondominant: r = -0.411, p = 0.005), quadriceps femoris (Dominant: r = -0.445, p = 0.002; nondominant: r = -0.504, p < 0.001), elbow flexor (Dominant: r = -0.461, p = 0.001; nondominant: r = -0.455, p = 0.002), and elbow extensor (Dominant: r = -0.442, p = 0.002; nondominant: r = -0.450, p = 0.002). Upper extremity functionality level was significantly higher in the LUTD-negative group (p = 0.004). There was no relationship between lumbar lordosis and pelvic inclination angles and LUTS symptoms (p > 0.05). CONCLUSION To provide the adequate care for bladder health in children with DMD, it is essential to focus on parameters that will increase functionality and independence in this population.
Collapse
Affiliation(s)
- Demet Öztürk
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Lokman Hekim University, Ankara, Turkey
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Aynur Ayşe Karaduman
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Lokman Hekim University, Ankara, Turkey
| | - Türkan Akbayrak
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Czifrus E, Berlau DJ. Corticosteroids for the treatment of Duchenne muscular dystrophy: a safety review. Expert Opin Drug Saf 2024; 23:1237-1247. [PMID: 39152782 DOI: 10.1080/14740338.2024.2394578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration and weakness, caused by mutations in the dystrophin gene. DMD has effects in early age with significantly shortened lifespan and deteriorated quality of life in the second decade, creating an urgent need to develop better therapeutic options. Corticosteroid medication therapy is an integral tool for the management of DMD and several therapeutic options have been recently approved for use. AREAS COVERED A comprehensive literature search was completed to examine efficacy and safety profiles of the three corticosteroid medications available for use in DMD patients. The review presents information about the three agents through clinical trials, significant preclinical trials, and comparative studies. EXPERT OPINION Managing DMD takes a multidisciplinary approach, although long-term corticosteroid therapy remains a significant therapeutic tool. Based on the available published studies, unequivocal comparison between the benefits of the three medications cannot yet be made. When selecting a medication for a patient, the decision-making process will most likely rely on the minor differences in the adverse effect profiles. Whichever medication is utilized will surely be a part of a larger regimen that includes other novel therapeutic agents.
Collapse
Affiliation(s)
- Eszter Czifrus
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Daniel J Berlau
- Department of Pharmaceutical Sciences, School of Pharmacy, Regis University, Denver, CO
| |
Collapse
|
7
|
Torri F, Vadi G, Meli A, Loprieno S, Schirinzi E, Lopriore P, Ricci G, Siciliano G, Mancuso M. The use of digital tools in rare neurological diseases towards a new care model: a narrative review. Neurol Sci 2024; 45:4657-4668. [PMID: 38856822 PMCID: PMC11422437 DOI: 10.1007/s10072-024-07631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Rare neurological diseases as a whole share peculiar features as motor and/or cognitive impairment, an elevated disability burden, a frequently chronic course and, in present times, scarcity of therapeutic options. The rarity of those conditions hampers both the identification of significant prognostic outcome measures, and the development of novel therapeutic approaches and clinical trials. Collection of objective clinical data through digital devices can support diagnosis, care, and therapeutic research. We provide an overview on recent developments in the field of digital tools applied to rare neurological diseases, both in the care setting and as providers of outcome measures in clinical trials in a representative subgroup of conditions, including ataxias, hereditary spastic paraplegias, motoneuron diseases and myopathies.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Vadi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Adriana Meli
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Sara Loprieno
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Piervito Lopriore
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Venieri A, Sarabon N. The Use of Whole-Body Vibration, Electrical Stimulation, and Magnetic Stimulation in Muscle Dystrophy Patients: A Scoping Review. Cureus 2024; 16:e67051. [PMID: 39286699 PMCID: PMC11403332 DOI: 10.7759/cureus.67051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
The purpose of this scoping review was to report the effects of vibration therapy, electrical stimulation, and transcranial magnetic stimulation on patients with muscle dystrophies. The outcome measures were muscle strength, body composition, balance, and functional mobility of these patients. We used the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and the Arksey and O'Malley framework. The literature review was conducted on PubMed. We included studies that were written in English, were peer-reviewed, without regard to the publication date, and implemented a form of "vibration therapy" or "electrical stimulation" or "magnetic stimulation" as an intervention program of any duration. Overall, 14 studies were retrieved. Most of the studies applied whole-body vibration (WBV) therapy or electrical stimulation and only one was found that implemented transcranial magnetic stimulation. The interventions were reported but there was a variety in duration or the frequency of the program, as well as in the disease progression of the patients. It seems that WBV, electrical stimulation, and magnetic stimulation have positive outcomes, but these vary depending on the muscle deficits and limitations of the patients with muscle dystrophy. It is recommended that future studies should be conducted in order to determine the ideal prescription of each intervention, so as to be as beneficial as possible.
Collapse
Affiliation(s)
- Aikaterini Venieri
- Faculty of Health Sciences, University of Primorska, Koper, SVN
- Sports Excellence/1st Department of Orthopedics, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Nejc Sarabon
- Faculty of Health Sciences, University of Primorska, Koper, SVN
- Department of Human Health, InnoRenew Co, Izola, SVN
| |
Collapse
|
9
|
Krishna L, Prashant A, Kumar YH, Paneyala S, Patil SJ, Ramachandra SC, Vishwanath P. Molecular and Biochemical Therapeutic Strategies for Duchenne Muscular Dystrophy. Neurol Int 2024; 16:731-760. [PMID: 39051216 PMCID: PMC11270304 DOI: 10.3390/neurolint16040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Significant progress has been achieved in understanding Duchenne muscular dystrophy (DMD) mechanisms and developing treatments to slow disease progression. This review article thoroughly assesses primary and secondary DMD therapies, focusing on innovative modalities. The primary therapy addresses the genetic abnormality causing DMD, specifically the absence or reduced expression of dystrophin. Gene replacement therapies, such as exon skipping, readthrough, and gene editing technologies, show promise in restoring dystrophin expression. Adeno-associated viruses (AAVs), a recent advancement in viral vector-based gene therapies, have shown encouraging results in preclinical and clinical studies. Secondary therapies aim to maintain muscle function and improve quality of life by mitigating DMD symptoms and complications. Glucocorticoid drugs like prednisone and deflazacort have proven effective in slowing disease progression and delaying loss of ambulation. Supportive treatments targeting calcium dysregulation, histone deacetylase, and redox imbalance are also crucial for preserving overall health and function. Additionally, the review includes a detailed table of ongoing and approved clinical trials for DMD, exploring various therapeutic approaches such as gene therapies, exon skipping drugs, utrophin modulators, anti-inflammatory agents, and novel compounds. This highlights the dynamic research field and ongoing efforts to develop effective DMD treatments.
Collapse
Affiliation(s)
- Lakshmi Krishna
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
- Department of Medical Genetics, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Yogish H. Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Shasthara Paneyala
- Department of Neurology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Siddaramappa J. Patil
- Department of Medical Genetics, Narayana Hrudalaya Health Hospital/Mazumdar Shah, Bengaluru 560099, Karnataka, India;
| | - Shobha Chikkavaddaragudi Ramachandra
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| | - Prashant Vishwanath
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (L.K.); (A.P.); (S.C.R.)
| |
Collapse
|
10
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Sang A, Zhuo S, Bochanis A, Manautou JE, Bahal R, Zhong XB, Rasmussen TP. Mechanisms of Action of the US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. BioDrugs 2024; 38:511-526. [PMID: 38914784 DOI: 10.1007/s40259-024-00665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Antisense oligonucleotides (ASOs) are single stranded nucleic acids that target RNA. The US Food and Drug Administration has approved ASOs for several diseases. ASOs utilize three principal modes of action (MOA). The first MOA is initiated by base-pairing between the ASO and its target mRNA, followed by RNase H-dependent mRNA degradation. The second MOA is triggered by ASOs that occlude splice acceptor sites in pre-mRNAs leading to skipping of a mutation-bearing exon. The third MOA involves ASOs that sterically hinder mRNA function, often inhibiting translation. ASOs contain a variety of modifications to the sugar-phosphate backbone and bases that stabilize the ASO or render them resistant to RNase activity. RNase H-dependent ASOs include inotersen and eplontersen (for hereditary transthyretin amyloidosis), fomiversen (for opportunistic cytomegalovirus infection), mipomersen (for familial hypercholesterolemia), and tofersen [for amyotrophic lateral sclerosis (ALS)]. Splice modulating ASOs include nursinersen (for spinal muscular atrophy) and eteplirsen, golodirsen, viltolarsen, and casimersen (all for the treatment of Duchenne muscular dystrophy). In addition, a designer ASO, milasen, was used to treat a single individual afflicted with Batten disease. Since ASO design relies principally upon knowledge of mRNA sequence, the bench to bedside pipeline for ASOs is expedient compared with protein-directed drugs. [Graphical abstract available.].
