1
|
Abusaif MS, Ragab A, Fayed EA, Ammar YA, Gowifel AMH, Hassanin SO, Ahmed GE, Gohar NA. Exploring a novel thiazole derivatives hybrid with fluorinated-indenoquinoxaline as dual inhibitors targeting VEGFR2/AKT and apoptosis inducers against hepatocellular carcinoma with docking simulation. Bioorg Chem 2024; 154:108023. [PMID: 39644617 DOI: 10.1016/j.bioorg.2024.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks as the third most prevalent reason for cancer-related death on a global scale. Tyrosine kinase inhibitors (TKIs) continue to be the primary treatment option for advanced hepatocellular carcinoma. A series of fluoro-11H-indeno[1,2-b]quinoxaline derivatives as an HCC drug targeting the VEGFR2/AKT axis was designed and synthesized. The novel compounds were investigated against HepG-2 and HuH-7 liver tumor cell lines. Compound 5 was the most active derivative against HepG-2 and HuH-7 cell lines with IC50 = 0.75 ± 0.04 and 3.43 ± 0.16 μM, respectively, in contrast to Sorafenib which shows IC50 values of 5.23 ± 0.31 and 4.58 ± 0.21 μM, respectively. IC50 values on normal liver cells (THLE-2) show that all tests are more selective than Sorafenib, prompting further research. The most promising cytotoxic compound has virtually equal VEGFR2 inhibition efficacy to Sorafenib. The total VEGFR2 and p-VEGFR2 inhibitory effects were subsequently evaluated, showing 38.32 % and 77.64 % attenuation, respectively. Compound 5 also reduced total and phosphorylated AKT concentrations in HepG-2 cells by 55.29 % and 78.01 %, respectively. Furthermore, Compound 5 upregulated BAX and caspase-3 and downregulated Bcl-2 to promote apoptosis. Hybrid 5 stops HepG-2's cell cycle at the S phase 48.02 % higher than untreated. Docking experiments assessed AKT and VEGFR2 binding patterns.
Collapse
Affiliation(s)
- Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt.
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ayah M H Gowifel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Soha Osama Hassanin
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11585, Egypt
| | - Ghada E Ahmed
- Canal Higher Institute for Engineering and Technology- Suez, Egypt
| | - Nirvana A Gohar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
2
|
Wojciechowska A, Bregier Jarzębowska R, Komarnicka UK, Szuster Ciesielska A, Sułek M, Bojarska Junak A, Ramadan RM, Jezierska J. Solution structure, oxidative DNA damage, biological activity and molecular docking of ternary copper(II) L-argininato complexes. Biochimie 2024:S0300-9084(24)00264-5. [PMID: 39561889 DOI: 10.1016/j.biochi.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Continuing our search for metal drugs with markedly higher toxicity to cancer cells than to normal cells, we evaluated the effect of 2,2'-bipyridine (bpy) as a co-ligand in the compounds [Cu(μ-O,O'-NO3)(l-Arg)(bpy)]NO3}n (1), [CuCl(l-Arg)(bpy)]Cl·3H2O (2) (l-Arg= l-arginine), on DNA interaction, cytotoxic and antiproliferative activity, compared to the effects induced by other co-ligands i.e. 1,10-phenanthroline (phen) and SCN- ions, in similar Cu(II) compounds we have studied previously. Potentiometric, EPR and UV-Vis experiments were first used to structurally characterise the complexes formed in solutions 1 and 2 and in model Cu(II)/bpy/l-Arg systems. Gel electrophoresis in the presence of H2O2 was used to identify DNA damage by 1 and 2. In addition, cyclic voltammetry of both compounds was performed to confirm the existence of Cu(II)/Cu(I) redox pairs involved in the free radical mechanism of this DNA damage. The DNA binding constants of 1 and 2 were determined spectrophotometrically. The selectivity of the cytotoxic and antiproliferative activity of compounds 1 and 2 was tested in vitro against human lung adenocarcinoma (A549), liver cancer (HepG2) and normal cells in comparison with those previously observed by us for compounds consisting of phen and SCN- ligands. Molecular docking calculations were performed for [Cu(l-Arg)(bpy)]2+ (present in solutions of 1 and 2) interacting with B-DNA (aureolin), metalloproteinase (S. aureus) and penicillin-binding protein (E. coli) to determine the nature of the complex-receptor interaction, potential binding modes and energies.
Collapse
Affiliation(s)
- Agnieszka Wojciechowska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | | | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | - Michał Sułek
- Department of Virology and Immunology, M. Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Bojarska Junak
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Julia Jezierska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
3
|
Merindol N, Belem Martins LL, Elfayres G, Custeau A, Berthoux L, Evidente A, Desgagné-Penix I. Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants. ACS Pharmacol Transl Sci 2024; 7:3527-3539. [PMID: 39539274 PMCID: PMC11555508 DOI: 10.1021/acsptsci.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Betacoronaviruses encompass a spectrum of respiratory diseases, from common cold caused by the human coronavirus (HCoV)-OC43 to life-threatening severe acute respiratory syndrome (SARS)-CoV-2. Addressing the constant need for novel antiviral compounds, we turned to the exploration of 40 plant-specialized metabolites produced by the medicinal plant family Amaryllidaceae, known to produce lycorine, a strong antiviral alkaloid. The present screen included 35 alkaloids with representatives of 8 ring-type structures. Pancracine, crinamine, hemanthamine, and hemanthidine exhibited potency comparable to lycorine in blocking HCoV-OC43 replication, while amarbellisine demonstrated superior efficacy (SI = 60, EC50 = 0.2 μM). Their anticoronaviral activity was confirmed using a SARS-CoV-2 replicon system. Time-of-drug-addition experiments established that a postentry step consistent with ribonucleic acid (RNA) replication or translation was targeted. Most antiviral Amaryllidaceae alkaloids selectively induced the expression of transcripts associated with the integrated stress response. Structure-activity relationship analyses elucidated key functional groups contributing to antiviral properties in the crinine- and lycorine-type. This study reveals that Amaryllidaceae produce a diverse repertoire of promising antiviral compounds in addition to lycorine, offering insights for developing new antiviral agents.
Collapse
Affiliation(s)
- Natacha Merindol
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
- Plant
Biology Research Group, Université
du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| | - Luan Letieri Belem Martins
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| | - Ghada Elfayres
- Department
of Medical Biology, Université du
Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| | - Alexandre Custeau
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| | - Lionel Berthoux
- Department
of Medical Biology, Université du
Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| | - Antonio Evidente
- Institute
of Biomolecular Chemistry, National Research
Council, Via Campi Flegrei
34, Pozzuoli 80078, Italy
| | - Isabel Desgagné-Penix
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
- Plant
Biology Research Group, Université
du Québec à Trois-Rivières, Trois-Rivières G8Z 4M3 Québec, Canada
| |
Collapse
|
4
|
Ereje R, Yahuafai J, Jaroenchuensiri T, Supakijjanusorn P, Unson S, Toopradab B, Rungrotmongkol T, Pianwanit S, Aonbangkhen C, Khotavivattana T. Diversity Oriented Strategy (DOS) for the Efficient Synthesis of Benzofuro[2,3-b]pyridine Derivatives with Anticancer Activity. ChemMedChem 2024:e202400514. [PMID: 39422673 DOI: 10.1002/cmdc.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Benzofuropyridines (BFP) are polycyclic compounds with known applications in neuronal diseases. However, its derivatization patterns and anticancer potential remains unexplored. Leveraging the idea of diversity-oriented synthesis (DOS), we developed a highly efficient synthetic route for BFP, to increase the library of available analogs producing three compounds in one reaction set up, including the 2O-, 6O-, and the 1 N-substituted species, also synthesizing the unusual 2-pyridone derivatives. Key bromination reaction of the BFP moiety was successfully described which can widen the available variation in the compound's structure. The cytotoxic activity of the compounds was assessed against SH-SY5Y (neuroblastoma), HepG2 (hepatocellular carcinoma), Kb (human oral epidermoid), HeLa (cervical) and MCF-7 (breast) cancer cell lines. In the series, the m-bromobenzyl (5 b), methylcyano (5 g) and propargyl (5 h) 2O-derivatives demonstrated good selectivity against cancer cells with selectivity index (SI) of >71 for 5 g against HeLa over the normal cells, as compared to the standard drug, Doxorubicin (SI=6.7). The quantitative structure-activity relationship (QSAR) analysis revealed an impressive correlation of the defined descriptors with the bioactivity having an R2 value of 0.971 and 0.893 for Kb and HeLa respectively. Altogether, our work highlighted new information on the synthesis of BFP derivatives with potent cytotoxic activity.
Collapse
Affiliation(s)
- Reymark Ereje
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City, 2600, Philippines
| | - Jantana Yahuafai
- Clinical Research Section, Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | - Theeranuch Jaroenchuensiri
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Patcharaporn Supakijjanusorn
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sukanya Unson
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Borwornlak Toopradab
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Somsak Pianwanit
- Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Campos DL, Canales CSC, Demarqui FM, Fernandes GFS, dos Santos CG, Prates JLB, da Silva IGM, Barros-Cordeiro KB, Báo SN, de Andrade LN, Abichabki N, Zacharias LV, de Campos MMA, dos Santos JL, Pavan FR. Screening of novel narrow-spectrum benzofuroxan derivatives for the treatment of multidrug-resistant tuberculosis through in silico, in vitro, and in vivo approaches. Front Microbiol 2024; 15:1487829. [PMID: 39464394 PMCID: PMC11502347 DOI: 10.3389/fmicb.2024.1487829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis remains a serious global health threat, exacerbated by the rise of resistant strains. This study investigates the potential of two benzofuroxan (Bfx) derivatives, 5n and 5b, as targeted treatments for MDR-TB using in silico, in vitro, and in vivo methodologies. In vitro analyses showed that Bfx compounds have significant activity against Mtb H37Rv, with Bfx 5n standing out with a MIC90 of 0.09 ± 0.04 μM. Additionally, their efficacy against MDR and pre-XDR strains was superior compared to commercial drugs. These Bfx compounds have a narrow spectrum for mycobacteria, which helps avoid dysbiosis of the gut microbiota, and they also exhibit high selectivity and low toxicity. Synergism studies indicate that Bfx derivatives could be combined with rifampicin to enhance treatment efficacy and reduce its duration. Scanning electron microscopy revealed severe damage to the morphology of Mtb following treatment with Bfx 5n, showing significant distortions in the bacillary structures. Whole-genome sequencing of the 5n-resistant isolate suggests resistance mechanisms mediated by the Rv1855c gene, supported by in silico studies. In vivo studies showed that the 5n compound reduced the pulmonary load by 3.0 log10 CFU/mL, demonstrating superiority over rifampicin, which achieved a reduction of 1.23 log10 CFU/mL. In conclusion, Bfx derivatives, especially 5n, effectively address resistant infections caused by Mtb, suggesting they could be a solid foundation for future therapeutic developments against MDR-TB.
