1
|
Zhao W, Shen R, Li HM, Zhong JJ, Tang YJ. Podophyllotoxin derivatives-tubulin complex reveals a potential binding site of tubulin polymerization inhibitors in α-tubulin adjacent to colchicine site. Int J Biol Macromol 2024; 276:133678. [PMID: 38971286 DOI: 10.1016/j.ijbiomac.2024.133678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The colchicine site of β-tubulin has been proven to be essential binding sites of microtubule polymerization inhibitors. Recent studies implied that GTP pocket of α-tubulin adjacent to colchicine sites is a potential binding site for developing tubulin polymerization inhibitors. However, the structural basis for which type of structural fragments was more beneficial for enhancing the affinity of α-tubulin is still unclear. Here, podophyllotoxin derivatives-tubulin complex crystals indicated that heterocyclic with the highly electronegative and small steric hindrance was conducive to change configuration and enhance the affinity of the residues in GTP pocket of α-tubulin. Triazole with lone-pairs electrons and small steric hindrance exhibited the strongest affinity for enhancing affinity of podophyllotoxin derivatives by forming two hydrogen bonds with αT5 Ser178. Pyrimidine with the secondary strong affinity could bind Asn101 to make the αH7 configuration deflection, which reduces the stability of tubulin result in its depolymerization. Conversely, 4β-quinoline-podophyllotoxin with the weakest affinity did not interact with α-tubulin. The molecular dynamics simulation and protein thermal shift results showed that 4β-triazole-podophyllotoxin-tubulin was the most stable mainly due to two hydrogen bonds and the higher van der Waals force. This work provided a structural basis of the potential binding sites for extending the α/β-tubulin dual-binding sites inhibitors design strategy.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Rong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Jash M, Ghosh S, Roy R, Mukherjee N, Sen S, Ghosh S. Next generation antimitotic β-carboline derivatives modulate microtubule dynamics and downregulate NF-κB, ERK 1/2 and phospho HSP 27. Life Sci 2024; 351:122836. [PMID: 38879159 DOI: 10.1016/j.lfs.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Exploring the efficacy of β-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics. MATERIALS AND METHODS We synthesized a series of 1-Aryl-N-substituted-β-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity. The mechanism of action of MJ-211 was elucidated through Western blot analysis of key pro-apoptotic and cell cycle regulatory proteins. Additionally, the inhibitory effect of MJ-211 on multicellular 3D spheroid growth of A549 cells was evaluated. KEY FINDINGS Lead compound MJ-211 exhibited remarkable cytotoxicity against A549 cells with an IC50 of 4.075 μM at 24 h treatment and IC50 of 1.7 nM after 72 h of treatment, while demonstrating selectivity towards normal WI-38 cells. MJ-211 activated pro-apoptotic factors Bim and p53, and suppressed Cyclin B1, Phospho HSP 27, BubR1, Mad 2, ERK1/2, and NF-κB, indicating its potent antimitotic and pro-apoptotic effects. MJ-211 significantly suppressed the migration of cells and inhibited the growth of A549 cell-derived multicellular 3D spheroids, highlighting its efficacy in a more physiologically relevant model. SIGNIFICANCE Cytotoxic effect of MJ-211 against cancer cells, selectivity towards normal cells, and ability to modulate key regulatory proteins involved in apoptosis and cell cycle progression underscore its potential as a promising template for further anticancer lead optimization. Moreover, the inhibitory effect of MJ-211 on multicellular spheroid growth suggests its efficacy in combating tumor heterogeneity and resistance mechanisms, thereby offering a promising avenue for future anticancer drug development.
Collapse
Affiliation(s)
- Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India; Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India; iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| |
Collapse
|
3
|
Mariotto E, Canton M, Marchioro C, Brancale A, Hamel E, Varani K, Vincenzi F, De Ventura T, Padroni C, Viola G, Romagnoli R. Synthesis and Biological Evaluation of Novel 2-Aroyl Benzofuran-Based Hydroxamic Acids as Antimicrotubule Agents. Int J Mol Sci 2024; 25:7519. [PMID: 39062759 PMCID: PMC11277476 DOI: 10.3390/ijms25147519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a N-hydroxyacrylamide or a N-hydroxypropiolamide at the 5-position of the 2-aroylbenzo[b]furan skeleton, to produce compounds 6a-i and 11a-h, respectively. Among the synthesized compounds, derivatives 6a, 6c, 6e, 6g, 11a, and 11c showed excellent antiproliferative activity, with IC50 values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4). Compounds 11a and 6g were also 10-fold more active than CA-4 against the Hela cell line. When comparing the inhibition of tubulin polymerization versus the HDAC6 inhibitory activity, we found that 6a-g, 6i, 11a, 11c, and 11e, although very potent as inhibitors of tubulin assembly, did not have significant inhibitory activity against HDAC6.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Martina Canton
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Chiara Marchioro
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, 166 28 Prague, Czech Republic;
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (K.V.); (F.V.)
| | - Tiziano De Ventura
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Padroni
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit, an Evotec Company, 37135 Verona, Italy;
| | - Giampietro Viola
- Department of Woman’s and Child’s Health, Hemato-Oncology Lab, University of Padova, 35128 Padova, Italy; (E.M.); (M.C.); (C.M.); (G.V.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
4
|
Liu Z, Yang Z, Ablise M. Design and synthesis of novel imidazole-chalcone derivatives as microtubule protein polymerization inhibitors to treat cervical cancer and reverse cisplatin resistance. Bioorg Chem 2024; 147:107310. [PMID: 38583249 DOI: 10.1016/j.bioorg.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 μM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/β-tubulin in cancer cells, reduced the expression of polymerized α-/β-tubulin, and increased the expression of depolymerized α-/β-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.