Collapse
Affiliation(s)
- Angela Sang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Selena Zhuo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Adara Bochanis
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Ó Murchú SC, O'Halloran KD. BREATHE DMD: boosting respiratory efficacy after therapeutic hypoxic episodes in Duchenne muscular dystrophy. J Physiol 2024; 602:3255-3272. [PMID: 38837229 DOI: 10.1113/jp280280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disorder, characterised by progressive decline in skeletal muscle function due to the secondary consequences of dystrophin deficiency. Weakness extends to the respiratory musculature, and cardiorespiratory failure is the leading cause of death in men with DMD. Intermittent hypoxia has emerged as a potential therapy to counteract ventilatory insufficiency by eliciting long-term facilitation of breathing. Mechanisms of sensory and motor facilitation of breathing have been well delineated in animal models. Various paradigms of intermittent hypoxia have been designed and implemented in human trials culminating in clinical trials in people with spinal cord injury and amyotrophic lateral sclerosis. Application of therapeutic intermittent hypoxia to DMD is considered together with discussion of the potential barriers to progression owing to the complexity of this devastating disease. Notwithstanding the considerable challenges and potential pitfalls of intermittent hypoxia-based therapies for DMD, we suggest it is incumbent on the research community to explore the potential benefits in pre-clinical models. Intermittent hypoxia paradigms should be implemented to explore the proclivity to express respiratory plasticity with the longer-term aim of preserving and potentiating ventilation in pre-clinical models and people with DMD.
Collapse
Affiliation(s)
- Seán C Ó Murchú
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Ozkalayci H, Bora E, Cankaya T, Kocabey M, Zubari NC, Yis U, Giray Bozkaya O, Turan S, Pekcanlar Akay A, Caglayan AO, Ulgenalp A. Investigation of genotype-phenotype and familial features of Turkish dystrophinopathy patients. Neurogenetics 2024; 25:201-213. [PMID: 38850354 DOI: 10.1007/s10048-024-00765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.
Collapse
Affiliation(s)
- Hande Ozkalayci
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey.
- Department of Medical Genetics, Istanbul Training and Research Hospital, Istanbul, 34146, Turkey.
| | - Elcin Bora
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Tufan Cankaya
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Mehmet Kocabey
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Nadide Cemre Zubari
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Uluc Yis
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ozlem Giray Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Serkan Turan
- Department of Child And Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Aynur Pekcanlar Akay
- Department of Child And Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ahmet Okay Caglayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ayfer Ulgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| |
Collapse
|
14
|
Luna-Angulo A, Landa-Solís C, Escobar-Cedillo RE, Estrada-Mena FJ, Sánchez-Chapul L, Gómez-Díaz B, Carrillo-Mora P, Avilés-Arnaut H, Jiménez-Hernández L, Jiménez-Hernández DA, Miranda-Duarte A. Pharmacological Treatments and Therapeutic Targets in Muscle Dystrophies Generated by Alterations in Dystrophin-Associated Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1060. [PMID: 39064489 PMCID: PMC11279157 DOI: 10.3390/medicina60071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
Collapse
Affiliation(s)
- Alexandra Luna-Angulo
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, División de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Rosa Elena Escobar-Cedillo
- Departamento de Electromiografía y Distrofia Muscular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Francisco Javier Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Facultad de Ciencias de la Salud, Augusto Rodin 498, Ciudad de México 03920, Mexico
| | - Laura Sánchez-Chapul
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Benjamín Gómez-Díaz
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Paul Carrillo-Mora
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo Leon, Av. Universidad s/n Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico
| | | | | | - Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| |
Collapse
|
15
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Terrill JR, Bautista APR, Tsioutsias I, Grounds MD, Arthur PG. Oxidised Albumin Levels in Plasma and Skeletal Muscle as Biomarkers of Disease Progression and Treatment Efficacy in Dystrophic mdx Mice. Antioxidants (Basel) 2024; 13:720. [PMID: 38929159 PMCID: PMC11201235 DOI: 10.3390/antiox13060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Redox modifications to the plasma protein albumin have the potential to be used as biomarkers of disease progression and treatment efficacy in pathologies associated with inflammation and oxidative stress. One such pathology is Duchenne muscular dystrophy (DMD), a fatal childhood disease characterised by severe muscle wasting. We have previously shown in the mdx mouse model of DMD that plasma albumin thiol oxidation is increased; therefore, the first aim of this paper was to establish that albumin thiol oxidation in plasma reflects levels within mdx muscle tissue. We therefore developed a method to measure tissue albumin thiol oxidation. We show that albumin thiol oxidation was increased in both mdx muscle and plasma, with levels correlated with measures of dystropathology. In dystrophic muscle, albumin content was associated with areas of myonecrosis. The second aim was to test the ability of plasma thiol oxidation to track acute changes in dystropathology: we therefore subjected mdx mice to a single treadmill exercise session (known to increase myonecrosis) and took serial blood samples. This acute exercise caused a transient increase in total plasma albumin oxidation and measures of dystropathology. Together, these data support the use of plasma albumin thiol oxidation as a biomarker to track active myonecrosis in DMD.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Angelo Patrick R. Bautista
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Irene Tsioutsias
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| |
Collapse
|
17
|
Kepreotis SV, Oh JG, Park M, Yoo J, Lee C, Mercola M, Hajjar RJ, Jeong D. Inhibition of miR-25 ameliorates cardiac and skeletal muscle dysfunction in aged mdx/utrn haploinsufficient (+/-) mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102174. [PMID: 38584818 PMCID: PMC10998245 DOI: 10.1016/j.omtn.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.
Collapse
Affiliation(s)
- Sacha V. Kepreotis
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Mina Park
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Cholong Lee
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA, USA
| | - Dongtak Jeong
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
18
|
Ersöz E, Demir-Dora D. Unveiling the potential of antisense oligonucleotides: Mechanisms, therapies, and safety insights. Drug Dev Res 2024; 85:e22187. [PMID: 38764172 DOI: 10.1002/ddr.22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/21/2024]
Abstract
Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded deoxynucleotide sequences composed of phosphate backbone-connected sugar rings. Designing of those strands is based on Watson-Crick hydrogen bonding mechanism. Thanks to rapidly advancing medicine and technology, evolving of the gene therapy area and ASO approaches gain attention. Considering the genetic basis of diseases, it is promising that gene therapy approaches offer more specific and effective options compared to conventional treatments. The objective of this review is to explain the mechanism of ASOs and discuss the characteristics and safety profiles of therapeutic agents in this field. Pharmacovigilance for gene therapy products is complex, requiring accurate assessment of benefit-risk balance and evaluation of adverse effects.
Collapse
Affiliation(s)
- Edanur Ersöz
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Medical Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
19
|
Fausto LL, Alberti A, Kades G, de Carvalho RPD, Freiberger V, Ventura L, Dias P, Zanoni EM, Soares BH, Dutra ML, Martins DF, Comim CM. Effects of a Ketogenic Diet on the Assessment of Biochemical and Clinical Parameters in Duchenne Muscular Dystrophy: A Preclinical Investigation. Mol Neurobiol 2024:10.1007/s12035-024-04258-6. [PMID: 38816675 DOI: 10.1007/s12035-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
Collapse
Affiliation(s)
- Lilian Leite Fausto
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Adriano Alberti
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil.
| | | | | | - Viviane Freiberger
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Leticia Ventura
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Paula Dias
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | - Matheus Luchini Dutra
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Daniel Fernandes Martins
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| |
Collapse
|
20
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
21
|
Zhang Z, Hong D, Ma D, Yang P, Zhang J, Wang X, Wang Y, Meng L, Wang Y, Li Y, Sun Y, Jiang T, Xu Z. Creatine Kinase-MM/Proto-oncogene Tyrosine-Protein Kinase Receptor as a Sensitive Indicator for Duchenne Muscular Dystrophy Carriers. Mol Neurobiol 2024:10.1007/s12035-024-04235-z. [PMID: 38767836 DOI: 10.1007/s12035-024-04235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Duchenne muscular dystrophy (DMD), a lethal X-linked recessive genetic disease, is characterized by progressive muscle wasting which will lead to premature death by cardiorespiratory complications in their late twenties. And 2.5-19% DMD carriers that also suffer from skeletal muscle damage or dilated cardiomyopathy when diagnosed as soon as possible is meaningful for prenatal diagnosis and advance warning for self-health. The current DMD carrier screening mainly relies on detecting serum creatine kinase activity, covering only 50-70% DMD carriers which will cause many false negatives and require the discovery of highly effective biomarker and simple detection procedure for DMD carriers. In this article, we have compiled a comprehensive summary of all documented biomarkers associated with DMD and categorized them based on their expression patterns. We specifically pinpointed novel DMD biomarkers, previously unreported in DMD carriers, and conducted further investigations to explore their potential. Compared to creatine kinase activity alone in DMD carriers, creatine kinase-MM can improve the specificity from 73 to 81%. And our investigation revealed another promising protein: proto-oncogene tyrosine-protein kinase receptor (RET). When combined with creatine kinase-MM (creatine kinase-MM/RET ratio), it significantly enhances the specificity (from 81 to 83%) and sensitivity (from 71.4 to 93%) of detecting DMD carriers in serum. Moreover, we successfully devised an efficient method for extracting RET from dried blood spots. This breakthrough allowed us to detect both creatine kinase-MM and RET using dried blood spots without compromising the detection rate.