Collapse
Affiliation(s)
- Débora Leite Campos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Christian Shleider Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, Biochemistry and Biotechnology, Santa Maria Catholic University, Arequipa, Peru
| | - Fernanda Manaia Demarqui
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Guilherme F. S. Fernandes
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
- School of Pharmacy, University College London, London, United Kingdom
| | - Camila Gonçalves dos Santos
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - João Lucas B. Prates
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Cell Biology Department, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leonardo Neves de Andrade
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Nathália Abichabki
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Luísa Vieira Zacharias
- University of São Paulo – USPSchool of Pharmaceutical Sciences of Ribeirão Preto, , São Paulo, Brazil
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jean Leandro dos Santos
- Medicinal Chemistry Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
6
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
7
|
Günther A, Zalewski P, Sip S, Ruszkowski P, Bednarczyk-Cwynar B. Acetylation of Oleanolic Acid Dimers as a Method of Synthesis of Powerful Cytotoxic Agents. Molecules 2024; 29:4291. [PMID: 39339286 PMCID: PMC11434080 DOI: 10.3390/molecules29184291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Oleanolic acid, a naturally occurring triterpenoid compound, has garnered significant attention in the scientific community due to its diverse pharmacological properties. Continuing our previous work on the synthesis of oleanolic acid dimers (OADs), a simple, economical, and safe acetylation reaction was performed. The newly obtained derivatives (AcOADs, 3a-3n) were purified using two methods. The structures of all acetylated dimers (3a-3n) were determined based on spectral methods (IR, NMR). For all AcOADs (3a-3n), the relationship between the structure and the expected directions of pharmacological activity was determined using a computational method (QSAR computational analysis). All dimers were also tested for their cytotoxic activity on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines. HDF cell line was applied to evaluate the Selectivity Index of the tested compounds. All cytotoxic tests were performed with the application of the MTT assay. Finally, all dimers of oleanolic acid were subjected to DPPH and CUPRAC tests to evaluate their antioxidant activity. The obtained results indicate a very high level of cytotoxic activity (IC50 for most AcOADs below 5.00 µM) and a fairly high level of antioxidant activity (Trolox equivalent in some cases above 0.04 mg/mL).
Collapse
Affiliation(s)
- Andrzej Günther
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Rincón‐Cervera MÁ, Pagan Loeiro da Cunha‐Chiamolera T, Chileh‐Chelh T, Carmona‐Fernández M, Urrestarazu M, Guil‐Guerrero JL. Growth parameters, phytochemicals, and antitumor activity of wild and cultivated ice plants ( Mesembryanthemum crystallinum L.). Food Sci Nutr 2024; 12:6548-6562. [PMID: 39554372 PMCID: PMC11561852 DOI: 10.1002/fsn3.4286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 11/19/2024] Open
Abstract
The ice plant (Mesembryanthemum crystallinum L.) is a halophyte that could become an alternative crop because of its interest as a functional food and its adaptation to high-saline soils. In this work, leaves from wild ice plants were compared with their cultivated counterparts in a soilless system at different salinities and light exposures for assessing growth parameters, moisture, fatty acid profiles, total carotenoids, phenolic compounds, vitamin C, antioxidant activity, and antiproliferative activity against the HT-29 colorectal cancer cell line. Moisture ranged between 876 and 955 g kg-1, and wild plants contained higher proportions of α-linolenic acid (58.7%-60.7% of total fatty acids) than cultivated ones (20.4%-36.6%). Vitamin C ranged between 819 and 1143 mg kg-1 fresh leaves. Higher salinity led to a larger production of carotenoids, whereas plant mass, total phenolic content, and antioxidant activity increased in plants grown using L8 NS1 and L8 AP67 lamps in comparison with white-light ones. Phenolic profiles were assessed by LC coupled to a hybrid mass spectrometer Q-Orbitrap. Total phenolic acid content was 3-4-fold higher than that of flavonoids, and sinapic, p-coumaric, gallic, 4-hydroxybenzoic, and 2-hydroxy-4-methoxybenzoic acids, as well as gallocatechin, occurred in all samples. Hydroalcoholic extracts of ice plant leaves showed dose- and time-dependent antiproliferative activity against the HT-29 human colorectal cancer cell line, and GI50 was between 920 and 977 μg mL-1 of plant extract. This work contributes to improving knowledge about the growth parameters, phytochemical profiles, and biological activities of wild and cultivated ice plants.
Collapse
Affiliation(s)
- Miguel Ángel Rincón‐Cervera
- Food Technology Division, ceiA3, CIAMBITALUniversity of AlmeríaAlmeríaSpain
- Institute of Nutrition and Food TechnologyUniversity of ChileSantiagoChile
| | | | - Tarik Chileh‐Chelh
- Food Technology Division, ceiA3, CIAMBITALUniversity of AlmeríaAlmeríaSpain
| | | | | | | |
Collapse
|
9
|
Stefanes NM, de Oliveira Silva L, Walter LO, Steimbach JV, Markendorf E, Ribeiro AAB, Feuser PE, Cordeiro AP, Santos-Silva MC. Sodium diethyldithiocarbamate trihydrate: an effective and selective compound for hematological malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03399-8. [PMID: 39186189 DOI: 10.1007/s00210-024-03399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Myeloid leukemias and lymphomas are among the most common and well-studied hematological malignancies. However, due to the aggressiveness and rapid progression of certain subtypes, treating these diseases remains a challenge. Considering the promising results of diethyldithiocarbamates in preclinical and clinical oncology trials, this study aimed to investigate the potential of sodium diethyldithiocarbamate trihydrate (DETC) as a prototype for developing new drugs to treat hematological malignancies. In silico analysis using SwissADME was conducted to evaluate the physicochemical characteristics and pharmacokinetic properties of DETC. An in vitro investigation utilizing the MTT assay assessed the cytotoxic effects of DETC on neoplastic and non-neoplastic cell lines. Selectivity was determined using a selectivity index and a hemolysis assay, while the mechanism of cell death in neoplastic cell lines was examined through flow cytometry analysis of pro-apoptotic and anti-apoptotic protein levels. The results demonstrated that the physicochemical characteristics of DETC are suitable for oral administration. Furthermore, the compound showed promising cytotoxic activity against human myeloid leukemia (K562) and Burkitt's lymphoma (Daudi) cell lines, with high selectivity for neoplastic cells over non-neoplastic cells of the bone marrow microenvironment (HS-5 cell line). Moreover, hemolysis was observed only at very high concentrations. The cytotoxicity mechanism of DETC against both neoplastic cell lines involved cell cycle arrest and the production of reactive oxygen species. In K562 cells, cell death was induced via apoptosis. Additional experiments are needed to confirm the exact mechanism of cell death in Daudi Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Natália Marcéli Stefanes
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Lisandra de Oliveira Silva
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Laura Otto Walter
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - João Vitor Steimbach
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Emanueli Markendorf
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Amanda Abdalla Biasi Ribeiro
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Paulo Emílio Feuser
- Graduate Program in Chemical Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Arthur Poester Cordeiro
- Graduate Program in Chemical Engineering, Technological Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
- Graduate Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
10
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
11
|
Correa de Moraes M, Frassini R, Roesch-Ely M, Reisdorfer de Paula F, Barcellos T. Novel Coumarin-Nucleobase Hybrids with Potential Anticancer Activity: Synthesis, In Vitro Cell-Based Evaluation, and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:956. [PMID: 39065804 PMCID: PMC11279566 DOI: 10.3390/ph17070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
A new series of compounds planned by molecular hybridization of the nucleobases uracil and thymine, or the xanthine theobromine, with coumarins, and linked through 1,2,3-triazole heterocycles were evaluated for their in vitro anticancer activity against the human tumor cell lines: colon carcinoma (HCT116), laryngeal tumor cells (Hep-2), and lung carcinoma cells (A549). The hybrid compound 9a exhibited better activity in the series, showing an IC50 of 24.19 ± 1.39 μM against the HCT116 cells, with a selectivity index (SI) of 6, when compared to the cytotoxicity against the non-tumor cell line HaCat. The in silico search for pharmacological targets was achieved through molecular docking studies on all active compounds, which suggested that the synthesized compounds possess a high affinity to the Topoisomerase 1-DNA complex, supporting their antitumor activity. The in silico toxicity prediction studies suggest that the compounds present a low risk of causing theoretical mutagenic and tumorigenic effects. These findings indicate that molecular hybridization from natural derivative molecules is an interesting approach to seek new antitumor candidates.