Collapse
Affiliation(s)
- Zhengye Liu
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zheng Yang
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Mourboul Ablise
- The Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
5
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
6
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
7
|
Cui YJ, Zhou Y, Zhang XW, Dou BK, Ma CC, Zhang J. The discovery of water-soluble indazole derivatives as potent microtubule polymerization inhibitors. Eur J Med Chem 2023; 262:115870. [PMID: 37890199 DOI: 10.1016/j.ejmech.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Taking a previously discovered indazole derivative 1 as a lead, systematic structural modifications were performed with an indazole core at the 1- and 6-positions to improve its aqueous solubility. Among the designed indazole derivatives, 6-methylpyridin-3-yl indazole derivative 8l and 1H-indol-4-yl indazole derivative 8m exhibited high potency in the low nanomolar range against A549, Huh-7, and T24 cancer cells, including Taxol-resistant variant cells (A549/Tax). As a hydrochloride salt, 8l exhibited much improved aqueous solubility, and its log P value fell into a favorable range. In mechanistic studies, 8l impeded tubulin polymerization through interacting with the colchicine site, resulting in cell cycle arrest and cellular apoptosis. In addition, compared to lead compound 1, 8l reduced cell migration and led to more potent inhibition of tumor growth in vivo without apparent toxicity. In summary, indazole derivative 8l could work as a potential anticancer agent and deserves further investigation for cancer therapy.
Collapse
Affiliation(s)
- Ying-Jie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Xi-Wu Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Bao-Kai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Chen-Chen Ma
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250012, China.
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Horgan MJ, Zell L, Siewert B, Stuppner H, Schuster D, Temml V. Identification of Novel β-Tubulin Inhibitors Using a Combined In Silico/ In Vitro Approach. J Chem Inf Model 2023; 63:6396-6411. [PMID: 37774242 PMCID: PMC10598795 DOI: 10.1021/acs.jcim.3c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 10/01/2023]
Abstract
Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of β-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 μM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Mark James Horgan
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Zell
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bianka Siewert
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Veronika Temml
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Analogues of Anticancer Natural Products: Chiral Aspects. Int J Mol Sci 2023; 24:ijms24065679. [PMID: 36982753 PMCID: PMC10058835 DOI: 10.3390/ijms24065679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact disparately with different enantiomers of chiral compounds, creating a preference for a particular enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers. Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharmacokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance regarding the structure of natural products since the great majority of these compounds contain one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer chemotherapy and highlight the recent developments in this area. Particular attention has been given to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a major pool of new pharmacological leads. Studies have been selected which report the differential activity of the enantiomers or the activities of a single enantiomer and the racemate.
Collapse
|
10
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
11
|
Liu ZL, Ren XT, Huang Y, Sun JL, Wang XS, Zheng MF, Cui LJ, Zhang XF, Tang ZH. A Novel CA4P Polymeric Nanoparticle for Murine Hepatoma Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Liang B, Zou Q, Yu L, Wang Y, Yan J, Huang B. Novel Indole-Containing Hybrids Derived from Millepachine: Synthesis, Biological Evaluation and Antitumor Mechanism Study. Molecules 2023; 28:molecules28031481. [PMID: 36771147 PMCID: PMC9921564 DOI: 10.3390/molecules28031481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Millepachine, a bioactive natural product isolated from the seeds of Millettia pachycarpa, is reported to display potential antitumor activity. In this study, novel indole-containing hybrids derived from millepachine were designed, synthesized and evaluated for their antitumor activities. Among all the compounds, compound 14b exhibited the most potent cytotoxic activity against five kinds of human cancer cell lines, with IC50 values ranging from 0.022 to 0.074 μM, making it almost 100 times more active than millepachine. Valuable structure-activity relationships (SARs) were obtained. Furthermore, the mechanism studies showed that compound 14b induced cell-cycle arrest at the G2/M phase by inhibiting tubulin polymerization and further induced cell apoptosis through reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse. In addition, the low cytotoxicity toward normal human cells and equivalent sensitivity towards drug-resistant cells of compound 14b highlighted its potential for the development of antitumor drugs.
Collapse
Affiliation(s)
- Baoxia Liang
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
- Correspondence:
| | - Qing Zou
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| | - Lintao Yu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yali Wang
- BGI Infection Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Baiqi Huang
- The School of Food Science and Biology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| |
Collapse
|
13
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Oliva P, Romagnoli R, Cacciari B, Manfredini S, Padroni C, Brancale A, Ferla S, Hamel E, Corallo D, Aveic S, Milan N, Mariotto E, Viola G, Bortolozzi R. Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents. Pharmaceutics 2022; 14:1191. [PMID: 35745764 PMCID: PMC9230136 DOI: 10.3390/pharmaceutics14061191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Two different series of fifty-two compounds, based on 3',4',5'-trimethoxyaniline (7a-ad) and variably substituted anilines (8a-v) at the 7-position of the 2-substituted-[1,2,4]triazolo [1,5-a]pyrimidine nucleus, had moderate to potent antiproliferative activity against A549, MDA-MB-231, HeLa, HT-29 and Jurkat cancer cell lines. All derivatives with a common 3-phenylpropylamino moiety at the 2-position of the triazolopyrimidine scaffold and different halogen-substituted anilines at its 7-position, corresponding to 4'-fluoroaniline (8q), 4'-fluoro-3'-chloroaniline (8r), 4'-chloroaniline (8s) and 4'-bromoaniline (8u), displayed the greatest antiproliferative activity with mean IC50's of 83, 101, 91 and 83 nM, respectively. These four compounds inhibited tubulin polymerization about 2-fold more potently than combretastatin A-4 (CA-4), and their activities as inhibitors of [3H]colchicine binding to tubulin were similar to that of CA-4. These data underlined that the 3',4',5'-trimethoxyanilino moiety at the 7-position of the [1,2,4]triazolo [1,5-a]pyrimidine system, which characterized compounds 7a-ad, was not essential for maintaining potent antiproliferative and antitubulin activities. Compounds 8q and 8r had high selectivity against cancer cells, and their interaction with tubulin led to the accumulation of HeLa cells in the G2/M phase of the cell cycle and to apoptotic cell death through the mitochondrial pathway. Finally, compound 8q significantly inhibited HeLa cell growth in zebrafish embryos.
Collapse
Affiliation(s)
- Paola Oliva
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Romeo Romagnoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Barbara Cacciari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (P.O.); (B.C.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Padroni
- Medicinal Chemistry Department, Integrated Drug Discovery, Aptuit—An Evotec Company, Via A. Fleming, 37135 Verona, Italy;
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK;
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK;
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy; (D.C.); (S.A.)
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy; (D.C.); (S.A.)
| | - Noemi Milan
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
| | - Elena Mariotto
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Giampietro Viola
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Roberta Bortolozzi
- Hemato-Oncology Lab, Department of Woman’s and Child’s Health, University of Padova, 35131 Padova, Italy; (N.M.); (E.M.); (R.B.)