Collapse
Affiliation(s)
- Zhilei Zhang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Dongyang Hong
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Dingyuan Ma
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Peiying Yang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Jingjing Zhang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Xin Wang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Yan Wang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Lulu Meng
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Yanyun Wang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Yahong Li
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Yun Sun
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Tao Jiang
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| | - Zhengfeng Xu
- Center of Genetic Medicine, The affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China
- , Nanjing, China
| |
Collapse
|
22
|
P Lowes L, Alfano LN, Iammarino MA, Reash NF, Giblin K, Hu L, Yu L, Wang S, Salazar R, Mendell JR. Validity of remote live stream video evaluation of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy. PLoS One 2024; 19:e0300700. [PMID: 38753764 PMCID: PMC11098514 DOI: 10.1371/journal.pone.0300700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024] Open
Abstract
Conducting functional assessments remotely can help alleviate the burden of in-person assessment on patients with Duchenne muscular dystrophy and their caregivers. The objective of this study was to evaluate whether scores from remote functional assessment of patients with Duchenne muscular dystrophy correspond to in-person scores on the same functional assessments. Remote live stream versus in-person scores on the North Star Ambulatory Assessment (including time [seconds] to complete the 10-meter walk/run and time to rise from the floor [supine to stand]) were assessed using statistical analyses, including intraclass correlation coefficient, and Pearson, Spearman, and Bland-Altman analyses. The remote and in-clinic assessments had to occur within 2 weeks of one another to be considered for this analysis. This analysis included patients with Duchenne muscular dystrophy, aged 4 to 7 years. Participants in this analysis received delandistrogene moxeparvovec (as part of SRP-9001-101 [Study 101; NCT03375164] or SRP-9001-102 [Study 102; NCT03769116]) or were randomized to receive placebo (in Part 1 of Study 102). This study evaluates score reproducibility between live stream remote scoring versus in-person functional assessments as determined by intraclass correlation coefficient, and Pearson, Spearman, and Bland-Altman analyses. The results showed that scores from remote functional assessment of patients with Duchenne muscular dystrophy strongly correlated with those obtained in person. These findings demonstrate congruence between live stream remote and in-person functional assessment and suggest that remote assessment has the potential to reduce the burden on a family by supplementing in-clinic visits.
Collapse
Affiliation(s)
- Linda P Lowes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Lindsay N Alfano
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Megan A Iammarino
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Natalie F Reash
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Kathryn Giblin
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Larry Hu
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Lixi Yu
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Shufang Wang
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Rachel Salazar
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
23
|
Sobierajska-Rek A, Jabłońska-Brudło J, Dąbrowska A, Wojnicz W, Meyer-Szary J, Wierzba J. Timed rolling and rising tests in Duchenne muscular dystrophy ambulant boys: a feasibility study. Minerva Pediatr (Torino) 2024; 76:208-216. [PMID: 38639735 DOI: 10.23736/s2724-5276.21.05977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
BACKGROUND Functional activities are extensively used in motor assessments of patients with Duchenne muscular dystrophy. The role of timed items has been reported as an early prognostic factor for disease progression. However, there are two functional activities that are not widely assessed in clinical practice among Duchenne muscular dystrophy patients: rolling and bed rising. This study aimed to investigate whether the 360-degree roll (roll) and supine to sit-to-edge (bed rise) measurements are feasible tools reflecting the functional status of ambulatory DMD children by establishing possible correlations between validated measures: the Vignos Scale (VS), timed rise from floor and the 6-Minute Walk Test (6MWT). METHODS A total of 32 ambulant boys with DMD were assessed using timed items, the 6MWT and VS. RESULTS The roll and bed rise are correlated with each other. The 6MWT, the floor rise and VS are correlated with the roll and with the bed rise. CONCLUSIONS Findings offer preliminary empirical evidence addressing feasibility and safety of roll and bed rise measurements. There is a potential clinical utility of these tests in assessing functional status of DMD ambulant patients.
Collapse
Affiliation(s)
- Agnieszka Sobierajska-Rek
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland -
| | - Joanna Jabłońska-Brudło
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Dąbrowska
- Department of Rehabilitation Medicine, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Wiktoria Wojnicz
- Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Gdansk, Poland
| | - Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Wierzba
- Department of Pediatric and Internal Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
24
|
Vincik LY, Dautel AD, Staples AA, Lauck LV, Armstrong CJ, Howard JT, McGregor D, Ahmadzadeh S, Shekoohi S, Kaye AD. Evolving Role of Viltolarsen for Treatment of Duchenne Muscular Dystrophy. Adv Ther 2024; 41:1338-1350. [PMID: 38376743 DOI: 10.1007/s12325-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most prevalent X-linked inherited neuromuscular disorders, with an estimated incidence between 1 in 3500 and 5000 live male births. The median life expectancy at birth is around 30 years due to a rapid and severe disease progression. Currently, there is no cure for DMD, and the standard of care is mainly palliative therapy and glucocorticoids to mitigate symptoms and improve quality of life. Recent advances in phosphorodiamidate morpholino antisense oligonucleotide (PMO) technology has proven optimistic in providing a disease-modifying therapy rather than a palliative treatment option through correcting the primary genetic defect of DMD by exon skipping. However, as a result of the high variance in mutations of the dystrophin gene causing DMD, it has been challenging to tailor an effective therapy in most patients. Viltolarsen is effective in 8% of patients and accurately skips exon 53, reestablishing the reading frame and producing a functional form of dystrophin and milder disease phenotype. Results of recently concluded preclinical and clinical trials show significantly increased dystrophin protein expression, no severe adverse effects, and stabilization of motor function. In summary, viltolarsen has provided hope for those working toward giving patients a safe and viable treatment option for managing DMD. This review summarizes an overview of the presentation, pathophysiology, genetics, and current treatment guidelines of DMD, pharmacological profile of viltolarsen, and a summary of the safety and efficacy with additional insights using recent clinical trial data.
Collapse
Affiliation(s)
- LeighAnn Y Vincik
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Alexandra D Dautel
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Abigail A Staples
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Lillian V Lauck
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, 71103, USA
| | - Catherine J Armstrong
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Jeffery T Howard
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - David McGregor
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| |
Collapse
|
25
|
Nangliya R, Sasun AR, Samal S. Pragmatic Neurorehabilitation Approach for Improving Quality of Life in Duchenne Muscular Dystrophy: A Case Report. Cureus 2024; 16:e56315. [PMID: 38629006 PMCID: PMC11020631 DOI: 10.7759/cureus.56315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
This case report provides insights into the physiotherapy management of a 12-year-old male with Duchenne muscular dystrophy (DMD). DMD is a devastating genetic disorder characterized by progressive muscle degeneration and weakness. Skeletal muscle degeneration is induced by a genetic disorder. It is a common X-linked condition that causes hypertrophy of the calves and proximal muscular weakness in children. It frequently results in early mortality, wheelchair confinement, and delays in motor development. Physiotherapy interventions aim to optimize functional abilities and quality of life in individuals with DMD. This case report highlights the effectiveness of physiotherapy in managing DMD progression. This study presents a case exhibiting notable clinical symptoms, highlighting the urgency for advanced treatments to combat this debilitating disease. Outcome measures such as body mass index, spirometry, manual muscle testing, and the World Health Organization Quality-of-Life scale are used to report patient progress. The treatment plan was carried out for six weeks, five times a week. Physiotherapy strategies include diet management, stretching and splinting techniques, and pulmonary training. While current treatments focus on symptom management, ongoing research holds promise for the development of more effective therapies to improve outcomes and quality of life for affected individuals. Multidisciplinary care, including neurophysiotherapy rehabilitation, plays a crucial role in managing the symptoms and complications of DMD, emphasizing the importance of comprehensive support for patients and their families. At the end of our rehabilitation, the patient showed significant improvement in the outcome measures.
Collapse
Affiliation(s)
- Radha Nangliya
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anam R Sasun
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Snehal Samal
- Department of Neurophysiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
26
|
Muntoni F, Byrne BJ, McMillan HJ, Ryan MM, Wong BL, Dukart J, Bansal A, Cosson V, Dreghici R, Guridi M, Rabbia M, Staunton H, Tirucherai GS, Yen K, Yuan X, Wagner KR. The Clinical Development of Taldefgrobep Alfa: An Anti-Myostatin Adnectin for the Treatment of Duchenne Muscular Dystrophy. Neurol Ther 2024; 13:183-219. [PMID: 38190001 PMCID: PMC10787703 DOI: 10.1007/s40120-023-00570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a genetic muscle disorder that manifests during early childhood and is ultimately fatal. Recently approved treatments targeting the genetic cause of DMD are limited to specific subpopulations of patients, highlighting the need for therapies with wider applications. Pharmacologic inhibition of myostatin, an endogenous inhibitor of muscle growth produced almost exclusively in skeletal muscle, has been shown to increase muscle mass in several species, including humans. Taldefgrobep alfa is an anti-myostatin recombinant protein engineered to bind to and block myostatin signaling. Preclinical studies of taldefgrobep alfa demonstrated significant decreases in myostatin and increased lower limb volume in three animal species, including dystrophic mice. METHODS This manuscript reports the cumulative data from three separate clinical trials of taldefgrobep alfa in DMD: a phase 1 study in healthy adult volunteers (NCT02145234), and two randomized, double-blind, placebo-controlled studies in ambulatory boys with DMD-a phase 1b/2 trial assessing safety (NCT02515669) and a phase 2/3 trial including the North Star Ambulatory Assessment (NSAA) as the primary endpoint (NCT03039686). RESULTS In healthy adult volunteers, taldefgrobep alfa was generally well tolerated and resulted in a significant increase in thigh muscle volume. Treatment with taldefgrobep alfa was associated with robust dose-dependent suppression of free myostatin. In the phase 1b/2 trial, myostatin suppression was associated with a positive effect on lean body mass, though effects on muscle mass were modest. The phase 2/3 trial found that the effects of treatment did not meet the primary endpoint pre-specified futility analysis threshold (change from baseline of ≥ 1.5 points on the NSAA total score). CONCLUSIONS The futility analysis demonstrated that taldefgrobep alfa did not result in functional change for boys with DMD. The program was subsequently terminated in 2019. Overall, there were no safety concerns, and no patients were withdrawn from treatment as a result of treatment-related adverse events or serious adverse events. TRIAL REGISTRATION NCT02145234, NCT02515669, NCT03039686.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK
| | | | - Hugh J McMillan
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Monique M Ryan
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, Australia
| | - Brenda L Wong
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | - Roxana Dreghici
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Solid Biosciences Inc., Cambridge, MA, USA
| | | | | | | | | | - Karl Yen
- Genentech Inc., South San Francisco, CA, USA
- Sanofi, Paris, France
| | | | - Kathryn R Wagner
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.