Collapse
Affiliation(s)
- Maiara Correa de Moraes
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, Francisco Getúlio Vargas St., 1130, Caxias do Sul 95070-560, RS, Brazil;
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul—Campus Caxias do Sul, Avelino Antônio de Souza, 1730, Caxias do Sul 95043-700, RS, Brazil
| | - Rafaele Frassini
- Laboratório de Genômica, Proteômica e Reparo de DNA, Universidade de Caxias do Sul, Francisco Getúlio Vargas St., 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Mariana Roesch-Ely
- Laboratório de Genômica, Proteômica e Reparo de DNA, Universidade de Caxias do Sul, Francisco Getúlio Vargas St., 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Favero Reisdorfer de Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Campus Uruguaiana, BR 472, Km 592, Uruguaiana 97508-000, RS, Brazil;
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, Francisco Getúlio Vargas St., 1130, Caxias do Sul 95070-560, RS, Brazil;
| |
Collapse
|
12
|
Varghese S, Jisha M, Rajeshkumar K, Gajbhiye V, Alrefaei AF, Jeewon R. Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. Heliyon 2024; 10:e33995. [PMID: 39091955 PMCID: PMC11292557 DOI: 10.1016/j.heliyon.2024.e33995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Globally, breast cancer is a primary contributor to cancer-related fatalities and illnesses among women. Consequently, there is a pressing need for safe and effective treatments for breast cancer. Bioactive compounds from endophytic fungi that live in symbiosis with medicinal plants have garnered significant interest in pharmaceutical research due to their extensive chemical composition and prospective medicinal attributes. This review underscores the potentiality of fungal endophytes as a promising resource for the development of innovative anticancer agents specifically tailored for breast cancer therapy. The diversity of endophytic fungi residing in medicinal plants, success stories of key endophytic bioactive metabolites tested against breast cancer and the current progress with regards to in vivo studies and clinical trials on endophytic fungal metabolites in breast cancer research forms the underlying theme of this article. A thorough compilation of putative anticancer compounds sourced from endophytic fungi that have demonstrated therapeutic potential against breast cancer, spanning the period from 1990 to 2022, has been presented. This review article also outlines the latest trends in endophyte-based drug discovery, including the use of artificial intelligence, machine learning, multi-omics approaches, and high-throughput strategies. The challenges and future prospects associated with fungal endophytes as substitutive sources for developing anticancer drugs targeting breast cancer are also being highlighted.
Collapse
Affiliation(s)
- Sherin Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - M.S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, G.G. Agharkar Road, Pune, 411 004, Maharashtra, India
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
13
|
El-Nashar HAS, Al-Azzawi MA, Al-Kazzaz HH, Alghanimi YK, Kocaebli SM, Alhmammi M, Asad A, Salam T, El-Shazly M, Ali MAM. HPLC-ESI/MS-MS metabolic profiling of white pitaya fruit and cytotoxic potential against cervical cancer: Comparative studies, synergistic effects, and molecular mechanistic approaches. J Pharm Biomed Anal 2024; 244:116121. [PMID: 38581932 DOI: 10.1016/j.jpba.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Natural approach became a high demand for the prevention and treatment of such diseases for their proven safety and efficacy. This study is aimed to perform comparative phytochemical analysis of white pitaya (Hylocereus undatus) peel, pulp and seed extracts via determination of total flavonoid content, phenolic content, and antioxidant capacity, coupled with HPLC-ESI/MS-MS analysis. Further, we evaluated the synergistic cytotoxic potential with Cisplatin against cervical cancer cells with investigation of underlying mechanism. The highest content of phenolics and antioxidants were found in both seed and peel extracts. The HPLC-ESI/MS-MS revealed identification of flavonoids, phenolic acids, anthocyanin glycosides, lignans, stilbenes, and coumarins. The cytotoxicity effects were evaluated by MTT assay against prostate, breast and cervical (HeLa) and Vero cell lines. The seed and peel extracts showed remarkable cytotoxic effect against all tested cell lines. Moreover, the selectivity index confirmed high selectivity of pitaya extracts to cancer cells and safety on normal cells. The combined therapy with Cisplatin effectively enhanced its efficacy and optimized the treatment outcomes, through the apoptotic ability of pitaya extracts in HeLa cells, as evaluated by flow cytometry. Besides, RT-PCR and western blotting analysis showed downregulation of Bcl-2 and overexpression of P53, BAX among HeLa cells treated with pitaya extracts, which eventually activated apoptosis process. Thus, pitaya extract could be used as adjuvant therapy with cisplatin for treatment of cervical cancer. Furthermore, in-vivo extensive studies on the seed and peel extracts, and their compounds are recommended to gain more clarification about the required dose, and side effects.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mahmood A Al-Azzawi
- Department of Forensic Science, College of Science, Al-Karkh University of Science, P.O. Box 10081, Baghdad, Iraq
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, Iraq
| | | | | | - Moaz Alhmammi
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed Asad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tarek Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
14
|
da Silva Júnior JN, Oliveira KKDS, Silva ACD, Lorena VMBD, Marques DDAV, Bezerra RP, Porto ALF. Microalgae extracts modulates the immune response in Trypanosoma cruzi-infected human cells. Cytokine 2024; 179:156621. [PMID: 38648682 DOI: 10.1016/j.cyto.2024.156621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.
Collapse
Affiliation(s)
| | | | - Ana Carla da Silva
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife, Brazil
| | - Virginia Maria Barros de Lorena
- Laboratório de Imunoparasitologia, Departamento de Imunologia, Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife, Brazil
| | | | - Raquel Pedrosa Bezerra
- Laboratório de Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil.
| | - Ana Lúcia Figueiredo Porto
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, Brazil; Laboratório de Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Günther A, Zalewski P, Sip S, Ruszkowski P, Bednarczyk-Cwynar B. Oleanolic Acid Dimers with Potential Application in Medicine-Design, Synthesis, Physico-Chemical Characteristics, Cytotoxic and Antioxidant Activity. Int J Mol Sci 2024; 25:6989. [PMID: 39000101 PMCID: PMC11241395 DOI: 10.3390/ijms25136989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The present work aimed to obtain a set of oleanolic acid derivatives with a high level of cytotoxic and antioxidant activities and a low level of toxicity by applying an economical method. Oleanolic acid was alkylated with α,ω-dihalogenoalkane/α,ω-dihalogenoalkene to obtain 14 derivatives of dimer structure. All of the newly obtained compounds were subjected to QSAR computational analysis to evaluate the probability of the occurrence of different types of pharmacological activities depending on the structure of the analysed compound. All dimers were tested for cytotoxicity activity and antioxidant potential. The cytotoxicity was tested on the SKBR-3, SKOV-3, PC-3, and U-87 cancer cell lines with the application of the MTT assay. The HDF cell line was applied to evaluate the tested compounds' Selectivity Index. The antioxidant test was performed with a DPPH assay. Almost all triterpene dimers showed a high level of cytotoxic activity towards selected cancer cell lines, with an IC50 value below 10 µM. The synthesised derivatives of oleanolic acid exhibited varying degrees of antioxidant activity, surpassing that of the natural compound in several instances. Employing the DPPH assay, compounds 2a, 2b, and 2f emerged as promising candidates, demonstrating significantly higher Trolox equivalents and highlighting their potential for pharmaceutical and nutraceutical applications. Joining two oleanolic acid residues through their C-17 carboxyl group using α,ω-dihalogenoalkanes/α,ω-dihalogenoalkenes resulted in the synthesis of highly potent cytotoxic agents with favourable SIs and high levels of antioxidant activity.
Collapse
Affiliation(s)
- Andrzej Günther
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
16
|
Smolobochkin A, Niyazova D, Gazizov A, Syzdykbayev M, Voloshina A, Amerhanova S, Lyubina A, Neganova M, Aleksandrova Y, Babaeva O, Voronina J, Appazov N, Sinyashin O, Alabugin I, Burilov A, Pudovik M. Discovery of Di(het)arylmethane and Dibenzoxanthene Derivatives as Potential Anticancer Agents. Int J Mol Sci 2024; 25:6724. [PMID: 38928428 PMCID: PMC11203978 DOI: 10.3390/ijms25126724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A family of bifunctional dihetarylmethanes and dibenzoxanthenes is assembled via a reaction of acetals containing a 2-chloroacetamide moiety with phenols and related oxygen-containing heterocycles. These compounds demonstrated selective antitumor activity associated with the induction of cell apoptosis and inhibition of the process of glycolysis. In particular, bis(heteroaryl)methane containing two 4-hydroxy-6-methyl-2H-pyran-2-one moieties combine excellent in vitro antitumor efficacy with an IC50 of 1.7 µM in HuTu-80 human duodenal adenocarcinoma models with a high selectivity index of 73. Overall, this work highlights the therapeutic potential of dimeric compounds assembled from functionalized acetals and builds a starting point for the development of a new family of anticancer agents.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Dinara Niyazova
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Marat Syzdykbayev
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
- Nazarbayev Intellectual School Chemical-Biological Direction in Kyzylorda, Sultan Beybars Str., 6, Kyzylorda 120014, Kazakhstan
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Syumbelya Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij pr., 1, Chernogolovka 142432, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij pr., 1, Chernogolovka 142432, Russia
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Julia Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, Moscow 119071, Russia
| | - Nurbol Appazov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Ayteke bi Str., 29A, Kyzylorda 120014, Kazakhstan; (D.N.); (M.S.)
- Limited Liability Partnership «DPS-Kyzylorda», Amangeldi Str., 112A, Kyzylorda 120014, Kazakhstan
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Igor Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
- Department of Chemistry and Biochemistry, Florida State University, Chieftan Way Str., 95, Tallahassee, FL 32306-3290, USA
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| | - Michail Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (A.V.); (O.B.)
| |
Collapse
|
17
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Kania AK, Zdzisińska B. Quantitative Analysis of Isopimpinellin from Ammi majus L. Fruits and Evaluation of Its Biological Effect on Selected Human Tumor Cells. Molecules 2024; 29:2874. [PMID: 38930940 PMCID: PMC11206288 DOI: 10.3390/molecules29122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Ammi majus L. (Apiaceae) is a medicinal plant with a well-documented history in phytotherapy. The aim of the present work was to isolate isopimpinellin (5,8-methoxypsoralen; IsoP) from the fruit of this plant and evaluate its biological activity against selected tumor cell lines. The methanol extract obtained with the use of an accelerated solvent extraction (ASE) method was the most suitable for the quantitative analysis of coumarins in the A. majus fruit matrix. The coumarin content was estimated by RP-HPLC/DAD, and the amount of IsoP was found to be 404.14 mg/100 g dry wt., constituting 24.56% of the total coumarin fraction (1.65 g/100 g). This, along with the presence of xanthotoxin (368.04 mg/100 g, 22.36%) and bergapten (253.05 mg/100 g, 15.38%), confirmed A. majus fruits as an excellent source of these compounds. IsoP was isolated (99.8% purity) by combined liquid chromatography/centrifugal partition chromatography (LC/CPC) and tested for the first time on its antiproliferative activity against human colorectal adenocarcinoma (HT29, SW620), osteosarcoma (Saos-2, HOS), and multiple myeloma (RPMI8226, U266) cell lines. MTT assay results (96 h incubation) demonstrated a dose- and cell line-dependent decrease in cell proliferation/viability, with the strongest effect of IsoP against the Saos-2 cell line (IC50; 42.59 µM), medium effect against U266, HT-29, and RPMI8226 (IC50 = 84.14, 95.53, and 105.0 µM, respectively), and very weak activity against invasive HOS (IC50; 321.6 µM) and SW620 (IC50; 711.30 µM) cells, as well as normal human skin fibroblasts (HSFs), with IC50; 410.7 µM. The mechanistic study on the Saos-2 cell line showed that IsoP was able to reduce DNA synthesis and trigger apoptosis via caspase-3 activation. In general, IsoP was found to have more potency towards cancerous cells (except for HOS and SW620) than against healthy cells. The Selective Index (SI) was determined, underlining the higher selectivity of IsoP towards cancer cells compared to healthy cells (SI = 9.62 against Saos-2). All these results suggest that IsoP might be a promising molecule in the chemo-prevention and treatment of primary osteosarcoma.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Anna Karolina Kania
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
18
|
Akhmetova VR, Akhmadiev NS, Gubaidullin AT, Samigullina AI, Glazyrin AB, Sadykov RA, Ishmetova DV, Vakhitova YV. Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. Metallomics 2024; 16:mfae024. [PMID: 38802123 DOI: 10.1093/mtomcs/mfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.