- Laboratory of Experimental Pharmacology, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
15
|
Nitulescu GM. Quantitative and Qualitative Analysis of the Anti-Proliferative Potential of the Pyrazole Scaffold in the Design of Anticancer Agents. Molecules 2022; 27:molecules27103300. [PMID: 35630776 PMCID: PMC9146646 DOI: 10.3390/molecules27103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI’s panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds’ averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis–Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect’s potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
16
|
Kang J, Lewis TR, Gardner A, Andrade RB, Wang RE. Semi-syntheses and interrogation of indole-substituted Aspidosperma terpenoid alkaloids. Org Biomol Chem 2022; 20:3988-3997. [PMID: 35503511 DOI: 10.1039/d2ob00610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated here a series of Aspidosperma terpenoid alkaloids can be quickly prepared using semisynthesis from naturally sourced tabersonine, featuring multiple oxygen-based substituents on the indole ring such as hydroxy and methoxy groups. This panel of complex compounds enabled the exploration of indole modifications to optimize the indole alkaloids' anticancer activity, generating lead compounds (e.g., with C15-hydroxy, C16-methoxy, and/or C17-methoxy derivatizations) that potently inhibit cancer cell line growth in the single-digit micromolar range. These results can help guide the development of Aspidosperma terpenoid alkaloid therapeutics. Furthermore, this synthetic approach features late-stage facile derivatization on complex natural product molecules, providing a versatile path to indole derivatization of this family of alkaloids with diverse chemical functionalities for future medicinal chemistry and chemical biology discoveries.
Collapse
Affiliation(s)
- Jinfeng Kang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Todd R Lewis
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Alex Gardner
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rodrigo B Andrade
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
17
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
18
|
Hong Y, Zhu YY, He Q, Gu SX. Indole derivatives as tubulin polymerization inhibitors for the development of promising anticancer agents. Bioorg Med Chem 2022; 55:116597. [PMID: 34995858 DOI: 10.1016/j.bmc.2021.116597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023]
Abstract
The α- and β-tubulins are the major polypeptide components of microtubules (MTs), which are attractive targets for anticancer drug development. Indole derivatives display a variety of biological activities including antitumor activity. In recent years, a great number of indole derivatives as tubulin polymerization inhibitors have sprung up, which encourages medicinal chemists to pursue promising inhibitors with improved antitumor activities, excellent physicochemical, pharmacokinetic and pharmacodynamic properties. In this review, the recent progress from 2010 to present in the development of indole derivatives as tubulin polymerization inhibitors was summarized and reviewed, which would provide useful clues and inspirations for further design of outstanding tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Yu Hong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Qiuqin He
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
19
|
Silyanova EA, Ushkarov VI, Samet AV, Maksimenko AS, Koblov IA, Kislyi VP, Semenova MN, Semenov VV. A comparative evaluation of monomethoxy substituted o-diarylazoles as antiproliferative microtubule destabilizing agents. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Sirakanyan S, Arabyan E, Hakobyan A, Hakobyan T, Chilingaryan G, Sahakyan H, Sargsyan A, Arakelov G, Nazaryan K, Izmailyan R, Abroyan L, Karalyan Z, Arakelova E, Hakobyan E, Hovakimyan A, Serobian A, Neves M, Ferreira J, Ferreira F, Zakaryan H. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity. Emerg Microbes Infect 2021; 10:783-796. [PMID: 33706677 PMCID: PMC8079068 DOI: 10.1080/22221751.2021.1902751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 μM) with no cellular (CC50 > 500 μM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.
Collapse
Affiliation(s)
- Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Erik Arabyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Tamara Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Garri Chilingaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Harutyun Sahakyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Arsen Sargsyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Grigor Arakelov
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Karen Nazaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Roza Izmailyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Liana Abroyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Zaven Karalyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| | - Elina Arakelova
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Elmira Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Anush Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Andre Serobian
- Advanced Solutions Center, Foundation for Armenian Science and Technology, Yerevan, Armenia
| | - Marco Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fernando Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Denovo Sciences, Yerevan, Armenia
| |
Collapse
|
21
|
Gallego-Yerga L, Ochoa R, Lans I, Peña-Varas C, Alegría-Arcos M, Cossio P, Ramírez D, Peláez R. Application of ensemble pharmacophore-based virtual screening to the discovery of novel antimitotic tubulin inhibitors. Comput Struct Biotechnol J 2021; 19:4360-4372. [PMID: 34429853 PMCID: PMC8365384 DOI: 10.1016/j.csbj.2021.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
Tubulin is a well-validated target for herbicides, fungicides, anti-parasitic, and anti-tumor drugs. Many of the non-cancer tubulin drugs bind to its colchicine site but no colchicine-site anticancer drug is available. The colchicine site is composed of three interconnected sub-pockets that fit their ligands and modify others' preference, making the design of molecular hybrids (that bind to more than one sub-pocket) a difficult task. Taking advantage of the more than eighty published X-ray structures of tubulin in complex with ligands bound to the colchicine site, we generated an ensemble of pharmacophore representations that flexibly sample the interactional space between the ligands and target. We searched the ZINC database for scaffolds able to fit several of the subpockets, such as tetrazoles, sulfonamides and diarylmethanes, selected roughly ~8000 compounds with favorable predicted properties. A Flexi-pharma virtual screening, based on ensemble pharmacophore, was performed by two different methodologies. Combining the scaffolds that best fit the ensemble pharmacophore-representation, we designed a new family of ligands, resulting in a novel tubulin modulator. We synthesized tetrazole 5 and tested it as a tubulin inhibitor in vitro. In good agreement with the design principles, it demonstrated micromolar activity against in vitro tubulin polymerization and nanomolar anti-proliferative effect against human epithelioid carcinoma HeLa cells through microtubule disruption, as shown by immunofluorescence confocal microscopy. The integrative methodology succedes in the design of new scaffolds for flexible proteins with structural coupling between pockets, thus expanding the way in which computational methods can be used as significant tools in the drug design process.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Isaías Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile
| | | | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia.,Center for Computational Mathematics, Flatiron Institute, NY, United States
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.,Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Islam F, Quadery TM, Bai R, Luckett-Chastain LR, Hamel E, Ihnat MA, Gangjee A. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure-activity relationship, in vitro and in vivo evaluation as antitumor agents. Bioorg Med Chem Lett 2021; 41:127923. [PMID: 33705908 PMCID: PMC8113149 DOI: 10.1016/j.bmcl.2021.127923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
The design, synthesis, and biological evaluation of a series novel N1‑methyl pyrazolo[4,3-d]pyrimidines as inhibitors of tubulin polymerization and colchicine binding were described here. Synthesis of target compounds involved alkylation of the pyrazolo scaffold, which afforded two regioisomers. These were separated, characterized and identified with 1H NMR and NOESY spectroscopy. All compounds, except 10, inhibited [3H]colchicine binding to tubulin, and the potent inhibition was similar to that obtained with CA-4. Compounds 9 and 11-13 strongly inhibited the polymerization of tubulin, with IC50 values of 0.45, 0.42, 0.49 and 0.42 μM, respectively. Compounds 14-16 inhibited the polymerization of tubulin with IC50s near ∼1 μM. Compounds 9, 12, 13 and 16 inhibited MCF-7 breast cancer cell lines and circumvented βIII-tubulin mediated cancer cell resistance to taxanes and other MTAs, and compounds 9-17 circumvented Pgp-mediated drug resistance. In the standard NCI testing protocol, compound 9 exhibited excellent potency with low to sub nanomolar GI50 values (≤10 nM) against most tumor cell lines, including several multidrug resistant phenotypes. Compound 9 was significantly (P < 0.0001) better than paclitaxel at reducing MCF-7 TUBB3 (βIII-tubulin overexpressing) tumors in a mouse xenograft model. Collectively, these studies support the further preclinical development of the pyrazolo[4,3-d]pyrimidine scaffold as a new generation of tubulin inhibitors and 9 as an anticancer agent with advantages over paclitaxel.