- The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Sun MX, Jing M, Hua Y, Wang JB, Wang SQ, Chen LL, Ju L, Liu YS. A female patient carrying a novel DMD mutation with non-random X-chromosome inactivation from a DMD family. BMC Med Genomics 2024; 17:46. [PMID: 38303044 PMCID: PMC10832127 DOI: 10.1186/s12920-024-01794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/01/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE To analyze the clinical phenotype and genetic characteristics of a female proband carrying a novel mutation in the DMD gene with non-random X-chromosome inactivation in a large pedigree with pseudohypertrophic muscular dystrophy. METHODS Clinical information of the female proband, her monozygotic twin sister, and other family members were collected. Potential pathogenic variants were detected with Multiplex Ligation-dependent Probe Amplification (MLPA) and whole-exome sequencing (WES). Methylation-sensitive restriction enzyme (HhaI) was employed for X-chromosome inactivation analysis. RESULTS The proband was a female over 5 years old, displayed clinical manifestations such as elevated creatine kinase (CK) levels and mild calf muscle hypertrophy. Her monozygotic twin sister exhibited normal CK levels and motor ability. Her uncle and cousin had a history of DMD. WES revealed that the proband carried a novel variant in the DMD (OMIM: 300,377) gene: NM_004006.3: c.3051_3053dup; NP_003997.2: p.Tyr1018*. In this pedigree, five out of six female members were carriers of this variant, while the cousin and uncle were hemizygous for this variant. X-chromosome inactivation analysis suggested non-random inactivation in the proband. CONCLUSION The c.3051_3053dup (p.Tyr1018*) variant in the DMD gene is considered to be the pathogenic variant significantly associated with the clinical phenotype of the proband, her cousin, and her uncle within this family. Integrating genetic testing with clinical phenotype assessment can be a valuable tool for physicians in the diagnosis of progressive muscular dystrophies, such as Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Ming-Xia Sun
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Miao Jing
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Ying Hua
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| | - Jian-Biao Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Sheng-Quan Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Li-Lan Chen
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Liang Ju
- Department of Cardiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China.
| |
Collapse
|
28
|
Xin J, Liu S. Identifying hub genes and dysregulated pathways in Duchenne muscular dystrophy. Int J Neurosci 2024:1-13. [PMID: 38179963 DOI: 10.1080/00207454.2024.2302551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
PURPOSE The aim of this study was to identify the hub genes and dysregulated pathways in the progression of duchenne muscular dystrophy (DMD) and to unveil detailedly the cellular and molecular mechanisms associated with DMD for developing efficacious treatments in the future. MATERIAL AND METHODS Three mRNA microarray datasets (GSE13608, GSE38417 and GSE109178) were downloaded from Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) between DMD and normal tissues were obtained via R package. Function enrichment analyses were implemented respectively using DAVID online database. The network analysis of protein-protein interaction network (PPI) was conducted using String. Cytoscape and String were used to analyse modules and screen hub genes. The expression of the identified hub genes was confirmed in mdx mice through using qRT-PCR. RESULTS In total, 519 DEGs were identified, consisting of 393 upregulated genes and 126 downregulated genes. The enriched functions and pathways of the DEGs mainly involve extracellular matrix organization, collagen fibril organization, interferon-gamma-mediated signaling pathway, muscle contraction, endoplasmic reticulum lumen, MHC class II receptor activity, phagosome, graft-versus-host disease, cardiomyocytes, calcium signaling pathway. Twelve hub genes were discovered and biological process analysis proved that these genes were mainly enriched cell cycle, cell division. The result of qRT-PCR suggested that increase in expression of CD44, ECT2, TYMS, MAGEL2, HLA-DMA, SERPINH1, TNNT2 was confirmed in mdx mice and the downregulation of ASB2 and LEPREL1 was also observed. CONCLUSION In conclusion, DEGs and hub genes identified in the current research help us probe the molecular mechanisms underlying the pathogenesis and progression of DMD, and provide candidate targets for diagnosis and treatment of DMD.
Collapse
Affiliation(s)
- Jianzeng Xin
- College of life sciences, Yantai University, Yantai, P. R. China
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai, P. R. China
| |
Collapse
|
29
|
Broomfield J, Hill M, Chandler F, Crowther MJ, Godfrey J, Guglieri M, Hastie J, Larkindale J, Mumby-Croft J, Reuben E, Woodcock F, Abrams KR. Developing a Natural History Model for Duchenne Muscular Dystrophy. PHARMACOECONOMICS - OPEN 2024; 8:79-89. [PMID: 38019449 PMCID: PMC10781931 DOI: 10.1007/s41669-023-00450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The aim of this study was to pool multiple data sets to build a patient-centric, data-informed, natural history model (NHM) for Duchenne muscular dystrophy (DMD) to estimate disease trajectory across patient lifetime under current standard of care in future economic evaluations. The study was conducted as part of Project HERCULES, a multi-stakeholder collaboration to develop tools to support health technology assessments of new treatments for DMD. METHODS Health states were informed by a review of NHMs for DMD and input from clinicians, patients and caregivers, and defined using common outcomes in clinical trials and real-world practice. The primary source informing the NHM was the Critical Path Institute Duchenne Regulatory Science Consortium (D-RSC) database. This was supplemented with expert input obtained via an elicitation exercise, and a systematic literature review and meta-analysis of mortality data. RESULTS The NHM includes ambulatory, transfer and non-ambulatory phases, which capture loss of ambulation, ability to weight bear and upper body and respiratory function, respectively. The NHM estimates patients spend approximately 9.5 years in ambulatory states, 1.5 years in the transfer state and the remainder of their lives in non-ambulatory states. Median predicted survival is 34.8 years (95% CI 34.1-35.8). CONCLUSION The model includes a detailed disease pathway for DMD, including the clinically and economically important transfer state. The NHM may be used to estimate the current trajectory of DMD in economic evaluations of new treatments, facilitating inclusion of a lifetime time horizon, and will help identify areas for further research.
Collapse
Affiliation(s)
| | - M Hill
- GlaxoSmithKline, Middlesex, UK
| | - F Chandler
- Sanofi, Reading, UK
- Duchenne UK, London, UK
| | - M J Crowther
- Karolinska Institute, Stockholm, Sweden
- Red Door Analytics, Stockholm, Sweden
| | | | - M Guglieri
- Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | - K R Abrams
- University of Warwick, Coventry, UK
- University of York, York, UK
| |
Collapse
|
30
|
Rabbia M, Guridi Ormazabal M, Staunton H, Veenstra K, Eggenspieler D, Annoussamy M, Servais L, Strijbos P. Stride Velocity 95th Centile Detects Decline in Ambulatory Function Over Shorter Intervals than the 6-Minute Walk Test or North Star Ambulatory Assessment in Duchenne Muscular Dystrophy. J Neuromuscul Dis 2024; 11:701-714. [PMID: 38640165 PMCID: PMC11091611 DOI: 10.3233/jnd-230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
Background Stride Velocity 95th Centile (SV95C) is the first wearable device-derived clinical outcome assessment (COA) to receive European Medicines Agency (EMA) qualification as a primary endpoint in ambulant patients with Duchenne muscular dystrophy (DMD) aged ≥4 years. Objective To compare SV95C-in its first-ever clinical trial application as a secondary endpoint-with established motor function COAs used in the trial (Four-Stair Climb [4SC] velocity, North Star Ambulatory Assessment [NSAA], and Six-Minute Walk Distance [6MWD]). Methods SV95C was a secondary endpoint in a subset (n = 47) of participants in the SPITFIRE/WN40227 trial of taldefgrobep alfa, which was discontinued due to lack of clinical benefit. Participants in the ≤48-week SV95C sub-study were 6-11 years old and received corticosteroids for ≥6 months pre-treatment. Pearson correlations were used to compare SV95C with the other COAs. Responsiveness and changes over time were respectively assessed via standardized response means (SRMs) based on absolute changes and mixed models for repeated measures. Results SV95C change at Week 24 was -0.07 m/s, with limited variability (standard deviation: 0.16, n = 27). The SRM for SV95C indicated moderate responsiveness to clinical change at the earliest timepoint (Week 12, n = 46), while those of the other COAs did not indicate moderate responsiveness until Week 36 (6MWD, n = 33) or Week 48 (4SC velocity, n = 20; NSAA total score, n = 20). Baseline correlations between SV95C and other COAs were strong (r = 0.611-0.695). Correlations between SV95C change from baseline to Week 48 and changes in other COAs were moderate to strong (r = 0.443-0.678).∥. Conclusions Overall, SV95C demonstrated sensitivity to ambulatory decline over short intervals, low variability, and correlation with established COAs. Although the negative trial precluded demonstration of SV95C's sensitivity to drug effect, these findings support the continued use of SV95C in DMD clinical trials.