Collapse
Affiliation(s)
- Vnira R Akhmetova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Nail S Akhmadiev
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Andrey B Glazyrin
- Ufa University of Science and Technology, Mingazheva str. 100, Ufa 450078, Russia
| | - Rais A Sadykov
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
19
|
Demaman Arend G, Verruck S, Zanchett Schneider NF, Oliveira Simões CM, Tres MV, Prudêncio ES, Cunha Petrus JC, Rezzadori K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? MEMBRANES 2024; 14:113. [PMID: 38786947 PMCID: PMC11123244 DOI: 10.3390/membranes14050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The influence of storage stability and simulated gastrointestinal behavior of different extracts of guava leaves extracts (NC: not concentrated, and C10 and C20: concentrated by nanofiltration) was evaluated based on their total phenolic compound (TPC) contents and antioxidant activity as well as on their cytotoxic effects on A549 and Vero cells. The results showed that C10 and C20 presented high stability for 125 days probably due to their high TPC contents and antioxidant activity. The simulated gastrointestinal behavior modified their TPC contents; however, after all digestion steps, the TPC values were higher than 70%, which means that they were still available to exert their bioactivities. Additionally, the cytotoxic effects of these extracts were evaluated before and after the simulated gastrointestinal behavior or under different storage conditions. C10 presented the best selectivity indices (SI) values (IC50 Vero cells/IC50 A549 cells) at both conditions suggesting that it can be considered a potential extract to be developed as a functional food due to its resistance to the gastrointestinal digestion and storage conditions tested.
Collapse
Affiliation(s)
- Giordana Demaman Arend
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - Naira Fernanda Zanchett Schneider
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering—LAPE, Federal University of Santa Maria, Cachoeira do Sul 96503-205, RS, Brazil
| | - Elane Schwinden Prudêncio
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - José Carlos Cunha Petrus
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Katia Rezzadori
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| |
Collapse
|
20
|
Njangiru IK, Bózsity-Faragó N, Resch VE, Paragi G, Frank É, Balogh GT, Zupkó I, Minorics R. A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro. Pharmaceutics 2024; 16:622. [PMID: 38794284 PMCID: PMC11125453 DOI: 10.3390/pharmaceutics16050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound 4a, an analog of 2ME, has demonstrated exceptional pharmacological activity, in addition to promising pharmacokinetic profile. Our study, therefore, aimed at exploring the anticancer effects of 4a on the cervical cancer cell line, HeLa. Compound 4a exhibited a significant and dose-dependent antimetastatic and antiinvasive impact on HeLa cells, as determined by wound-healing and Boyden chamber assays, respectively. Hoechst/Propidium iodide (HOPI) double staining showcased a substantial induction of apoptosis via 4a, with minimal necrotic effect. Flow cytometry revealed a significant G2/M phase arrest, accompanied by a noteworthy rise in the sub-G1 cell population, indicating apoptosis, 18 h post-treatment. Moreover, a cell-independent tubulin polymerisation assay illustrated compound 4a's ability to stabilise microtubules by promoting tubulin polymerisation. Molecular modelling experiments depicted that 4a interacts with the colchicine-binding site, nestled between the α and β tubulin dimers. Furthermore, 4a displayed an affinity for binding to and activating ER-α, as demonstrated by the luciferase reporter assay. These findings underscore the potential of 4a in inhibiting HPV18+ cervical cancer proliferation and cellular motility.
Collapse
Affiliation(s)
- Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Noémi Bózsity-Faragó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Vivien Erzsébet Resch
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- Department of Theoretical Physics, University of Szeged, Tisza Lajos krt. 84-86, 6720 Szeged, Hungary
- Institute of Physics, University of Pécs, H-7622 Pécs, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - György T. Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| |
Collapse
|
21
|
Acácio BR, Prada AL, Neto SF, Gomes GB, Perdomo RT, Nazario CED, Neto ES, Martines MAU, de Almeida DAT, Gasparotto Junior A, Amado JRR. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed Pharmacother 2024; 174:116308. [PMID: 38626517 DOI: 10.1016/j.biopha.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Collapse
Affiliation(s)
- Bianca Rodrigues Acácio
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Serafim Florentino Neto
- Laboratory of Innovation in Pharmaceutical Technology, Federal University of Amazonas, Manaus, AM, Brazil
| | - Giovana Bicudo Gomes
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | | | - Eduardo Sobieski Neto
- Postgraduate Program in Biotechnology, Institute of Chemistry, Federal University of Mato Grosso do Sul, Brazil
| | | | - Danielle Ayr Tavares de Almeida
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Jesus Rafael Rodriguez Amado
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
22
|
Said YA, Hammad SF, Halim MI, El-Moneim AA, Osman A. Assessment of the therapeutic potential of a novel phosphoramidate acyclic nucleoside on induced hepatocellular carcinoma in rat model. Life Sci 2024:122669. [PMID: 38677390 DOI: 10.1016/j.lfs.2024.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
AIMS Hepatocellular Carcinoma (HCC) is renowned as a deadly primary cancer of hepatic origin. Sorafenib is the drug-of-choice for targeted treatment of unresectable end-stage HCC. Unfortunately, great proportion of HCC patients showed intolerance or unresponsiveness to treatment. This study assesses potency of novel ProTide; SH-PAN-19 against N-Nitrosodiethylamine (DEN)-induced HCC in male Wistar rats, compared to Sorafenib. MAIN METHODS Structural entity of the synthesized compound was substantiated via FT-IR, UV-Vis, 1H NMR and 13C NMR spectroscopic analysis. In vitro, SH-PAN-19 cytotoxicity was tested against 3 human cell lines; hepatocellular carcinoma; HepG-2, colorectal carcinoma; HCT-116 and normal fibroblasts; MRC-5. In vivo, therapeutic efficacy of SH-PAN-19 (300 mg/kg b.w./day) against HCC could be revealed and compared to that of Sorafenib (15 mg/kg b.w./day) by evaluating the morphometric, biochemical, histopathological, immunohistochemical and molecular key markers. KEY FINDINGS SH-PAN-19 was relatively safe toward MRC-5 cells (IC50 = 307.6 μg/mL), highly cytotoxic to HepG-2 cells (IC50 = 24.9 μg/mL) and prominently hepato-selective (TSI = 12.35). Oral LD50 of SH-PAN-19 was >3000 mg/kg b.w. DEN-injected rats suffered hepatomegaly, oxidative stress, elevated liver enzymes, hypoalbuminemia, bilirubinemia and skyrocketed AFP plasma titre. SH-PAN-19 alleviated the DEN-induced alterations in apoptotic, angiogenic and inflammatory markers. SH-PAN-19 produced a 2.5-folds increase in Caspase-9 and downregulated VEGFR-2, IL-6, TNF-α, TGFβ-1, MMP-9 and CcnD-1 to levels comparable to that elicited by Sorafenib. SH-PAN-19 resulted in near-complete pathological response versus partial response achieved by Sorafenib. SIGNIFICANCE This research illustrated that SH-PAN-19 is a promising chemotherapeutic agent capable of restoring cellular plasticity and could stop HCC progression.
Collapse
Affiliation(s)
- Youssef A Said
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherif F Hammad
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Mariam I Halim
- Pathology Department, Faculty of Medicine, Ain Shams University, 11566 Cairo, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Physical Chemistry Department, National Research Centre (NRC), 12622 Cairo, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934 New Borg El-Arab City, Alexandria, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
23
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, İrfan Küfrevioğlu Ö, Beydemir Ş. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorg Chem 2024; 145:107221. [PMID: 38387398 DOI: 10.1016/j.bioorg.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 μM to 0.662 ± 0.042 μM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 μM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 μM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 μM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 μM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 μM and 158.49 ± 2.73 μM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002 Erzincan, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya, Turkey.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, 55020 Samsun, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010 İstanbul, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
24
|
Bacchetti F, Schito AM, Milanese M, Castellaro S, Alfei S. Anti Gram-Positive Bacteria Activity of Synthetic Quaternary Ammonium Lipid and Its Precursor Phosphonium Salt. Int J Mol Sci 2024; 25:2761. [PMID: 38474008 DOI: 10.3390/ijms25052761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.
Collapse
Affiliation(s)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sara Castellaro
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
25
|
Demir Z, Sungur B, Bayram E, Özkan A. Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach. DISCOVER NANO 2024; 19:33. [PMID: 38386123 PMCID: PMC10884380 DOI: 10.1186/s11671-024-03977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (FexOy/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC50) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC50 values of FexOy/N-GN were calculated as 21.95 to 2.11 µg.mL-1, IC50 values of N-GN were calculated as 39.64 to 26.47 µg.mL-1 and IC50 values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, FexOy/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of FexOy/N-GN as a new selective therapeutic.