Collapse
Affiliation(s)
- Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Tasdique M Quadery
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Lerin R Luckett-Chastain
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
23
|
Romagnoli R, Preti D, Hamel E, Bortolozzi R, Viola G, Brancale A, Ferla S, Morciano G, Pinton P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg Chem 2021; 112:104919. [PMID: 33957538 DOI: 10.1016/j.bioorg.2021.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Many clinically used agents active in cancer chemotherapy exert their activity through the induction of cell death (apoptosis) by targeting microtubules, altering protein function or inhibiting DNA synthesis. The benzo[b]thiophene scaffold holds a pivotal place as a pharmacophore for the development of anticancer agents, and, in addition, this scaffold has many pharmacological activities. We have developed a flexible method for the construction of a new series of 2-aryl-3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophenes as potent antiproliferative agents, giving access to a wide range of substitution patterns at the 2-position of the 6-methoxybenzo[b]thiophene common intermediate. In the present study, all the synthesized compounds retained the 3-(3,4,5-trimethoxyanilino)-6-methoxybenzo[b]thiophene moiety, and the structure-activity relationship was examined by modification of the aryl group at its 2-position with electron-withdrawing (F) or electron-releasing (alkyl and alkoxy) groups. We found that small substituents, such as fluorine or methyl, could be placed in the para-position of the 2-phenyl ring, and these modifications only slightly reduced antiproliferative activity relative to the unsubstituted 2-phenyl analogue. Compounds 3a and 3b, bearing the phenyl and para-fluorophenyl at the 2-position of the 6-methoxybenzo[b]thiophene nucleus, respectively, exhibited the greatest antiproliferative activity among the tested compounds. The treatment of both Caco2 (not metastatic) and HCT-116 (metastatic) colon carcinoma cells with 3a or 3b triggered a significant induction of apoptosis as demonstrated by the increased expression of cleaved-poly(ADP-ribose) polymerase (PARP), receptor-interacting protein (RIP) and caspase-3 proteins. The same effect was not observed with non-transformed colon 841 CoN cells. A potential additional effect during mitosis for 3a in metastatic cells and for 3b in non-metastatic cells was also observed.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy.
| | - Delia Preti
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Luigi Borsari 46, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128 Padova, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Salvatore Ferla
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University, Swansea SA2 8PP, UK
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Yele V, Pindiprolu SKSS, Sana S, Ramamurty DSVNM, Madasi JRK, Vadlamani S. Synthesis and Preclinical Evaluation of Indole Triazole Conjugates as Microtubule Targeting Agents that are Effective against MCF-7 Breast Cancer Cell Lines. Anticancer Agents Med Chem 2021; 21:1047-1055. [PMID: 32981511 DOI: 10.2174/1871520620666200925102940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Background: Microtubules are considered to be an important therapeutic target for most of the anticancer drugs. These are highly dynamic structures comprising of α-tubulin and β-tubulin which are usually heterodimers and found to be involved in cell movement, intracellular trafficking, and mitosis inhibition of which might kill the tumour cells or inhibit the abnormal proliferation of cells. Most of the tubulin polymerization inhibitors, such as Vinca alkaloids, consist of Indole as the main scaffold. The literature also suggests using triazole moiety in the chemical entities, potentiating the inhibitory activity against cell proliferation. So, in our study, we used indole triazole scaffolds to synthesize the derivatives against tubulin polymerization. OBJECTIVE The main objective of this study to synthesize indole triazole conjugates by using environmentally friendly solvents (green chemistry) and click chemistry. To carry out the MTT assay and tubulin polymerization assay for the synthesized indole triazole conjugates. METHODS All the synthesized molecules were subjected to molecular docking studies using Schrodinger suite and the structural confirmation was performed by Mass, proton-NMR and carbon-NMR, documented in DMSO and CDCL3. Biological studies were performed using DU145 (prostate cancer), A-549 (lung cancer) and, MCF-7 (breast cancer), cell lines obtained from ATCC were maintained as a continuous culture. MTT assay was performed for the analogues using standard protocol. Cell cycle analysis was carried out using flow cytometry. RESULTS The Indole triazole scaffolds were synthesized using the principles of Green chemistry. The triazole formation is mainly achieved by using the Click chemistry approach. Structural elucidation of synthesized compounds was performed using Mass spectroscopy (HR-MS), Proton-Nuclear Magnetic Spectroscopy (1H-NMR) and Carbon-Nuclear Magnetic Spectroscopy (13C-NMR). The XP-docked poses and free energy binding calculations revealed that 2c and 2g molecules exhibited the highest docking affinity against the tubulin-colchicine domain (PDB:1SA0). In vitro cytotoxic assessment revealed that 2c and 2g displayed promising cytotoxicity in MTT assay (with CTC50 values 3.52μM and 2.37μM) which are in good agreement with the computational results. 2c and 2g also arrested 63 and 66% of cells in the G2/M phase, respectively, in comparison to control cells (10%) and tubulin polymerization inhibition assay revealed that 2c and 2g exhibited significant inhibition of tubulin polymerization with IC50 values of 2.31μM, and 2.62μM, respectively in comparison to Nocodazole, a positive control, resulted in an IC50 value of 2.51μM. CONCLUSION Indole triazole hybrids were synthesized using click chemistry, and docking studies were carried out using Schrodinger for the designed molecules. Process Optimization has been done for both the schemes. Twelve compounds (2a-2l) have been successfully synthesized and analytical evaluation was performed using NMR and HR-MS. In vitro evaluation was for the synthesized molecules to check tubulin polymerization inhibition for antiproliferative action. Among the synthesized compounds, 2c and 2g have potent anticancer activities by inhibiting tubulin polymerization.