Collapse
Affiliation(s)
| | | | - Hannah Staunton
- Roche Products Ltd, Hexagon Place, Shire Park, 6 Falcon Way, Welwyn Garden City, UK
| | - Klaas Veenstra
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | | | | | - Laurent Servais
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Division of Child Neurology, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, Avenue de l’Hôpital 1, Liege, Belgium
| | - Paul Strijbos
- F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| |
Collapse
|
31
|
Brown V, Merikle E, Johnston K, Gooch K, Audhya I, Lowes L. A qualitative study to understand the Duchenne muscular dystrophy experience from the parent/patient perspective. J Patient Rep Outcomes 2023; 7:129. [PMID: 38085412 PMCID: PMC10716079 DOI: 10.1186/s41687-023-00669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a rare, severe, fatal neuromuscular disease characterized by progressive atrophy and muscle weakness, resulting in loss of ambulation, decreased upper body function, and impaired cardiorespiratory function. This study aimed to generate qualitative evidence to describe the primary symptoms and impacts of DMD in ambulatory and non-ambulatory patients as reported by patient/caregiver dyads. Information was also gathered on expectations for future DMD treatments. METHODS Forty-six dyads (caregiver and patients with DMD aged 4 to 22 years) participated in 60-min semi-structured video interviews. Interview transcripts were analyzed using thematic analysis. Differences in experiences with DMD by ambulation status were examined. RESULTS Mean ages of ambulatory (n = 28) and non-ambulatory participants (n = 18) were 8.7 and 11.3 years, respectively, with an average age of diagnosis of 3.7 years (SD = 2.3). The primary symptoms reported by both groups were lack of strength (ambulatory: n = 28, 100.0%; non-ambulatory: n = 17, 94.4%) and fatigue (ambulatory: n = 24, 85.7%; non-ambulatory: n = 14, 77.8%). Physical function was the domain that was most impacted by DMD, with participants describing progressive decline of physical function due to loss of physical strength as the primary defining feature of the disease across all stages of ambulatory ability. For those who maintained ambulatory ability at the time of the interview, physical function impacts described impaired mobility (e.g., climbing stairs: n = 16, 57.1%; running: n = 13, 46.4%), impaired upper body function, in particular fine motor skills like holding a pen/pencil or buttoning clothes (n = 17, 60.7%), problem with transfers (e.g., getting off the floor: n = 10, 35.7%), and activities of daily living (ADLs; n = 15, 53.6%). For non-ambulatory participants, the functional impacts most frequently described were problems with transfers (e.g., getting in/out of bed: n = 13, 72.2%; getting in/out of chair or position in bed: both n = 10, 55.6%), impaired upper body function (reaching: n = 14, 77.8%), and ADLs (n = 15, 83.3%). Meaningful treatment goals differed by ambulatory status; for ambulatory participants, goals included maintaining current functioning (n = 20, 71.4%), improving muscle strength (n = 7, 25.9%), and reducing fatigue (n = 6, 22.2%). For non-ambulatory participants, these included increased upper body strength (n = 8, 42.1%) and greater independence in ADLs (n = 6, 31.6%). A preliminary conceptual model was developed to illustrate the primary symptoms and physical function impacts of DMD and capture their relationship to disease progression. CONCLUSION This study contributes to the limited qualitative literature by characterizing impacts of physical limitations and symptoms of DMD on disease progression and thus providing insights into the lived experience with DMD. Differences in treatment goals were also identified based on ambulatory status. Taken together, these findings can help inform patient-centered measurement strategies for evaluating outcomes in DMD clinical research.
Collapse
Affiliation(s)
- Victoria Brown
- Fortrea Inc. (formerly Labcorp Drug Development Inc.), 9711 Washingtonian Blvd., Suite 800, Gaithersburg, MD, 20878, USA
| | - Elizabeth Merikle
- Fortrea Inc. (formerly Labcorp Drug Development Inc.), 9711 Washingtonian Blvd., Suite 800, Gaithersburg, MD, 20878, USA
| | - Kelly Johnston
- Fortrea Inc. (formerly Labcorp Drug Development Inc.), 9711 Washingtonian Blvd., Suite 800, Gaithersburg, MD, 20878, USA
| | - Katherine Gooch
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | - Ivana Audhya
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA.
| | - Linda Lowes
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, USA
| |
Collapse
|
32
|
Hua C, Liu L, Kong X. Prenatal diagnosis of 1408 foetuses at risk of DMD/BMD by MLPA and Sanger sequencing combined with STR linkage analysis. BMC Med Genomics 2023; 16:310. [PMID: 38041114 PMCID: PMC10691095 DOI: 10.1186/s12920-023-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE This study is a retrospective analysis of the prenatal genetic diagnosis results of 1408 foetuses at high risk of DMD/BMD to provide information for clinical genetic counselling. BACKGROUND Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder characterized by skeletal and cardiac muscle weakness. With the deepening of disease research, some treatments have been applied in clinics. Therefore, early and accurate prenatal diagnosis can inform pregnancy choices for high-risk families. METHODS A total of 1316 unrelated DMD/BMD families with confirmed genetic diagnoses were recruited from the Genetic and Prenatal Diagnosis Center of the First Affiliated Hospital of Zhengzhou University. Prenatal diagnosis of 1408 high-risk foetuses was performed by MLPA and Sanger sequencing combined with STR linkage analysis for all families. RESULTS Among the 1316 families, large deletions, duplications, and small variants of the DMD gene accounted for 70.4% (927/1316), 8.2% (108/1316), and 21.4% (281/1316), respectively. Among 1316 mothers, 863 (65.6%) were carriers, and 453 (34.4%) were not carriers. The rate of de novo variants was 34.4% (453/1316) in our study. In addition, gonadal mosaicism was observed in 11 pregnant females. Prenatal diagnosis was provided for 1408 high-risk foetuses; 282 foetuses were identified as male patients, 219 foetuses were female carriers, and the remainder had normal genetics. The results of prenatal diagnosis were consistent with the results of follow-up. CONCLUSIONS Accurate and rapid prenatal diagnosis can be achieved using MLPA, Sanger sequencing, and STR linkage analysis. Furthermore, germline mosaicism in DMD should not be ignored; considering this, a prenatal diagnosis for all pregnant women with a family history of DMD/BMD regardless of whether they carried disease-causing variants is proposed. Genetic counselling and targeted prenatal diagnosis will continue to be a cornerstone of DMD/BMD family management in the future.
Collapse
Affiliation(s)
- Chunxiao Hua
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lina Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Xiangdong Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
33
|
Okamoto K, Matsunari H, Nakano K, Umeyama K, Hasegawa K, Uchikura A, Takayanagi S, Watanabe M, Ohgane J, Stirm M, Kurome M, Klymiuk N, Nagaya M, Wolf E, Nagashima H. Phenotypic features of genetically modified DMD-X KOX WT pigs. Regen Ther 2023; 24:451-458. [PMID: 37772130 PMCID: PMC10523442 DOI: 10.1016/j.reth.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disorder caused by mutation in the dystrophin gene (DMD) on the X chromosome. Female DMD carriers occasionally exhibit symptoms such as muscle weakness and heart failure. Here, we investigated the characteristics and representativeness of female DMD carrier (DMD-XKOXWT) pigs as a suitable disease model. Methods In vitro fertilization using sperm from a DMD-XKOY↔XWTXWT chimeric boar yielded DMD-XKOXWT females, which were used to generate F2 and F3 progeny, including DMD-XKOXWT females. F1-F3 piglets were genotyped and subjected to biochemical analysis for blood creatine kinase (CK), aspartate aminotransferase, and lactate dehydrogenase. Skeletal muscle and myocardial tissue were analyzed for the expression of dystrophin and utrophin, as well as for lymphocyte and macrophage infiltration. Results DMD-XKOXWT pigs exhibited various characteristics common to human DMD carrier patients, namely, asymptomatic hyperCKemia, dystrophin expression patterns in the skeletal and cardiac muscles, histopathological features of skeletal muscle degeneration, myocardial lesions in adulthood, and sporadic death. Pathological abnormalities observed in the skeletal muscles in DMD-XKOXWT pigs point to a frequent incidence of pathological abnormalities in the musculoskeletal tissues of latent DMD carriers. Our findings suggest a higher risk of myocardial abnormalities in DMD carrier women than previously believed. Conclusions We demonstrated that DMD-XKOXWT pigs could serve as a suitable large animal model for understanding the pathogenic mechanism in DMD carriers and developing therapies for female DMD carriers.
Collapse
Affiliation(s)
- Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Hiroshi Nagashima
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
34
|
Lv Z, Meng J, Yao S, Xiao F, Li S, Shi H, Cui C, Chen K, Luo X, Ye Y, Chen C. Naringenin improves muscle endurance via activation of the Sp1-ERRγ transcriptional axis. Cell Rep 2023; 42:113288. [PMID: 37874675 DOI: 10.1016/j.celrep.2023.113288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Skeletal muscle function declines in the aging process or disease; however, until now, skeletal muscle has remained one of the organs most undertreated with medication. In this study, naringenin (NAR) was found to build muscle endurance in wild-type mice of different ages by increasing oxidative myofiber numbers and aerobic metabolism, and it ameliorates muscle dysfunction in mdx mice. The transcription factor Sp1 was identified as a direct target of NAR and was shown to mediate the function of NAR on muscle. Moreover, the binding site of NAR on Sp1 was further validated as GLN-110. NAR enhances the binding of Sp1 to the CCCTGCCCTC sequence of the Esrrg promoter by promoting Sp1 phosphorylation, thus upregulating Esrrg expression. The identification of the Sp1-ERRγ transcriptional axis is of great significance in basic muscle research, and this function of NAR has potential implications for the improvement of muscle function and the prevention of muscle atrophy.