Collapse
Affiliation(s)
- Zeynep Demir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, 07070, Antalya, Turkey
| | - Berkay Sungur
- Department of Chemistry, Institute of Natural and Applied Sciences, Akdeniz University, 07070, Antalya, Turkey
| | - Edip Bayram
- Department of Chemistry, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey
| | - Aysun Özkan
- Department of Biology, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
26
|
Orabi MAA, Abouelela ME, Darwish FMM, Abdelkader MSA, Elsadek BEM, Al Awadh AA, Alshahrani MM, Alhasaniah AH, Aldabaan N, Abdelhamid RA. Ceiba pentandra ethyl acetate extract improves doxorubicin antitumor outcomes against chemically induced liver cancer in rat model: a study supported by UHPLC-Q-TOF-MS/MS identification of the bioactive phytomolecules. Front Pharmacol 2024; 15:1337910. [PMID: 38370475 PMCID: PMC10871037 DOI: 10.3389/fphar.2024.1337910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Faten M. M. Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
27
|
Bednarczyk-Cwynar B, Ruszkowski P. Acylation of Oleanolic Acid Oximes Effectively Improves Cytotoxic Activity in In Vitro Studies. Pharmaceutics 2024; 16:86. [PMID: 38258097 PMCID: PMC10819243 DOI: 10.3390/pharmaceutics16010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The aim of the presented work was to obtain a set of oleanolic acid derivatives with a high level of anticancer activity and a low level of toxicity by applying an economic method. Three types of oleanolic acid derivatives were obtained: (i) derivatives of methyl oleanonate oxime, (ii) derivatives of methyl oleanonate oxime with an additional 11-oxo function, and (iii) derivatives of morpholide of oleanonic acid oxime. (2) Methods: The above oximes were acylated with aliphatic or aromatic carboxylic acid. The newly obtained compounds were subjected to ADMETox analysis and were also tested for cytotoxicity activity on the HeLa, KB, MCF-7, A-549, and HDF cell lines with the MTT assay. (3) Results: Among the tested acylated oximes of oleanolic acid, some derivatives, particularly those with two nitro groups attached to the aromatic ring, proved to be the most potent cytotoxic agents. These triterpene derivatives significantly inhibited the growth of the HeLa, KB, MCF-7, and A-549 cancer cell lines in micromolar concentrations. (4) Conclusions: The introduction of different moieties, particularly the 3,5-dinitro group, resulted in the synthesis of highly potent cytotoxic agents with favorable SI and ADMETox parameters.
Collapse
Affiliation(s)
- Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1, (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland;
| |
Collapse
|
28
|
Kosanić M, Petrovic N, Šeklić D, Živanović M, Kokanović M. Bioactivities and Medicinal Value of the Fruiting Body Extracts of Laetiporus sulphureus and Meripilus giganteus Polypore Mushrooms (Agaricomycetes). Int J Med Mushrooms 2024; 26:17-26. [PMID: 38305259 DOI: 10.1615/intjmedmushrooms.2023051297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In the present investigation methanol and acetone extracts of basidiocarps of mushrooms Laetiporus sulphureus and Meripilus giganteus were evaluated for their antimicrobial, cytotoxic and antioxidant/prooxidant effects. The antimicrobial potential was determined by the microdilution method against ten microorganisms. Cytotoxic effects were evaluated by MTT test, while changes of the redox status parameters (superoxide anion radical, nitrites and reduced glutathione) were determined spectrophotometrically on a human colorectal cancer cell line and human health fibroblasts cells. The results were measured 24 and 72 h after the treatment. Tested extracts exhibited moderate antimicrobial activity with MIC values from 0.004 to 20 mg/mL. The maximum antimicrobial activity was found in the methanol extracts of the M. giganteus against Bacillus subtilis, which was better than positive control. The acetone extract of M. giganteus with IC5072h = 13.36 μg/mL showed significant cytotoxic effect with strong cell selectivity (selectivity index = 37.42) against cancer human colorectal cancer cells. The tested extracts, especially M. giganteus acetone extract, induced an increase in oxidative stress parameters in tested cell lines, but significantly heightened it in human colorectal cancer cells. The obtained results suggest that these extracts, especially M. giganteus acetone extract, can be proposed as a novel source of nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000 Kragujevac, Serbia
| | - Nevena Petrovic
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000, Kragujevac, Serbia
| | - Dragana Šeklić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Marko Živanović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Mihajlo Kokanović
- BioIRC - Bioengineering Research and Development Center, Kragujevac, Serbia
| |
Collapse
|
29
|
Jones MA, Borun A, Greensmith DJ. Boswellia carterii oleoresin extracts induce caspase-mediated apoptosis and G 1 cell cycle arrest in human leukaemia subtypes. Front Pharmacol 2023; 14:1282239. [PMID: 38155908 PMCID: PMC10752984 DOI: 10.3389/fphar.2023.1282239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Leukemias are a common cancer in adults and children. While existing treatments are effective, they are associated with severe side-effects compounded by the emergence of drug resistance. This necessitates the need to develop new drugs and phytopharmaceuticals offer a largely untapped source. Oleoresins produced by plants in the genus Boswellia have been used for centuries in traditional medicine and recent work suggests they may exhibit anti-cancer activity. However, the underlying mechanisms remain unclear and most existing research focusses on Boswellia serrata; just one of many species in the Boswellia genus. To address these limitations, we elucidated the anti-cancer potential and associated mechanisms of action of Boswellia carterii. Methods: A methanolic solvent extraction method was optimised. The effect of methanolic extracts of B. carterii on leukaemia (K562, MOLT-4 and CCRF-CEM) and normal (PBMC) cell line viability was assessed using MTT assay and flow cytometry. Cell morphology, apoptosis (Annexin-V/propidium iodide), mitochondrial membrane potential (Rhodamine-123) and the cell cycle (propidium iodide) were evaluated using flow cytometry. Regulatory protein expression was quantified using Western Blot. Results: Methanolic extracts of B. carterii oleoresin reduced the viability of K562, MOLT-4 and CCRF-CEM cell lines with selectivity indexes of between 1.75 and 2.68. Extracts increased the proportion of cells in late apoptosis by 285.4% ± 51.6%. Mitochondrial membrane potential was decreased by 41% ± 2% and the expression of cleaved caspase-3, -7, and -9 was increased by 5.7, 3.3, and 1.5-fold respectively. Extracts increased the proportion of cells in subG1 and G1 phase by 867.8% ± 122.9% and 14.0 ± 5.5 and decreased those in S phase and G2/M by 63.4% ± 2.0% and 57.6% ± 5.3%. Expression of CDK2, CDK6, cyclin D1, and cyclin D3 were decreased by 2.8, 4.9, 3.9, and 2.5-fold. Conclusion: We are the first to report that methanolic extracts of B. carterii are selectively cytotoxic against three leukemia cell lines. Cytotoxic mechanisms likely include activation of the intrinsic apoptotic pathway and cell cycle arrest through downregulation of CDK2, CDK6, cyclin D1, and cyclin D3. Our findings suggest that B. carterii may be an important source of novel chemotherapeutic drugs and justifies further investigation.
Collapse
Affiliation(s)
| | | | - David James Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
30
|
Alorini T, Al-Hakimi AN, Daoud I, Alminderej F, Albadri AEAE, Aroua L. Synthesis, characterization, anticancer activity and molecular docking of metal complexes bearing a new Schiff base ligand. J Biomol Struct Dyn 2023; 41:10969-10984. [PMID: 36961125 DOI: 10.1080/07391102.2023.2191725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/10/2022] [Indexed: 03/25/2023]
Abstract
2-((E)-((4-(((E)-4-Nitrobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol, was synthesised followed by metalation with Fe(III), Co(III), Cu(II), Zn(II) and Ni(II) metals. The compounds were characterised by different methods CHN, AAS, IR, NMR, XRD, TGA and UV-Vis. The results reveal that the ligand has bidentate behavior, and it is bound with metals by a coordination bond through both the nitrogen atom of the azomethine group and the oxygen atom, this provided an octahedral geometry. The X-ray diffraction of the compounds indicate that the ligands and complexes of Co(III), Fe(III) and Zn(II) have a crystalline nature, whereas the Ni(II) and Cu(II) have an amorphous structure. The agar diffusion method (hole plate) was used to evaluate the ligand's and its complexes' antibacterial and antifungal effects on Salmonella enterica serovar typhi and Candida albicans, respectively. It was observed that the Fe(III) complex had the best activity among the compounds against microbial strains. Cytotoxicity of new metal complexes was also assessed against A549, HepG-2 and PC-3 cancer cells. Results demonstrated that the Cu(II) complex displayed the preeminent activity among the synthesised compounds against all the tested cell lines. Furthermore, molecular docking simulation revealed that the Fe(III) complex is shown to have a high affinity with the active sites of two targets of microbial strains. Also, the Cu(II) complex shown to has a high affinity with the active sites of three targets of A-549, HepG-2 and PC-3 cancer cells, which was confirmed by the formation of the different modes of interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thamer Alorini
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed N Al-Hakimi
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | - Ismail Daoud
- Faculty of Science, Department of Chemistry, Laboratory of Natural Substances and Bioactive (LASNABIO), University Abou-Bakr Belkaid, Tlemcen, Algeria
- Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Fahad Alminderej
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Lotfi Aroua
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, Tunis, Tunisia
| |
Collapse
|
31
|
Haffez H, Elsayed NA, Ahmed MF, Fatahala SS, Khaleel EF, Badi RM, Elkaeed EB, El Hassab MA, Hammad SF, Eldehna WM, Masurier N, El-Haggar R. Novel N-Arylmethyl-aniline/chalcone hybrids as potential VEGFR inhibitors: synthesis, biological evaluations, and molecular dynamic simulations. J Enzyme Inhib Med Chem 2023; 38:2278022. [PMID: 37982203 PMCID: PMC11003488 DOI: 10.1080/14756366.2023.2278022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
Significant advancements have been made in the domain of targeted anticancer therapy for the management of malignancies in recent times. VEGFR-2 is characterised by its pivotal involvement in angiogenesis and subsequent mechanisms that promote tumour cells survival. Herein, novel N-arylmethyl-aniline/chalcone hybrids 5a-5n were designed and synthesised as potential anticancer and VEGFR-2 inhibitors. The anticancer activity was evaluated at the NCI-USA, resulting in the identification of 10 remarkably potent molecules 5a-5j that were further subjected to the five-dose assays. Thereafter, they were explored for their VEGFR-2 inhibitory activity where 5e and 5h emerged as the most potent inhibitors. 5e and 5h induced apoptosis with cell cycle arrest at the SubG0-G1 phase within HCT-116 cells. Moreover, their impact on some key apoptotic genes was assessed, suggesting caspase-dependent apoptosis. Furthermore, molecular docking and molecular dynamics simulations were conducted to explore the binding modes and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo, Egypt
| | - Nosaiba A. Elsayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sherif F. Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Egypt Alexandria
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| |
Collapse
|
32
|
López-López D, Razo-Hernández RS, Millán-Pacheco C, Leyva-Peralta MA, Peña-Morán OA, Sánchez-Carranza JN, Rodríguez-López V. Ligand-Based Drug Design of Genipin Derivatives with Cytotoxic Activity against HeLa Cell Line: A Structural and Theoretical Study. Pharmaceuticals (Basel) 2023; 16:1647. [PMID: 38139774 PMCID: PMC10748106 DOI: 10.3390/ph16121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer is a malignant neoplastic disease, mainly associated to HPV infection, with high mortality rates. Among natural products, iridoids have shown different biological activities, including cytotoxic and antitumor effects, in different cancer cell types. Geniposide and its aglycone Genipin have been assessed against different types of cancer. In this work, both iridoids were evaluated against HeLa and three different cervical cancer cell lines. Furthermore, we performed a SAR analysis incorporating 13 iridoids with a high structural similarity to Geniposide and Genipin, also tested in the HeLa cell line and at the same treatment time. Derived from this analysis, we found that the dipole moment (magnitude and direction) is key for their cytotoxic activity in the HeLa cell line. Then, we proceeded to the ligand-based design of new Genipin derivatives through a QSAR model (R2 = 87.95 and Q2 = 62.33) that incorporates different quantum mechanic molecular descriptor types (ρ, ΔPSA, ∆Polarizability2, and logS). Derived from the ligand-based design, we observed that the presence of an aldehyde or a hydroxymethyl in C4, hydroxyls in C1, C6, and C8, and the lack of the double bond in C7-C8 increased the predicted biological activity of the iridoids. Finally, ten simple iridoids (D9, D107, D35, D36, D55, D56, D58, D60, D61, and D62) are proposed as potential cytotoxic agents against the HeLa cell line based on their predicted IC50 value and electrostatic features.