Collapse
Affiliation(s)
- Vidyasrilekha Yele
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamilnadu, India
| | - Sravani Sana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - D S V N M Ramamurty
- Department of Chemistry, Government Degree College (A), Tuni, Andhra Pradesh, India
| | - Jayanthi R K Madasi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Swapna Vadlamani
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
25
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
26
|
Zhang D, Guo Y, Zhao Y, Yu L, Chang Z, Pei H, Huang J, Chen C, Xue H, Xu X, Pan Y, Li N, Zhu C, Zhao ZJ, Yu J, Chen Y. Expression of a recombinant FLT3 ligand and its emtansine conjugate as a therapeutic candidate against acute myeloid leukemia cells with FLT3 expression. Microb Cell Fact 2021; 20:67. [PMID: 33691697 PMCID: PMC7948335 DOI: 10.1186/s12934-021-01559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Most patients with acute myeloid leukemia (AML) remain uncurable and require novel therapeutic methods. Gain-of-function FMS-like tyrosine kinase 3 (FLT3) mutations are present in 30–40% of AML patients and serve as an attractive therapeutic target. In addition, FLT3 is aberrantly expressed on blasts in > 90% of patients with AML, making the FLT3 ligand-based drug conjugate a promising therapeutic strategy for the treatment of patients with AML. Here, E. coli was used as a host to express recombinant human FLT3 ligand (rhFL), which was used as a specific vehicle to deliver cytotoxic drugs to FLT3 + AML cells. Methods Recombinant hFL was expressed and purified from induced recombinant BL21 (DE3) E. coli. Purified rhFL and emtansine (DM1) were conjugated by an N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) linker. We evaluated the potency of the conjugation product FL-DM1 against FLT3-expressing AML cells by examining viability, apoptosis and the cell cycle. The activation of proteins related to the activation of FLT3 signaling and apoptosis pathways was detected by immunoblotting. The selectivity of FL-DM1 was assessed in our unique HCD-57 cell line, which was transformed with the FLT3 internal tandem duplication mutant (FLT3-ITD). Results Soluble rhFL was successfully expressed in the periplasm of recombinant E. coli. The purified rhFL was bioactive in stimulating FLT3 signaling in AML cells, and the drug conjugate FL-DM1 showed activity in cell signaling and internalization. FL-DM1 was effective in inhibiting the survival of FLT3-expressing THP-1 and MV-4-11 AML cells, with half maximal inhibitory concentration (IC50) of 12.9 nM and 1.1 nM. Additionally, FL-DM1 induced caspase-3-dependent apoptosis and arrested the cell cycle at the G2/M phase. Moreover, FL-DM1 selectively targeted HCD-57 cells transformed by FLT3-ITD but not parental HCD-57 cells without FLT3 expression. FL-DM1 can also induce obvious apoptosis in primary FLT3-positive AML cells ex vivo. Conclusions Our data demonstrated that soluble rhFL can be produced in a bioactive form in the periplasm of recombinant E. coli. FL can be used as a specific vehicle to deliver DM1 into FLT3-expressing AML cells. FL-DM1 exhibited cytotoxicity in FLT3-expressing AML cell lines and primary AML cells. FL-DM1 may have potential clinical applications in treating patients with FLT3-positive AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01559-6.
Collapse
Affiliation(s)
- Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hongman Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ningning Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chengming Zhu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 1100 N. Lindsay, Oklahoma City, OK, 73104, USA
| | - Jian Yu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
27
|
Sigalapalli DK, Kiranmai G, Tokala R, Tripura C, Ambatwar R, Nunewar SN, Kadagathur M, Shankaraiah N, Nagesh N, Nagendra Babu B, Tangellamudi ND. Targeting tubulin polymerization and DNA binding of 4-thiazolidinone–umbelliferone hybrids: synthesis and cytotoxicity evaluation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03135j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of a series of combretastatin A-4 inspired novel molecular hybrids of 4-thiazolidinone–umbelliferone as prominent cytotoxic agents was reported.