Collapse
Affiliation(s)
- Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Fu Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shilong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Cui
- University of Chinese Academy of Sciences, Beijing 100049, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Drug and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
35
|
Dwianingsih EK, Iskandar K, Hapsara S, Ping Liu C, Malueka RG, Gunadi, Matsuo M, Lai PS. Mutation spectrum analysis of DMD gene in Indonesian Duchenne and Becker muscular dystrophy patients. F1000Res 2023; 11:148. [PMID: 38009102 PMCID: PMC10668572 DOI: 10.12688/f1000research.73476.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the DMD gene. The full mutation spectrum of the DMD gene in Indonesian patients is currently unknown. Mutation-specific therapies are currently being developed, such as exon skipping or stop codon read-through therapy. This study was conducted with the aim of identifying the mutation spectrum of the DMD gene in Indonesia to guide future development and application of feasible therapeutic strategies. Methods This study is a cross sectional study that enrolled 43 male patients with a clinical suspicion of DMD or BMD. Multiplex ligation-dependent probe amplification (MLPA) reaction was performed to screen for the common mutations in the DMD gene. Results Out of 43 subjects, deletions accounted for 69.77% (n=30) cases, while duplications were found in 11.63% (n=5) cases. One novel duplication spanning exons 2 to 62 was identified. Deletion mutations clustered around the distal (66.67%) and proximal (26.67%) hot spot regions of the DMD gene while duplication mutations were observed solely at the proximal region. Two false positive cases of single exon deletion detected through MLPA were attributed to sequence mutations affecting primer ligation sites, confirming the need to validate all single exon deletions when using this screening method. Analysis of available maternal DNA samples showed that the rate of de novo mutations (48.15%) appears higher than expected in this population. Out of 31 patients who were classified as DMD based on clinical and genotype characterizations, 60.47% (n=26) of cases were suitable for exon skipping therapy. Conclusion This is the first comprehensive study showing the feasibility of implementing the MLPA method for routine screening of DMD patients in Indonesia. This is also the first study showing the potential applicability of exon skipping therapy in the majority of DMD cases in the country.
Collapse
Affiliation(s)
- Ery Kus Dwianingsih
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sunartini Hapsara
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Chun Ping Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rusdy Ghazali Malueka
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Gunadi
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobegakuin University, Kobe, 651-2180, Japan
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
36
|
Wallach E, Ehlinger V, Biotteau M, Walther-Louvier U, Péréon Y, Vuillerot C, Fontaine S, Sabouraud P, Espil-Taris C, Cuisset JM, Laugel V, Baudou E, Arnaud C, Cances C. Confirmatory validation of the french version of the Duchenne Muscular Dystrophy module of the pediatric quality of life inventory (PedsQL TM3.0DMDfv). BMC Pediatr 2023; 23:563. [PMID: 37968589 PMCID: PMC10647061 DOI: 10.1186/s12887-023-04153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/24/2023] [Indexed: 11/17/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a neuromuscular disease that inevitably leads to total loss of autonomy. The new therapeutic strategies aim to both improve survival and optimise quality of life. Evaluating quality of life is nevertheless a major challenge. No DMD-specific quality of life scale to exists in French. We therefore produced a French translation of the English Duchenne Muscular Dystrophy module of the Pediatric Quality of Life Inventory (PedsQLTMDMD) following international recommendations. The study objective was to carry out a confirmatory validation of the French version of the PedsQLTMDMD for paediatric patients with DMD, using French multicentre descriptive cross-sectional data. The sample consisted of 107 patients. Internal consistency was acceptable for proxy-assessments, with Cronbach's alpha coefficients above 0.70, except for the Treatment dimension. For self-assessments, internal consistency was acceptable only for the Daily Activities dimension. Our results showed poor metric qualities for the French version of the PedsQLTMDMD based on a sample of about 100 children, but these results remained consistent with those of the original validation. This confirms the interest of its use in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Wallach
- Neuropediatric Department, Toulouse-Purpan University Hospital, Toulouse, France.
| | - Virginie Ehlinger
- UMR 1295 CERPOP, Toulouse University, Inserm, University Toulouse III Paul Sabatier, Toulouse, France
| | - Maelle Biotteau
- Neuropediatric Department, Toulouse-Purpan University Hospital, Toulouse, France.
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.
| | - Ulrike Walther-Louvier
- CHU Montpellier, Service de Neuropédiatrie, Centre de Référence Maladies Neuromusculaires AOC, Montpellier, France
| | - Yann Péréon
- Reference Centre for Neuromuscular Diseases AOC, Filnemus, Euro-NMD, Hôtel-Dieu, CHU Nantes, Nantes, France
| | - Carole Vuillerot
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, L'Escale, Service de Médecine Physique et de Réadaptation Pédiatrique, Bron, France
- NeuroMyogen Institute, CNRS UMR 5310 - INSERM U1217, University of Lyon, Lyon, France
| | - Stephanie Fontaine
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, L'Escale, Service de Médecine Physique et de Réadaptation Pédiatrique, Bron, France
| | - Pascal Sabouraud
- Department of Paediatrics, French Reference Center for Neuromuscular Diseases, American Memorial Hospital, Reims University Hospital Center, Reims, France
| | - Caroline Espil-Taris
- CHU Pellegrin, Service de neuropédiatrie, Centre de Référence Maladies Neuromusculaires AOC, Bordeaux, France
| | - Jean-Marie Cuisset
- Reference Centre for Neuromuscular Diseases Nord/Est/Ile-de-France, CHU Lille, Lille, France
- Department of Pediatric Neurology, CHU Lille, Lille, France
| | - Vincent Laugel
- Unité de neuropédiatrie et CIC pédiatrique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eloïse Baudou
- Neuropediatric Department, Toulouse-Purpan University Hospital, Toulouse, France
| | - Catherine Arnaud
- UMR 1295 CERPOP, Toulouse University, Inserm, University Toulouse III Paul Sabatier, Toulouse, France
- Clinical Epidemiology Unit, University Hospital, Toulouse, France
| | - Claude Cances
- Neuropediatric Department, Toulouse-Purpan University Hospital, Toulouse, France
| |
Collapse
|
37
|
Cardone N, Taglietti V, Baratto S, Kefi K, Periou B, Gitiaux C, Barnerias C, Lafuste P, Pharm FL, Pharm JN, Panicucci C, Desguerre I, Bruno C, Authier FJ, Fiorillo C, Relaix F, Malfatti E. Myopathologic trajectory in Duchenne muscular dystrophy (DMD) reveals lack of regeneration due to senescence in satellite cells. Acta Neuropathol Commun 2023; 11:167. [PMID: 37858263 PMCID: PMC10585739 DOI: 10.1186/s40478-023-01657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kaouthar Kefi
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Baptiste Periou
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Ciryl Gitiaux
- Neurophysiologie clinique pédiatrique, Centre de référence des maladies neuromusculaires Hôpital universitaire Necker-Enfants Malades-Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955 INSERM, IMRB, APHP, Creteil, France
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Christine Barnerias
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Peggy Lafuste
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - France Leturcq Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Juliette Nectoux Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
| | - François-Jerome Authier
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
- Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Frederic Relaix
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
| | - Edoardo Malfatti
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France.
| |
Collapse
|
38
|
Basiri K, Alizadeh M, Ansari B, Ghasemi M, Kheradmand M, Sedghi M. On genotype-phenotype relationship of dystrophinopathies among Iranian population. CURRENT JOURNAL OF NEUROLOGY 2023; 22:231-237. [PMID: 38425356 PMCID: PMC10899535 DOI: 10.18502/cjn.v22i4.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/12/2023] [Indexed: 03/02/2024]
Abstract
Background: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are inherited X-linked disorders resulting from alterations in the dystrophin gene. Genotype-phenotype matching studies have revealed a link between disease severity, the amount of muscle dystrophin, and the extent of mutation/deletion on the dystrophin gene. This study aimed to assess the relationship between genetic alterations in the dystrophin gene and the clinical status of patients with dystrophinopathies among the Iranian population. Methods: This cross-sectional study examined 54 patients with muscle weakness caused by abnormalities in the dystrophin gene at a hospital affiliated to Isfahan University of Medical Sciences, Isfahan, Iran, in 2021. The participants' demographic information, including age, family history of muscle dystrophies, and family history of other medical diseases as well as the type of muscular dystrophy were recorded. Furthermore, the number and region of deleted exons based on dystrophy types were also evaluated using multiplex ligation-dependent probe amplification (MLPA). The patients' gaits were also assessed as using a wheelchair, the presence of waddling gaits, or toe gaits. The patients' clinical status and the coexistence of pulmonary, bulbar, and mental conditions were also examined and compared between the two groups of dystrophinopathies. Results: In this study, 54 patients with dystrophinopathy with the mean age of 16.63 ± 12.10 years were evaluated, of whom 22 (40.7%) and 30 (55.6%) patients were classified as BMD and DMD, respectively. The most affected regions with deleted exons were exons 45-47 (n = 5) and 45-48 (n = 4) in patients with BMD, while exons 45, 48-52, 51-55, and 53 (2 cases per exon) were the most common affected exons in patients with DMD. Further analyses revealed that deletions in exons 45-47 and 51-55 were significantly associated with older and younger ages at the onset of becoming wheelchair-bound in patients with dystrophy, respectively. The hotspot range in both BMD and DMD was within exons 45-55 (n = 15 for each group); 63% of the patients had alterations on the dystrophin gene within this range [30 patients (68.18%) in the BMD group, 15 patients (53.57%) in the DMD group]. Conclusion: Exon deletion was the most common genetic alteration in patients with dystrophinopathies. No significant difference was observed between DMD and BMD regarding the number of deleted exons. Deletions in exons 45-47 and 51-55 were linked to later and earlier onset of becoming wheelchair-bound, respectively.