Collapse
Affiliation(s)
- Diana López-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.L.-L.); (C.M.-P.); (J.N.S.-C.)
| | - Rodrigo Said Razo-Hernández
- Laboratorio de Quimioinformática y Diseño de Fármacos, Centro de Investigación en Dinámica Celular, Instituto de investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.L.-L.); (C.M.-P.); (J.N.S.-C.)
| | - Mario Alberto Leyva-Peralta
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, H. Caborca, Sonora 83621, Mexico;
| | - Omar Aristeo Peña-Morán
- Departamento de Ciencias Farmacéuticas, División de Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77019, Mexico;
| | | | - Verónica Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.L.-L.); (C.M.-P.); (J.N.S.-C.)
| |
Collapse
|
33
|
Laxmikeshav K, Rahman Z, Mahale A, Gurukkala Valapil D, Sharma P, George J, Phanindranath R, Dandekar MP, Kulkarni OP, Nagesh N, Shankaraiah N. Benzimidazole derivatives as tubulin polymerization inhibitors: Design, synthesis and in vitro cytotoxicity studies. Bioorg Med Chem Lett 2023; 96:129494. [PMID: 37797804 DOI: 10.1016/j.bmcl.2023.129494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 μM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Durgesh Gurukkala Valapil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Joel George
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Onkar P Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
34
|
Ramos-Enríquez MA, Vazquez-Chavez J, Campos-Xolalpa N, Pérez-Gutiérrez S, Iglesias-Arteaga MA. Synthesis, NMR characterization and cytotoxic activity of hybrid spirostanic sapogenins-estradiol dimers. Steroids 2023; 199:109286. [PMID: 37517593 DOI: 10.1016/j.steroids.2023.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Four hybrid steroid dimers were obtained by BF3·Et2O-catalyzed aldol condensation of acetylated steroid sapogenins with 2-formyl-estradiol diacetate. The structures of the obtained dimers were unambiguously established by NMR. The hybrid dimers 9a (IC50 18.37 μM) and 9c (IC50 9.4 μM) with the 5α configuration at the A/B rings junction showed the higher cytotoxicity against HeLa, with selectivity index of 4.36 and 11.8 respectively. The presence of a carbonyl function at position C-12 produced the highest cytotoxic effect, which is in line with our previous reports.
Collapse
Affiliation(s)
- Manuel A Ramos-Enríquez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Josué Vazquez-Chavez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Nimsi Campos-Xolalpa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán, 04960 Ciudad de México, Mexico
| | - Salud Pérez-Gutiérrez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán, 04960 Ciudad de México, Mexico
| | - Martín A Iglesias-Arteaga
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
35
|
Fayez D, Youssif A, Sabry S, Ghozlan H, El-Sayed F. Some novel bioactivities of Virgibacillus halodenitrificans carotenoids, isolated from Wadi El-Natrun lakes. Saudi J Biol Sci 2023; 30:103825. [PMID: 37869364 PMCID: PMC10587757 DOI: 10.1016/j.sjbs.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Carotenoids come in second among the most frequent natural pigments and are utilized in medications, nutraceuticals, cosmetics, food pigments, and feed supplements. Based on recent complementary work, Virgibacillus was announced for the first time as a member of Wadi El-Natrun salt and soda lakes microbiota, identified as Virgibacillus halodenitrificans, and named V. halodenitrificans DASH; hence, this work aimed to investigate several in vitro medicinal bioactivities of V. halodenitrificans DASH carotenoids. The carotenoid methanolic extract showed antioxidant activity based on diphenylpicrylhydrazyl (DPPH) scavenging capacity with a half-maximal concentration (IC50) of 1.6 mg/mL as well as nitric oxide (NO) scavenging action expressed by an IC50 of 46.4 µg/mL. The extract showed considerable inhibitory activity for alpha-amylase (α-amylase) and alpha-glucosidase (α-glucosidase) enzymes (IC50 of 100 and 173.4 μg/mL, respectively). Moreover, the extract displayed selective anticancer activity against Caco-2 (IC50 = 138.96 µg/mL) and HepG-2 cell lines (IC50 = 31.25 µg/mL), representing colorectal adenocarcinoma and hepatoblastoma. Likewise, the extract showed 98.9 % clearance for human hepatitis C virus (HCV) using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), HCV-NS5B polymerase activity inhibition (IC50 = 27.4 µg/mL), and selective inhibitory activity against human coronavirus (HCoV 229E) using the plaque reduction assay (IC50 = 53.5 µg/mL). As far as we can tell, the anticancer, antiviral, and antidiabetic attributes of Virgibacillus carotenoids are, de novo, reported in this work which accordingly invokes further exploration of the other medicinal, biotechnological, and industrial applications of Virgibacillus and haloalkaliphilic bacteria carotenoids.
Collapse
Affiliation(s)
- Doaa Fayez
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Asmaa Youssif
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Soraya Sabry
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Hanan Ghozlan
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Fatma El-Sayed
- Cell Culture Unit, Medical Technology Center, Medical Research Institute, University of Alexandria, Egypt
| |
Collapse
|
36
|
Mironov VF, Dimukhametov MN, Nemtarev AV, Pashirova TN, Tsepaeva OV, Voloshina AD, Vyshtakalyuk AB, Litvinov IA, Lyubina AP, Sapunova AS, Abramova DF, Zobov VV. Novel Mitochondria-Targeted Amphiphilic Aminophosphonium Salts and Lipids Nanoparticles: Synthesis, Antitumor Activity and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2840. [PMID: 37947686 PMCID: PMC10649961 DOI: 10.3390/nano13212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 μM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra B. Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anastasiia S. Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Dinara F. Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Vladimir V. Zobov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| |
Collapse
|
37
|
Sakthikumar K, Kabuyaya Isamura B, Krause RWM. Exploring the antioxidant, antimicrobial, cytotoxic and biothermodynamic properties of novel morpholine derivative bioactive Mn(ii), Co(ii) and Ni(ii) complexes - combined experimental and theoretical measurements towards DNA/BSA/SARS-CoV-2 3CL Pro. RSC Med Chem 2023; 14:1667-1697. [PMID: 37731703 PMCID: PMC10508264 DOI: 10.1039/d2md00394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 09/22/2023] Open
Abstract
A novel class of bioactive complexes (1-3) [MII(L)2(bpy)], where, L = 2-(4-morpholinobenzylideneamino)phenol, bpy = 2,2'-bipyridine, MII = Mn (1), Co (2) or Ni (3), were assigned to octahedral geometry based on analytical and spectral measurements. Gel electrophoresis showed that complex (2) demonstrated significant DNA cleavage activity compared to the other complexes under the action of oxidation agent (H2O2). The DNA binding constant properties measured by various techniques were in the following sequence: (2) > (3) > (1) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is also supported by their biothermodynamic characteristics. The binding constant results for BSA from electronic absorption and fluorometric titrations demonstrate that complex (2) exhibits the highest binding effectiveness among them all, which means that all the compounds could interact with BSA through a static approach, additionally supported by FRET measurements. DFT and docking calculations were employed to realize the electronic structure, reactivity, and interaction capability of all substances with DNA, BSA, and the SARS-CoV-2 main protease. These binding energies fell within the ranges -7.7 to -8.5, -8.2 to -10.1 and -6.7 to -9.3 kcal mol-1, respectively. The higher reactivity of the complexes than the ligand is supported by FMO theory. The in vitro antibacterial, cytotoxicity, and radical scavenging characteristics revealed that complexes (2-3) have better biological efficacy than the others. The cytotoxicity and binding properties also show good correlation with the partition coefficient (log P), which is encouraging because all of the experimental findings are closely correlated with the theoretical measurements.