Collapse
Affiliation(s)
- Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Gaddam Kiranmai
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chaturvedula Tripura
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saiprasad N. Nunewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
28
|
Hagras M, Mandour AA, Mohamed EA, Elkaeed EB, Gobaara IMM, Mehany ABM, Ismail NSM, Refaat HM. Design, synthesis, docking study and anticancer evaluation of new trimethoxyphenyl pyridine derivatives as tubulin inhibitors and apoptosis inducers. RSC Adv 2021; 11:39728-39741. [PMID: 35494162 PMCID: PMC9044549 DOI: 10.1039/d1ra07922k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 12/05/2022] Open
Abstract
Microtubules have become an appealing target for anticancer drug development including mainly colchicine binding site inhibitors (CBSIs). A new series of novel trimethoxypyridine derivatives were designed and synthesized as tubulin targeting agents. In vitro anti-proliferative activities of the tested compounds compared to colchicine against hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), and breast cancer (MCF-7) was carried out. Most of compounds showed significant cytotoxic activities. Compounds Vb, Vc, Vf, Vj and VI showed superior anti-proliferative activities to colchicine. Where compound VI showed IC50 values of 4.83, 3.25 and 6.11 μM compared to colchicine (7.40, 9.32, 10.41 μM) against HCT 116, HepG-2 and MCF-7, respectively. The enzymatic activity against tubulin enzyme was carried out for the compounds that showed high anti-proliferative activity. Also, compound VI exhibited the highest tubulin polymerization inhibitory effect with an IC50 value of 8.92 nM compared to colchicine (IC50 value = 9.85 nM). Compounds Vb, Vc, Vf, Vj, & VIIIb showed promising activities with IC50 values of 22.41, 17.64, 20.39, 10.75, 31.86 nM, respectively. Cell cycle and apoptosis test for compound VI against HepG-2 cells, indicated that compound VI can arrest cell cycle at G2/M phase, and can cause apoptosis at pre-G1 phase, with high apoptotic effect 18.53%. Molecular docking studies of the designed compounds confirmed the essential hydrogen bonding with CYS241 beside the hydrophobic interaction at the binding site compared to reference compounds which assisted in the prediction of the structure requirements for the detected antitumor activity. Interaction of compounds VI (IC50 = 8.92 nM) (A) and Vj (IC50 = 10.75 nM) (B) with key amino acids of CBS.![]()
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Asmaa A. Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Esraa A. Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Eslam B. Elkaeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Nasser S. M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| | - Hanan M. Refaat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt
| |
Collapse
|
29
|
Dhiman N, Kaur K, Jaitak V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg Med Chem 2020; 28:115599. [PMID: 32631569 DOI: 10.1016/j.bmc.2020.115599] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Cancer is a leading cause of death worldwide. Even after the availability of numerous drugs and treatments in the market, scientists and researchers are focusing on new therapies because of their resistance and toxicity issues. The newly synthesized drug candidates are able to demonstrate in vitro activity but are unable to reach clinical trials due to their rapid metabolism and low bioavailability. Therefore there is an imperative requisite to expand novel anticancer negotiators with tremendous activity as well as in vivo efficacy. Tetrazole is a promising pharmacophore which is metabolically more stable and acts as a bioisosteric analogue for many functional groups. Tetrazole fragment is often castoff with other pharmacophores in the expansion of novel anticancer drugs. This is the first systematic review that emphasizes on contemporary strategies used for the inclusion of tetrazole moiety, mechanistic targets along with comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency tetrazole-based anticancer drug candidates.
Collapse
Affiliation(s)
- Neha Dhiman
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
30
|
Huang P, Le X, Huang F, Yang J, Yang H, Ma J, Hu G, Li Q, Chen Z. Discovery of a Dual Tubulin Polymerization and Cell Division Cycle 20 Homologue Inhibitor via Structural Modification on Apcin. J Med Chem 2020; 63:4685-4700. [PMID: 32290657 DOI: 10.1021/acs.jmedchem.9b02097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apcin is one of the few compounds that have been previously reported as a Cdc20 specific inhibitor, although Cdc20 is a very promising drug target. We reported here the design, synthesis, and biological evaluations of 2,2,2-trichloro-1-aryl carbamate derivatives as Cdc20 inhibitors. Among these derivatives, compound 9f was much more efficient than the positive compound apcin in inhibiting cancer cell growth, but it had approximately the same binding affinity with apcin in SPR assays. It is possible that another mechanism of action might exist. Further evidence demonstrated that compound 9f also inhibited tubulin polymerization, disorganized the microtubule network, and blocked the cell cycle at the M phase with changes in the expression of cyclins. Thus, it induced apoptosis through the activation of caspase-3 and PARP. In addition, compound 9f inhibited cell migration and invasion in a concentration-dependent manner. These results provide guidance for developing the current series as potential new anticancer therapeutics.
Collapse
Affiliation(s)
- Pan Huang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Pharmacy, Yiyang Central Hospital, Yiyang 413000, Hunan, China
| | - Fei Huang
- Center for Medical Experiments, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haofeng Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Junlong Ma
- Department of Good Clinical Practice, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
31
|
Romagnoli R, Prencipe F, Oliva P, Kimatrai Salvador M, Brancale A, Ferla S, Hamel E, Viola G, Bortolozzi R, Persoons L, Balzarini J, Liekens S, Schols D. Design, synthesis and biological evaluation of 2-alkoxycarbonyl-3-anilinoindoles as a new class of potent inhibitors of tubulin polymerization. Bioorg Chem 2020; 97:103665. [PMID: 32086053 DOI: 10.1016/j.bioorg.2020.103665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023]
Abstract
A new class of inhibitors of tubulin polymerization based on the 2-alkoxycarbonyl-3-(3',4',5'-trimethoxyanilino)indole molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. The results presented show that the methoxy substitution and location on the indole nucleus plays an important role in inhibition of cell growth, and the most favorable position for the substituent was at C-6. In addition, a small-size ester function (methoxy/ethoxycarbonyl) at the 2-position of the indole core was desirable. Also, analogues that were alkylated with methyl, ethyl or n-propyl groups or had a benzyl moiety on the N-1 indolic nitrogen retained activity equivalent to those observed in the parent N-1H analogues. The most promising compounds of the series were 2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-5-methoxyindole 3f and 1-methyl-2-methoxycarbonyl-3-(3',4'.5'-trimethoxyanilino)-6-methoxy-indole 3w, both of which target tubulin at the colchicine site with antitubulin activities comparable to that of the reference compound combretastatin A-4.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy.
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Maria Kimatrai Salvador
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128 Padova, Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Leentje Persoons
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
32
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
33
|
Sana S, Tokala R, Bajaj DM, Nagesh N, Bokara KK, Kiranmai G, Lakshmi UJ, Vadlamani S, Talla V, Shankaraiah N. Design and synthesis of substituted dihydropyrimidinone derivatives as cytotoxic and tubulin polymerization inhibitors. Bioorg Chem 2019; 93:103317. [DOI: 10.1016/j.bioorg.2019.103317] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022]
|
34
|
Cytotoxic Constituents and Molecular Docking Study of the Active Triterpenoids from Tripleurospermum disciforme (C. A. Mey.) Schultz-Bip. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.65760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol 2019; 70:160-172. [DOI: 10.2478/aiht-2019-70-3258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
The entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.