Collapse
Affiliation(s)
- Keivan Basiri
- Isfahan Neuroscience Research Center, Al-Zahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Alizadeh
- Department of Neurology, School of Medicine, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Isfahan Neuroscience Research Center, Al-Zahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Ghasemi
- Isfahan Neuroscience Research Center, Al-Zahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Kheradmand
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Aydın Yağcıoğlu G, Alemdaroğlu Gürbüz İ, Topuz S, Yılmaz Ö. Development of a new instrument to evaluate gait characteristics of individuals with Duchenne Muscular Dystrophy: Gait Assessment Scale for Duchenne Muscular Dystrophy, and its validity and reliability. Early Hum Dev 2023; 185:105843. [PMID: 37672897 DOI: 10.1016/j.earlhumdev.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Patients with Duchenne Muscular Dystrophy (DMD) have gait disorders. Therefore, specific gait assessment tools are needed. AIMS The aim of this study was to develop a gait assessment instrument for DMD patients (DMD-GAS), and investigate its validity and reliability. STUDY DESIGN The scale was developed considering the expert opinions which included 10 physiotherapists who had experience in the management of patients with DMD, and the Content Validity Index (CVI) was calculated. The final version of the DMD-GAS that was agreed upon the experts consisted of 10 items, and each item scored between 0 and 2. The intra-rater reliability was established by the video analysis of children with a 1-month interval and inter-rater reliability was determined by the scores of 3 physiotherapists. SUBJECTS The study included 56 patients with DMD. OUTCOME MEASURES The criterion validity was determined by investigating the relationship between the total score of the DMD-GAS and Motor Function Measure (MFM), 6 Minute Walk Test (6MWT), and the data obtained from GAITRite. RESULTS The CVI of the DMD-GAS was 0.90 (p < 0.05). The construct validity and internal consistency of the DMD-GAS were excellent as well as the intra- and inter-rater reliability (>0.90). Moderate-to-very strong correlations were found between the total score of the DMD-GAS and the MFM-total score (r = 0.78), 6MWT (r = 0.71), gait speed (r = 0.50), stride length (r = 0.56), and base of support (r = -0.70) (p < 0.01). CONCLUSIONS The results indicated that DMD-GAS was a reliable and valid instrument to determine gait characteristics of the patients with DMD in clinical settings. CLINICAL TRIAL NUMBER NCT05244395.
Collapse
Affiliation(s)
- Güllü Aydın Yağcıoğlu
- University of Health Sciences, Gülhane Faculty of Health Sciences, Department of Orthotics and Prosthetics, 06018 Ankara, Turkey.
| | | | - Semra Topuz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| | - Öznur Yılmaz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| |
Collapse
|
40
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
41
|
Petian-Alonso DC, de Castro AC, Barroso de Queiroz Davoli G, Martinez EZ, Mattiello-Sverzut AC. Defining ambulation status in patients with Duchenne muscular dystrophy using the 10-metre walk test and the motor function measure scale. Disabil Rehabil 2023; 45:2984-2988. [PMID: 35980858 DOI: 10.1080/09638288.2022.2112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Timed functional tests have been explored to understand the natural history of Duchenne muscular dystrophy (DMD) and to establish warning signs of loss of gait. This study verified whether the combination of the 10-metre walk test (10MWT) and the motor function measure (MFM) could classify the ambulation status of DMD patients. METHOD Thirty-two patients, aged between 5 and 22 years, with independent gait initially evaluated over 11 years participated in the study. Two groups were created: ambulators and non-ambulators. For both groups, we calculated a 10MWT ratio, by dividing the time spent to perform the last evaluation by the penultimate evaluation, and a MFM dimension-1 score (MFM-D1), collected in the same period. For the statistical analysis, the CART algorithm ("rpart" package in R) classified the patients into ambulators and non-ambulators according to two continuous variables: the 10MWT ratio and the MFM-D1 score. RESULTS The cut-off points were 1.1 for the 10MWT ratio and 26 points for the MFM-D1, which distinguished 70% of the patients as either ambulators or non-ambulators. CONCLUSION This simple measurement strategy can be used by therapists to adjust their rehabilitation strategies and goals.Implications for rehabilitationCombination of 10MWT ratio with MFM-D1 reveal an "indicator" for the ambulation status of patients with DMD.Physiotherapists can guide clinical care and prepare the patient and family for loss of gait.CART algorithm describes how we classified the patients according to two continuous variables.70% Of the patients with DMD can be distinguished as either ambulators or non-ambulators.
Collapse
Affiliation(s)
- Danila Cristina Petian-Alonso
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ani Caroline de Castro
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Edson Zangiacomi Martinez
- Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Health Science, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Pluta N, von Moers A, Pechmann A, Stenzel W, Goebel HH, Atlan D, Wolf B, Nanda I, Zaum AK, Rost S. Whole-Genome Sequencing Identified New Structural Variations in the DMD Gene That Cause Duchenne Muscular Dystrophy in Two Girls. Int J Mol Sci 2023; 24:13567. [PMID: 37686372 PMCID: PMC10488134 DOI: 10.3390/ijms241713567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Dystrophinopathies are the most common muscle diseases, especially in men. In women, on the other hand, a manifestation of Duchenne muscular dystrophy is rare due to X-chromosomal inheritance. We present two young girls with severe muscle weakness, muscular dystrophies, and creatine kinase (CK) levels exceeding 10,000 U/L. In the skeletal muscle tissues, dystrophin staining reaction showed mosaicism. The almost entirely skewed X-inactivation in both cases supported the possibility of a dystrophinopathy. Despite standard molecular diagnostics (including multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) gene panel sequencing), the genetic cause of the girls' conditions remained unknown. However, whole-genome sequencing revealed two reciprocal translocations between their X chromosomes and chromosome 5 and chromosome 19, respectively. In both cases, the breakpoints on the X chromosomes were located directly within the DMD gene (in introns 54 and 7, respectively) and were responsible for the patients' phenotypes. Additional techniques such as Sanger sequencing, conventional karyotyping and fluorescence in situ hybridization (FISH) confirmed the disruption of DMD gene in both patients through translocations. These findings underscore the importance of accurate clinical data combined with histopathological analysis in pinpointing the suspected underlying genetic disorder. Moreover, our study illustrates the viability of whole-genome sequencing as a time-saving and highly effective method for identifying genetic factors responsible for complex genetic constellations in Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Natalie Pluta
- Department of Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Arpad von Moers
- Department of Pediatrics and Neuropediatrics, DRK Kliniken Berlin, 14050 Berlin, Germany
| | - Astrid Pechmann
- Department of Neuropediatrics and Muscle Disorders, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | | | - Beat Wolf
- iCoSys, University of Applied Sciences Western Switzerland, 1700 Fribourg, Switzerland
| | - Indrajit Nanda
- Department of Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Ann-Kathrin Zaum
- Department of Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Rost
- Department of Human Genetics, University of Würzburg, 97074 Würzburg, Germany
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| |
Collapse
|
43
|
Brown A, Morris B, Kamau JK, Alshudukhi AA, Jama A, Ren H. Automated Image Analysis Pipeline Development to Monitor Disease Progression in Muscular Dystrophy Using Cell Profiler. ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY 2023; 7:178-187. [PMID: 37799294 PMCID: PMC10552673 DOI: 10.26502/ami.936500115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Muscular dystrophies are inherited disorders that are characterized by progressive muscle degeneration. These disorders are caused by mutations in the genes encoding structural elements within the muscle, which leads to increased vulnerability to mechanical stress and sarcolemma damage. Although myofibers have the capacity to regenerate, the newly formed myofibers still harbor genetic mutation, which induces continuous cycles of muscle fiber death and regeneration. This repeated cycling is accompanied by an inflammatory response which eventually provokes excessive fibrotic deposition. The histopathological changes in skeletal muscle tissue are central to the disease pathogenesis. Analysis of muscle histopathology is the gold standard for monitoring muscle health and disease progression. However, manual, or semi-manual quantification methods, are not only immensely tedious but can be subjective. Here, we present four image analysis pipelines built in CellProfiler which enable users without a background in computer vision or programming to quantitatively analyze biological images. These image analysis pipelines are designed to quantify skeletal muscle histopathological staining for membrane damage, the abundance and size distribution of regenerating muscle fibers, inflammation via quantification of CD68+ M1 macrophages, and collagen deposition. Additionally, we discuss methods to address common errors associated with the quantification of microscopy images. These automated tools can not only improve workflow efficiency but can provide a better understanding of the histopathological progression of muscular dystrophy.