Collapse
Affiliation(s)
- Karunganathan Sakthikumar
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
| | - Bienfait Kabuyaya Isamura
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Department of Chemistry, The University of Manchester Manchester M13 9PL UK
| | - Rui Werner Maçedo Krause
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa +27 741622674 +27 46 603 7030
| |
Collapse
|
38
|
Shruthi S, Mumbrekar KD, Rao BSS, Shenoy BK. Gallic acid: a polyphenolic compound potentiates the therapeutic efficacy of cisplatin in human breast cancer cells. Toxicol Res (Camb) 2023; 12:544-550. [PMID: 37663803 PMCID: PMC10470337 DOI: 10.1093/toxres/tfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 09/05/2023] Open
Abstract
Gallic acid (GA) is a natural polyhydroxyphenolic compound with antioxidant, antimutagenic, anti-inflammatory, and antineoplastic activities. Cisplatin (CPT) is a platinum-based chemotherapeutic drug, and it is the treatment of choice for breast, ovarian, testicular, head, and neck cancers. However, the use of anticancer drugs has undesirable effects on patients due to associated toxicities. Thus, it is necessary to search for alternatives that reduce unintended side effects and enhance anticancer potential. The use of natural compounds with the conventional chemotherapeutic drug is a new aspect of cancer therapy. In the present study, we evaluated the ability of GA in the modulation of anticancer effects of CPT in human breast adenocarcinoma cells (MCF-7) by performing MTT, apoptosis, clonogenic cell survival, and micronucleus assays. GA and CPT showed significant cytotoxic activities in MCF-7 cells in a dose-dependent manner. In combination therapy (GA 2.5, 5.0, and 10 μg/mL + CPT10 μg/mL), GA synergistically reduced the MCF-7 cell viability in contrast to the individual therapies. Cancer cells death by GA is through the induction of apoptosis as observed in the acridine orange and ethidium bromide dual staining method. The frequency of micronuclei (MN) was decreased significantly (P < 0.001) in combinational therapy, possibly reducing the risk of chemotherapy-induced MN. Moreover, GA in mono or combinational therapy did not induce any cytotoxic effects in normal breast epithelial cells (MCF-10A). GA did not show any significant difference in colony inhibition compared to CPT. This outcome shows its differential effects in normal and cancerous cells. Hence, the combination GA with chemotherapeutic drugs could represent a promising alternative therapy in cancer treatment with minimal side effects.
Collapse
Affiliation(s)
- S Shruthi
- Department of Postgraduate Studies in Applied Zoology, Alva’s College, Vidyagiri, Moodbidri, Dakshina Kannada, Karnataka 574227, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B S Satish Rao
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Research Directorate Office, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bhasker K Shenoy
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Dakshina Kannada, Karnataka 574199, India
| |
Collapse
|
39
|
Pekkoh J, Ruangrit K, Kaewkod T, Tragoolpua Y, Hoijang S, Srisombat L, Wichapein A, Pathom-Aree W, Kato Y, Wang G, Srinuanpan S. Innovative Eco-Friendly Microwave-Assisted Rapid Biosynthesis of Ag/AgCl-NPs Coated with Algae Bloom Extract as Multi-Functional Biomaterials with Non-Toxic Effects on Normal Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2141. [PMID: 37513152 PMCID: PMC10383740 DOI: 10.3390/nano13142141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Antira Wichapein
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
40
|
Hu J, Qi Q, Zhu Y, Wen C, Olatunji OJ, Jayeoye TJ, Eze FN. Unveiling the anticancer, antimicrobial, antioxidative properties, and UPLC-ESI-QTOF-MS/ GC–MS metabolite profile of the lipophilic extract of siam weed (Chromolaena odorata). ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
41
|
Brás AR, Fernandes P, Moreira T, Morales-Sanfrutos J, Sabidó E, Antunes AMM, Valente A, Preto A. New Ruthenium-Cyclopentadienyl Complexes Affect Colorectal Cancer Hallmarks Showing High Therapeutic Potential. Pharmaceutics 2023; 15:1731. [PMID: 37376178 DOI: 10.3390/pharmaceutics15061731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the most promising metallodrugs, due to their high selectivity to cancer cells. In this work we studied, for the first time, the anticancer properties and mechanisms of action of four lead Ru-cyclopentadienyl compounds, namely PMC79, PMC78, LCR134 and LCR220, in two CRC-derived cell lines (SW480 and RKO). Biological assays were performed on these CRC cell lines to evaluate cellular distribution, colony formation, cell cycle, proliferation, apoptosis, and motility, as well as cytoskeleton and mitochondrial alterations. Our results show that all the compounds displayed high bioactivity and selectivity, as shown by low half-maximal inhibitory concentrations (IC50) against CRC cells. We observed that all the Ru compounds have different intracellular distributions. In addition, they inhibit to a high extent the proliferation of CRC cells by decreasing clonogenic ability and inducing cell cycle arrest. PMC79, LCR134, and LCR220 also induce apoptosis, increase the levels of reactive oxygen species, lead to mitochondrial dysfunction, induce actin cytoskeleton alterations, and inhibit cellular motility. A proteomic study revealed that these compounds cause modifications in several cellular proteins associated with the phenotypic alterations observed. Overall, we demonstrate that Ru compounds, especially PMC79 and LCR220, display promising anticancer activity in CRC cells with a high potential to be used as new metallodrugs for CRC therapy.
Collapse
Affiliation(s)
- Ana Rita Brás
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Tiago Moreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Catalonia, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Catalonia, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
42
|
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Genova T. Collagen Hydrolysate Effects on Photodynamic Efficiency of Gallium (III) Phthalocyanine on Pigmented Melanoma Cells. Gels 2023; 9:475. [PMID: 37367145 DOI: 10.3390/gels9060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The conjugation of photosensitizer with collagen seems to be a very promising approach for innovative topical photodynamic therapy (PDT). The study aims to evaluate the effects of bovine collagen hydrolysate (Clg) on the properties of gallium (III) phthalocyanine (GaPc) on pigmented melanoma. The interaction of GaPc with Clg to form a conjugate (GaPc-Clg) showed a reduction of the intensive absorption Q-band (681 nm) with a blue shift of the maximum (678 nm) and a loss of shape of the UV-band (354 nm). The fluorescence of GaPc, with a strong emission peak at 694 nm was blue shifted due to the conjugation which lower intensity owing to reduce quantum yield (0.012 vs. 0.23, GaPc). The photo- and dark cytotoxicity of GaPc, Glg and GaPc-Clg on pigmented melanoma cells (SH-4) and two normal cell lines (BJ and HaCaT) showed a slight decrease of cytotoxicity for a conjugate, with low selectivity index (0.71 vs. 1.49 for GaPc). The present study suggests that the ability of collagen hydrolysate to form gels minimizes the high dark toxicity of GaPc. Collagen used for conjugation of a photosensitizer might be an essential step in advanced topical PDT.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 9, 1113 Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bl. 25, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bl. 25, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Tsanislava Genova
- Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| |
Collapse
|
43
|
Xu Y, He Z, Chen L, Wang H. A recent antitumor story of podophyllotoxin derivatives targeting tubulin: an update (2017-2022). Drug Discov Today 2023:103640. [PMID: 37236524 DOI: 10.1016/j.drudis.2023.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
So far, numerous tubulin-targeted podophyllotoxin congeners were designed and synthesized to overcome the poor water-solubility and improve the pharmaceutical characteristics. However, few studies are dedicated to exploring the interaction of tubulin with the downstream signal transduction pathways, which is important for gaining insight into the role of tubulin in the anticancer action of podophyllotoxin-based conjugates. In this review, we described a detailed account of all the advances on tubulin targeting-podophyllotoxin derivatives from 2017 and 2022 with in depth knowledge about their antitumor action and potential molecular signaling pathways directly involved in tubulin depolymerization, aiming to help researchers design and develop better anticancer drugs derived from podophyllotoxin. Moreover, we also discussed the associated challenges and future opportunities in this field. Short teaser Recent reviews summarized podophyllotoxin-based analogues, with interaction between tubulin and signal pathways being rarely involved. This review comprehensively sum up how podophyllotoxin derivatives targeting tubulin exert their antitumor action via potential molecular signaling pathways.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China
| | - Zihan He
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China
| | - Li Chen
- Hubei Provincial Center for Disease Control and Prevention, 35 Zhuo Daoquan North Road, Wuhan, Hubei 430079, P. R. China
| | - Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China.
| |
Collapse
|
44
|
Mobbili G, Romaldi B, Sabbatini G, Amici A, Marcaccio M, Galeazzi R, Laudadio E, Armeni T, Minnelli C. Identification of Flavone Derivative Displaying a 4'-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells. Molecules 2023; 28:molecules28073239. [PMID: 37050002 PMCID: PMC10096842 DOI: 10.3390/molecules28073239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.
Collapse
Affiliation(s)
- Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Adolfo Amici
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Massimo Marcaccio
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Marche Polytechnic University, 60131 Ancona, Italy
| | - Tatiana Armeni
- Department of Specialist Clinical Sciences, School of Medicine, Marche Polytechnic University, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
45
|
Ishak SF, Rajab NF, Basri DF. Antiproliferative Activities of Acetone Extract From Canarium Odontophyllum (Dabai) Stem Bark Against Human Colorectal Cancer Cells. Dose Response 2023; 21:15593258221098980. [PMID: 37077718 PMCID: PMC10108421 DOI: 10.1177/15593258221098980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 04/21/2023] Open
Abstract
Colorectal cancer is the most common malignant cancer in developing countries. Canarium odontophyllum, also known as "Dabai" or "Borneo Olive" is among the natural plants that can potentially be used as an anticancer agent. This study aims to determine the antiproliferative activities and cytotoxicity effects of acetone extract from C. odontophyllum stem bark against human colorectal cancer cell lines HCT 116 and HT 29. Acetone extract of C. odontophyllum stem bark exerted a significant cytotoxic effect on HCT 116 and HT 29 cells determined by MTT assay at the concentration of 12.5 μg/mL to 200 μg/mL for 24, 48, and 72 hours treatment. It was found that acetone extract of C. odontophyllum stem bark inhibited proliferation of HCT 116 with an IC50 value of 184.93 ± .0 μg/mL, 61.24 ± .1 μg/mL, 79.98 ± .029 for 24, 48 and 72 hours respectively. The findings also showed that acetone extract of C. odontophyllum stem bark revealed a lower inhibitory effect against HT-29 with an IC50 value of more than 200 μg/mL for 24, 48 and 72 hours. However, acetone extract of C. odontophyllum stem bark at similar concentrations and time points did not show any cytotoxic effect to normal colorectal fibroblast cell CCD18-Co. In conclusion, the acetone extract of C. odontophyllum stem bark exhibited more sensitivity against HCT 116 than HT 29. Its antiproliferative ability towards HCT 116 and HT 29 cells provides insight that this extract may serve as an anticancer agent against colorectal cancer.