Collapse
|
36
|
Sigalapalli DK, Pooladanda V, Singh P, Kadagathur M, Guggilapu SD, Uppu JL, Tangellamudi ND, Gangireddy PK, Godugu C, Bathini NB. Discovery of certain benzyl/phenethyl thiazolidinone-indole hybrids as potential anti-proliferative agents: Synthesis, molecular modeling and tubulin polymerization inhibition study. Bioorg Chem 2019; 92:103188. [PMID: 31450167 DOI: 10.1016/j.bioorg.2019.103188] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
A series of certain benzyl/phenethyl thiazolidinone-indole hybrids were synthesized for the study of anti-proliferative activity against A549, NCI-H460 (lung cancer), MDA-MB-231 (breast cancer), HCT-29 and HCT-15 (colon cancer) cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We found that compound G37 displayed highest cytotoxicity with IC50 value of 0.92 ± 0.12 µM towards HCT-15 cancer cell line among all the synthesized compounds. Moreover, compound G37 was also tested on normal human lung epithelial cells (L132) and was found to be safe in contrast to HCT-15 cells. The lead compound G37 showed significant G2/M phase arrest in HCT-15 cells. Additionally, compound G37 significantly inhibited tubulin polymerization with IC50 value of 2.92 ± 0.23 µM. Mechanistic studies such as acridine orange/ethidium bromide (AO/EB) dual staining, DAPI nuclear staining, annexinV/propidium iodide dual staining, clonogenic growth inhibition assays inferred that compound G37 induced apoptotic cell death in HCT-15 cells. Moreover, loss of mitochondrial membrane potential with elevated intracellular ROS levels was observed by compound G37. These compounds bind at the active pocket of the α/β-tubulin with higher number of stable hydrogen bonds, hydrophobic and arene-cation interactions confirmed by molecular modeling studies.
Collapse
Affiliation(s)
- Dilep Kumar Sigalapalli
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sravanthi Devi Guggilapu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Jaya Lakshmi Uppu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pavan Kumar Gangireddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Nagendra Babu Bathini
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
37
|
Xu F, Li W, Shuai W, Yang L, Bi Y, Ma C, Yao H, Xu S, Zhu Z, Xu J. Design, synthesis and biological evaluation of pyridine-chalcone derivatives as novel microtubule-destabilizing agents. Eur J Med Chem 2019; 173:1-14. [DOI: 10.1016/j.ejmech.2019.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/10/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
|
38
|
Arnst KE, Wang Y, Lei ZN, Hwang DJ, Kumar G, Ma D, Parke DN, Chen Q, Yang J, White SW, Seagroves TN, Chen ZS, Miller DD, Li W. Colchicine Binding Site Agent DJ95 Overcomes Drug Resistance and Exhibits Antitumor Efficacy. Mol Pharmacol 2019; 96:73-89. [PMID: 31043459 PMCID: PMC6553560 DOI: 10.1124/mol.118.114801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/21/2019] [Indexed: 02/05/2023] Open
Abstract
Interfering with microtubule dynamics is a well-established strategy in cancer treatment; however, many microtubule-targeting agents are associated with drug resistance and adverse effects. Substantial evidence points to ATP-binding cassette (ABC) transporters as critical players in the development of resistance. Herein, we demonstrate the efficacy of DJ95 (2-(1H-indol-6-yl)-4-(3,4,5-trimethoxyphenyl)-1H-imidazo[4,5-c]pyridine), a novel tubulin inhibitor, in a variety of cancer cell lines, including malignant melanomas, drug-selected resistant cell lines, specific ABC transporter-overexpressing cell lines, and the National Cancer Institute 60 cell line panel. DJ95 treatment inhibited cancer cell migration, caused morphologic changes to the microtubule network foundation, and severely disrupted mitotic spindle formation of mitotic cells. The high-resolution crystal structure of DJ95 in complex with tubulin protein and the detailed molecular interactions confirmed its direct binding to the colchicine site. In vitro pharmacological screening of DJ95 using SafetyScreen44 (Eurofins Cerep-Panlabs) revealed no significant off-target interactions, and pharmacokinetic analysis showed that DJ95 was maintained at therapeutically relevant plasma concentrations for up to 24 hours in mice. In an A375 xenograft model in nude mice, DJ95 inhibited tumor growth and disrupted tumor vasculature in xenograft tumors. These results demonstrate that DJ95 is potent against a variety of cell lines, demonstrated greater potency to ABC transporter-overexpressing cell lines than existing tubulin inhibitors, directly targets the colchicine binding domain, exhibits significant antitumor efficacy, and demonstrates vascular-disrupting properties. Collectively, these data suggest that DJ95 has great potential as a cancer therapeutic, particularly for multidrug resistance phenotypes, and warrants further development. SIGNIFICANCE STATEMENT: Paclitaxel is a widely used tubulin inhibitor for cancer therapy, but its clinical efficacy is often limited by the development of multidrug resistance. In this study, we reported the preclinical characterization of a new tubulin inhibitor DJ95, and demonstrated its abilities to overcome paclitaxel resistance, disrupt tumor vasculature, and exhibit significant antitumor efficacy.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Yuxi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Gyanendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Deanna N Parke
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Qiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Jinliang Yang
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Stephen W White
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Tiffany N Seagroves
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy (K.E.A., D.-J.H., D.M., D.D.M., W.L.), and Department of Pathology (D.N.P., T.N.S.), the University of Tennessee Health Science Center, Memphis, Tennessee; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy (Y.W., Q.C., J.Y.), and Department of Respiratory Medicine (Y.W.), West China Hospital, Sichuan University, Chengdu, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York (Z.-N.L., Z.-S.C.); and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee (G.K., S.W.W.)
| |
Collapse
|
39
|
Kazan F, Yagci ZB, Bai R, Ozkirimli E, Hamel E, Ozkirimli S. Synthesis and biological evaluation of indole-2-carbohydrazides and thiazolidinyl-indole-2-carboxamides as potent tubulin polymerization inhibitors. Comput Biol Chem 2019; 80:512-523. [DOI: 10.1016/j.compbiolchem.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/12/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
|
40
|
Zhao W, He L, Xiang TL, Tang YJ. Discover 4β-NH-(6-aminoindole)-4-desoxy-podophyllotoxin with nanomolar-potency antitumor activity by improving the tubulin binding affinity on the basis of a potential binding site nearby colchicine domain. Eur J Med Chem 2019; 170:73-86. [DOI: 10.1016/j.ejmech.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 01/24/2023]
|
41
|
Xie Y, Kril LM, Yu T, Zhang W, Frasinyuk MS, Bondarenko SP, Kondratyuk KM, Hausman E, Martin ZM, Wyrebek PP, Liu X, Deaciuc A, Dwoskin LP, Chen J, Zhu H, Zhan CG, Sviripa VM, Blackburn J, Watt DS, Liu C. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Sci Rep 2019; 9:6439. [PMID: 31015569 PMCID: PMC6478746 DOI: 10.1038/s41598-019-42917-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC50 values below 100 nM. A xenograft study in nude mice using 10 mg/kg of 5a had no effect on mice weight, and aurone 5a did not inhibit, as desired, the human ether-à-go-go-related (hERG) potassium channel. Cell cycle arrest data, comparisons of the inhibition of cancer cell proliferation by aurones and known antineoplastic agents, and in vitro inhibition of tubulin polymerization indicated that aurone 5a disrupted tubulin dynamics. Based on molecular docking and confirmed by liquid chromatography-electrospray ionization-tandem mass spectrometry studies, aurone 5a targets the colchicine-binding site on tubulin. In addition to solid tumors, aurones 5a and 5b strongly inhibited in vitro a panel of human leukemia cancer cell lines and the in vivo myc-induced T cell acute lymphoblastic leukemia (T-ALL) in a zebrafish model.