Collapse
Affiliation(s)
- Alexandra Brown
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Brooklyn Morris
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
44
|
Johansson C, Hunt H, Signorelli M, Edfors F, Hober A, Svensson AS, Tegel H, Forstström B, Aartsma-Rus A, Niks E, Spitali P, Uhlén M, Szigyarto CAK. Orthogonal proteomics methods warrant the development of Duchenne muscular dystrophy biomarkers. Clin Proteomics 2023; 20:23. [PMID: 37308827 DOI: 10.1186/s12014-023-09412-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Molecular components in blood, such as proteins, are used as biomarkers to detect or predict disease states, guide clinical interventions and aid in the development of therapies. While multiplexing proteomics methods promote discovery of such biomarkers, their translation to clinical use is difficult due to the lack of substantial evidence regarding their reliability as quantifiable indicators of disease state or outcome. To overcome this challenge, a novel orthogonal strategy was developed and used to assess the reliability of biomarkers and analytically corroborate already identified serum biomarkers for Duchenne muscular dystrophy (DMD). DMD is a monogenic incurable disease characterized by progressive muscle damage that currently lacks reliable and specific disease monitoring tools. METHODS Two technological platforms are used to detect and quantify the biomarkers in 72 longitudinally collected serum samples from DMD patients at 3 to 5 timepoints. Quantification of the biomarkers is achieved by detection of the same biomarker fragment either through interaction with validated antibodies in immuno-assays or through quantification of peptides by Parallel Reaction Monitoring Mass Spectrometry assay (PRM-MS). RESULTS Five, out of ten biomarkers previously identified by affinity-based proteomics methods, were confirmed to be associated with DMD using the mass spectrometry-based method. Two biomarkers, carbonic anhydrase III and lactate dehydrogenase B, were quantified with two independent methods, sandwich immunoassays and PRM-MS, with Pearson correlations of 0.92 and 0.946 respectively. The median concentrations of CA3 and LDHB in DMD patients was elevated in comparison to those in healthy individuals by 35- and 3-fold, respectively. Levels of CA3 vary between 10.26 and 0.36 ng/ml in DMD patients whereas those of LDHB vary between 15.1 and 0.8 ng/ml. CONCLUSIONS These results demonstrate that orthogonal assays can be used to assess the analytical reliability of biomarker quantification assays, providing a means to facilitate the translation of biomarkers to clinical practice. This strategy also warrants the development of the most relevant biomarkers, markers that can be reliably quantified with different proteomics methods.
Collapse
Affiliation(s)
- Camilla Johansson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Helian Hunt
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forstström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
45
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
46
|
Wilton-Clark H, Yokota T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics 2023; 15:778. [PMID: 36986639 PMCID: PMC10054484 DOI: 10.3390/pharmaceutics15030778] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating and fatal genetic disease affecting 1/5000 boys globally, characterized by progressive muscle breakdown and eventual death, with an average lifespan in the mid-late twenties. While no cure yet exists for DMD, gene and antisense therapies have been heavily explored in recent years to better treat this disease. Four antisense therapies have received conditional FDA approval, and many more exist in varying stages of clinical trials. These upcoming therapies often utilize novel drug chemistries to address limitations of existing therapies, and their development could herald the next generation of antisense therapy. This review article aims to summarize the current state of development for antisense-based therapies for the treatment of Duchenne muscular dystrophy, exploring candidates designed for both exon skipping and gene knockdown.
Collapse
Affiliation(s)
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
47
|
Jaxybayeva A, Chunkayeva D, Myrzaliyeva B, Ayaganov D, Lepessova M, Bulekbayeva S, Idrissova Z, Mukhambetova G, Bayanova M, Malfatti E, Urtizberea A. Duchenne Muscular Dystrophy in Kazakhstan: A Journey from Diagnosis to the Treatment, the Biases and Achievements. J Neuromuscul Dis 2023; 10:263-269. [PMID: 36641684 PMCID: PMC10041439 DOI: 10.3233/jnd-221559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Neuro-muscular disorders constitutes a group of rare but heterogeneous conditions. The onset of these diseases ranges widely from birth to elderly. Many of them are life threatening and progressive. Neuromuscular science is a very specialised medical field for which specific knowledge and expertise are necessary. Such an expertise is available only partially in Kazakhstan where underdiagnosis, misdiagnosis and mismanagement of patients with muscle diseases are commonplace. Hopefully, times are changing. With the implementation of international guidelines for the diagnosis and treatment of Duchenne Muscular Dystrophy (DMD), patients are now given better care including pharmacological interventions (including steroids in DMD), respiratory and nutritional support. OBJECTIVES To report on clinical data and genetic variants in a nationwide cohort of DMD patients. To describe and analyse management strategies applied in Kazakhstan in these patients. METHODS The medical records of 84 patients recruited by the national expert-consulting board based at the national multidisciplinary centre of reference in neuro-muscular disorders in Astana, Kazakhstan, have been ascertained for the study. The national expert committee meets monthly to decide over the prescription of disease-modifying therapies in paediatric neuromuscular disorders. Data on the age of disease onset, the age at genetic testing, spectrum of genetic variants, the stage of disease and the serum CK levels have been collected.ResultsThe mean age of 84 examined patients was 10 years. In Kazakhstan, the average age of disease manifestation was 3 years and 3 months. The vast majority of patients passed through genetic test due to the clinical manifestations. The average age of genetic confirmation was 7 years and 6 months. There were 58,33%of gross variations, of which 55,95%were deletions and 2,38%were duplications. Nonsense mutations were identified in 29,7%. CONCLUSION The authors contend that strictly keeping the clinical guides in the diagnosis of DMD is essential, as the genetic variations may affect the stage and feasibility of novel therapies. The way of management of neuro-muscular diseases used in Kazakhstan is strictly recommended for implementation in developing countries.
Collapse
Affiliation(s)
| | | | - Bakhytkul Myrzaliyeva
- Kazakh-Russian Medical University, Almaty, Kazakhstan.,Akhmet Yassawi University, Turkistan, Kazakhstan
| | | | | | | | | | | | - Mirgul Bayanova
- UMC, National Research Center for Maternal and Child Health, Astana, Kazakhstan
| | | | | |
Collapse
|
48
|
SATTENAPALLI NC, ARETI AR, KOTESWARA RAO SN, ALAVALA RR, KULANDAIVELU US. Prevalence Study of Duchene Muscular Dystrophy and its Genetic Sequence in Southern India. IRANIAN JOURNAL OF CHILD NEUROLOGY 2023; 17:29-37. [PMID: 36721834 PMCID: PMC9881832 DOI: 10.22037/ijcn.v17i2.35071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 05/28/2022] [Indexed: 02/02/2023]
Abstract
Objective Duchene Muscular dystrophy (DMD) is the common X-linked heterogenous progressive muscular dystrophy characterized by mutations in the DMD gene. The frequency of dystrophin gene mutations is varied in different DMD population. A precise diagnosis can help to reduce the severity of DMD since it aids in planning of targeted medical treatment and required therapies. This study was aimed to investigate the mutation type, their rate and distribution of DMD'S in southern India. Materials & Materials An observational study was conducted on 250 genetically confirmed DMD patients from March,2019 to March,2021. The distribution pattern and rate of mutations (deletion, duplication, nonsense mutations, minor mutations) were investigated. Results Mutation spectrum was studied on 250 DMD patients, of which 63% exon deletion pattern were reported. 16% deletions were detected in proximal hot region (exons 3-28). The duplications were found 21% in the proximal hotspot largest region (exon 3-25). 16% of the patients reported single deletion (45 exon), 10.7% reported deletions of exon 44. Point mutations detected in 6%, small mutations were detected in 1.2%, non-sense mutations were detected in 2% of study population respectively. Missense Mutations were detected in 0.8% of study population. Conclusion This study estimates mutation spectrum of exon deletion pattern (63%) was predominantly identified in distal region; duplication was most frequent in proximal region. Point mutations, Nonsense mutations and small mutations have a least accountability. This study adds a real world evidence for developing research therapies in DMD.
Collapse
Affiliation(s)
| | - Anka Rao ARETI
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur, AP, India
| | - Siva Naga KOTESWARA RAO
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur, AP, India
| | - Rajasekhar Reddy ALAVALA
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur, AP, India
| | - Uma Sankar KULANDAIVELU
- K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram-522502, Guntur, AP, India
| |
Collapse
|
49
|
Wang DN, Wang ZQ, Jin M, Lin MT, Wang N. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Gene Ther 2022; 29:730-737. [PMID: 35534612 DOI: 10.1038/s41434-022-00336-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
With the development of basic research, some genetic-based methods have been found to treat Duchenne muscular dystrophy (DMD) with large deletion mutations and nonsense mutations. Appropriate therapeutic approaches for repairing multiple duplications are limited. We used the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 system with patient-derived primary myoblasts to correct multiple duplications of the dystrophin gene. Muscle tissues from a patient carrying duplications of dystrophin were obtained, and tissue-derived primary cells were cultured. Myoblasts were purified with an immunomagnetic sorting system using CD56 microbeads. After transduction by lentivirus with a designed single guide RNA (sgRNA) targeting a duplicated region, myoblasts were allowed to differentiate for 7 days. Copy number variations in the exons of the patient's myotubes were quantified by real-time PCR before and after genetic editing. Western blot analysis was performed to detect the full-length dystrophin protein before and after genetic editing. The ten sequences predicted to be the most likely off-targets were determined by Sanger sequencing. The patient carried duplications of exon 18-25, dystrophin protein expression was completely abrogated. Real-time PCR showed that the copy number of exon 25 in the patient's myotubes was 2.015 ± 0.079 compared with that of the healthy controls. After editing, the copy number of exon 25 in the patient's modified myotubes was 1.308 ± 0.083 compared with that of the healthy controls (P < 0.001). Western blot analysis revealed no expression of the dystrophin protein in the patient's myotubes before editing. After editing, the patient's myotubes expressed the full-length dystrophin protein at a level that was ~6.12% of that in the healthy control samples. Off-target analysis revealed no abnormal editing at the ten sites predicted to be the most likely off-target sites. The excision of multiple duplications by the CRISPR/Cas9 system restored the expression of full-length dystrophin. This study provides proof of evidence for future genome-editing therapy in patients with DMD caused by multiple duplication mutations.
Collapse
Affiliation(s)
- Dan-Ni Wang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
50
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|