Collapse
Affiliation(s)
- Siti Fairuz Ishak
- Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Center for Healthy Aging and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dayang Fredalina Basri
- Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Dayang Fredalina Basri, Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Santos VLDA, Gonsalves ADA, Guimarães DG, Simplicio SS, Oliveira HPD, Ramos LPS, Costa MPD, Oliveira FDCED, Pessoa C, Araújo CRM. Naphth[1,2-d]imidazoles Bioactive from β-Lapachone: Fluorescent Probes and Cytotoxic Agents to Cancer Cells. Molecules 2023; 28:molecules28073008. [PMID: 37049771 PMCID: PMC10096064 DOI: 10.3390/molecules28073008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Theranostics combines therapeutic and imaging diagnostic techniques that are extremely dependent on the action of imaging agent, transporter of therapeutic molecules, and specific target ligand, in which fluorescent probes can act as diagnostic agents. In particular, naphthoimidazoles are potential bioactive heterocycle compounds to be used in several biomedical applications. With this aim, a group of seven naphth[1,2-d]imidazole compounds were synthesized from β-lapachone. Their optical properties and their cytotoxic activity against cancer cells and their compounds were evaluated and confirmed promising values for molar absorptivity coefficients (on the order of 103 to 104), intense fluorescence emissions in the blue region, and large Stokes shifts (20–103 nm). Furthermore, the probes were also selective for analyzed cancer cells (leukemic cells (HL-60). The naphth[1,2-d]imidazoles showed IC50 between 8.71 and 29.92 μM against HL-60 cells. For HCT-116 cells, values for IC50 between 21.12 and 62.11 μM were observed. The selective cytotoxicity towards cancer cells and the fluorescence of the synthesized naphth[1,2-d]imidazoles are promising responses that make possible the application of these components in antitumor theranostic systems.
Collapse
|
47
|
Soto KM, Pérez Bueno JDJ, Mendoza López ML, Apátiga-Castro M, López-Romero JM, Mendoza S, Manzano-Ramírez A. Antioxidants in Traditional Mexican Medicine and Their Applications as Antitumor Treatments. Pharmaceuticals (Basel) 2023; 16:ph16040482. [PMID: 37111239 PMCID: PMC10145960 DOI: 10.3390/ph16040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Traditional medicine in Latin America and mainly in Mexico represents an essential alternative for treating different diseases. The use of plants as medicine is the product of a rich cultural tradition of the indigenous peoples, in which a great variety of species are used for the treatment of gastrointestinal, respiratory, and mental diseases and some other sicknesses; the therapeutic efficacy that they possess is due to the properties that derive from the active ingredients of plants principally antioxidants, such as phenolic compounds, flavonoids, terpenes, and tannins. An antioxidant is a substance that, at low concentrations, delays or prevents substrate oxidation through the exchange of electrons. Different methods are used to determine the antioxidant activity and the most commonly used are described in the review. Cancer is a disease in which some cells multiply uncontrollably and spread to other parts of the body, a process known as metastasis. These cells can lead to the formation of tumors, which are lumps of tissue that can be cancerous (malignant) or noncancerous (benign). Generally, the treatment of this disease consists of surgery, radiotherapy, or chemotherapy, which have side effects that decrease the quality of life of patients, so new treatments, focusing on natural resources such as plants, can be developed. This review aims to gather scientific evidence on the antioxidant compounds present in plants used in traditional Mexican medicine, specifically as antitumor treatment in the most common cancer types worldwide (e.g., breast, liver, and colorectal cancer).
Collapse
Affiliation(s)
- Karen M Soto
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| | - José de Jesús Pérez Bueno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico, Querétaro-Sanfandila, Pedro Escobedo, Santiago de Querétaro 76703, Mexico
| | - Maria Luisa Mendoza López
- Tecnológico Nacional de México, Instituto Tecnológico de Querétaro, Av. Tecnológico s/n, Esq. Mariano, Escobedo Colonia Centro, Santiago de Querétaro 76000, Mexico
| | - Miguel Apátiga-Castro
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A.P. 1-1010, Querétaro 76230, Mexico
| | - José M López-Romero
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| | - Sandra Mendoza
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Alejandro Manzano-Ramírez
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| |
Collapse
|
48
|
Tsepaeva OV, Nemtarev AV, Pashirova TN, Khokhlachev MV, Lyubina AP, Amerkhanova SK, Voloshina AD, Mironov VF. Novel triphenylphosphonium amphiphilic conjugates of glycerolipid type: synthesis, cytotoxic and antibacterial activity, and targeted cancer cell delivery. RSC Med Chem 2023; 14:454-469. [PMID: 36970146 PMCID: PMC10034156 DOI: 10.1039/d2md00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This work deals with the creation of new cationic triphenylphosphonium amphiphilic conjugates of glycerolipid type (TPP-conjugates), bearing a pharmacophore terpenoid fragment (abietic acid and betulin) and a fatty acid residue in one hybrid molecule as a new generation of antitumor agents with high activity and selectivity. The TPP-conjugates showed high mitochondriotropy leading to the development of mitochondriotropic delivery systems such as TPP-pharmacosomes and TPP-solid lipid particles. Introducing the betulin fragment into the structure of a TPP-conjugate (compound 10) increases the cytotoxicity 3 times towards tumor cells of prostate adenocarcinoma DU-145 and 4 times towards breast carcinoma MCF-7 compared to TPP-conjugate 4a in the absence of betulin. TPP-hybrid conjugate 10 with two pharmacophore fragments, betulin and oleic acid, has significant cytotoxicity toward a wide range of tumor cells. The lowest IC50 of 10 is 0.3 μM toward HuTu-80. This is at the level of the reference drug doxorubicin. TPP-pharmacosomes (10/PC) increased the cytotoxic effect approximately 3 times toward HuTu-80 cells, providing high selectivity (SI = 480) compared to the normal liver cell line Chang liver.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Michail V Khokhlachev
- Kazan (Volga Region) Federal University Kremlevskaya Str. 18 420008 Kazan Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Syumbelya K Amerkhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS Arbuzov Str. 8 420088 Kazan Russian Federation
| |
Collapse
|
49
|
Cibotaru S, Sandu AI, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int J Mol Sci 2023; 24:ijms24065449. [PMID: 36982524 PMCID: PMC10049495 DOI: 10.3390/ijms24065449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure–antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay. In order to find the potential influence of different building blocks on antitumor activity, the antioxidant activity, the ability to inhibit farnesyltransferase and the capacity to bind amino acids relevant for tumor cell growth were investigated as well. It was established that different building blocks conferred different functionalities, inducing specific antitumor activity against the tumor cells.
Collapse
|
50
|
Ramírez-Villalobos JM, Gomez-Flores R, Velázquez-Flores PV, Morán-Santibáñez KS, Tamez-Guerra P, Pérez-González O, de la Garza-Ramos MA, Rodríguez-Padilla C, Romo-Sáenz CI. Effect of Culture Conditions of Lophocereus marginatus Endophytic Fungi on Yield and Anticancer and Antioxidant Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20053948. [PMID: 36900961 PMCID: PMC10001847 DOI: 10.3390/ijerph20053948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 05/29/2023]
Abstract
Culture conditions affect the production of secondary metabolites in endophytic fungi. Therefore, the aim of the present study was to evaluate the yield and anticancer and antioxidant activity of endophytic fungi extracts from the cactus Lophocereus marginatus, under different culture conditions. The strains Penicillium citrinum, Aspergillus versicolor, Metarhizium anisopliae, and Cladosporium sp. were fermented in different culture media (potato dextrose agar, Czapeck broth, and malt broth), types of inoculums (spore or mycelium), and shaking conditions (150 rpm or static) for one week. Methanol extracts were obtained from mycelia, which was followed by determining their yields and evaluating their effect on L5178Y-R murine lymphoma cells growth and human peripheral blood mononuclear cells (PBMCs) viability, using the 3-[4,5dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide reduction colorimetric assay. In addition, antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl test. We determined the half-maximal inhibitory concentration (IC50) values of tumor cell growth inhibition, the selectivity index (SI), and the antioxidant activity, as compared with the healthy cells control. The best yields were obtained with the Czapeck broth medium in all the evaluated strains, reaching values of 50.3%. Of the 48 extracts evaluated, only seven significantly (p < 0.01) inhibited tumor cell growth (IC50 < 250 µg/mL). A. versicolor extract showed the highest anticancer activity, after culturing spores (IC50 = 49.62 µg/mL; SI = 15.8) or mycelium (IC50 = 69.67 µg/mL; SI = 12.2) in malt broth, under static conditions. Extracts did not present significant antioxidant activity. In conclusion, we showed that culture conditions influenced the anticancer activity of L. marginatus endophytic fungi.
Collapse
Affiliation(s)
- Jesica María Ramírez-Villalobos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Ricardo Gomez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Priscilla Viridiana Velázquez-Flores
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Karla Selene Morán-Santibáñez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Patricia Tamez-Guerra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Orquídea Pérez-González
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Myriam Angélica de la Garza-Ramos
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Nuevo León Dr. Eduardo Aguirre Pequeño y Silao S/N, Colonia Mitras Centro, Monterrey 64460, Mexico
| | - Cristina Rodríguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - César Iván Romo-Sáenz
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
- Universidad Emiliano Zapata, Avenida Rodrigo Gómez, Sector Heroico S/N, Monterrey 64260, Mexico
| |
Collapse
|