Collapse
Affiliation(s)
- Yanqi Xie
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Liliia M Kril
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Tianxin Yu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Mykhaylo S Frasinyuk
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | | | - Kostyantyn M Kondratyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Elizabeth Hausman
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Zachary M Martin
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Przemyslaw P Wyrebek
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Xifu Liu
- Center for Drug Innovation and Discovery, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Agripina Deaciuc
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Molecular Modeling and Pharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Vitaliy M Sviripa
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
42
|
Zhai M, Liu S, Gao M, Wang L, Sun J, Du J, Guan Q, Bao K, Zuo D, Wu Y, Zhang W. 3,5-Diaryl-1H-pyrazolo[3,4-b]pyridines as potent tubulin polymerization inhibitors: Rational design, synthesis and biological evaluation. Eur J Med Chem 2019; 168:426-435. [DOI: 10.1016/j.ejmech.2018.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023]
|
43
|
Li W, Xu F, Shuai W, Sun H, Yao H, Ma C, Xu S, Yao H, Zhu Z, Yang DH, Chen ZS, Xu J. Discovery of Novel Quinoline–Chalcone Derivatives as Potent Antitumor Agents with Microtubule Polymerization Inhibitory Activity. J Med Chem 2018; 62:993-1013. [DOI: 10.1021/acs.jmedchem.8b01755] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feijie Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wen Shuai
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Honghao Sun
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
44
|
Li W, Shuai W, Xu F, Sun H, Xu S, Yao H, Liu J, Yao H, Zhu Z, Xu J. Discovery of Novel 4-Arylisochromenes as Anticancer Agents Inhibiting Tubulin Polymerization. ACS Med Chem Lett 2018; 9:974-979. [PMID: 30344902 DOI: 10.1021/acsmedchemlett.8b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
XJP-L (8), a derivative of the natural product (±)-7,8-dihydroxy-3-methylisochroman-4-one isolated from the peel of Musa sapien tum L., was found to exhibit weak inhibitory activity of tubulin polymerization (IC50 = 10.6 μM) in our previous studies. Thus, a series of 4-arylisochromene derivatives were prepared by incorporating the trimethoxyphenyl moiety into 8, among which compound (±)-19b was identified as the most potent compound with IC50 values ranging from 10 to 25 nM against a panel of cancer cell lines. Further mechanism studies demonstrated that (±)-19b disrupted the intracellular microtubule network, caused G2/M phase arrest, induced cell apoptosis, and depolarized mitochondria of K562 cells. Moreover, (±)-19b exhibited potent in vitro antivascular and in vivo antitumor activities. Notably, the R-configured enantiomer of (±)-19b, which was prepared by chiral separation, was slightly more potent than (±)-19b and was much more potent than the S-configured enantiomer in both antiproliferative and antitubulin assays. Our findings suggest that (±)-19b deserves further research as a potential antitubulin agent for the treatment of cancers.
Collapse
Affiliation(s)
- Wenlong Li
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wen Shuai
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Feijie Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Honghao Sun
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hequan Yao
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
45
|
A novel anti-cancer role of β-apopicropodophyllin against non-small cell lung cancer cells. Toxicol Appl Pharmacol 2018; 357:39-49. [DOI: 10.1016/j.taap.2018.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
|
46
|
Wu Y, Guan Q, Zheng D, Yan P, Feng D, Du J, Zhang J, Zuo D, Bao K, Zhang W. Conformation impacts on the bioactivities of SMART analogues. Eur J Med Chem 2018; 158:733-742. [DOI: 10.1016/j.ejmech.2018.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 09/14/2018] [Indexed: 01/30/2023]
|
47
|
Mills KA, Roach ST, Quinn JM, Guo L, Beck HM, Lomonosova E, Ilivicky AR, Starks CM, Lawrence JA, Hagemann AR, McCourt C, Thaker PH, Powell MA, Mutch DG, Fuh KC. SQ1274, a novel microtubule inhibitor, inhibits ovarian and uterine cancer cell growth. Gynecol Oncol 2018; 151:337-344. [PMID: 30190114 DOI: 10.1016/j.ygyno.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Paclitaxel, a microtubule inhibitor, is subject to tumor resistance while treating high-grade serous ovarian and uterine cancer. This study aims to directly compare the effects of SQ1274, a novel microtubule inhibitor that binds to the colchicine-binding site on tubulin, and paclitaxel in high-grade serous ovarian and uterine cancer cell lines both in vitro and in vivo. METHODS We assessed the sensitivity of ovarian (OVCAR8) and uterine (ARK1) cancer cell lines to SQ1274 and paclitaxel using XTT assays. We used western blot and quantitative real-time PCR to analyze changes in AXL RNA and protein expression by SQ1274 and paclitaxel. Differences in cell-cycle arrest and apoptosis were investigated using flow cytometry. Finally, we treated ovarian and uterine xenograft models with vehicle, paclitaxel, or SQ1274. RESULTS First, we demonstrate that SQ1274 has a much lower IC50 than paclitaxel in both ARK1 (1.26 nM vs. 15.34 nM, respectively) and OVCAR8 (1.34 nM vs. 10.29 nM, respectively) cancer cell lines. Second, we show SQ1274 decreases both RNA and protein expression of AXL. Third, we show that SQ1274 causes increased cell-cycle arrest and apoptosis compared to paclitaxel. Finally, we report that SQ1274 more effectively inhibits tumor growth in vivo compared to paclitaxel. CONCLUSIONS SQ1274 presents as a viable alternative to paclitaxel for treating ovarian and uterine cancer. This study supports the development of SQ1274 as a chemotherapeutic to treat ovarian and uterine cancer.
Collapse
Affiliation(s)
- Kathryn A Mills
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - S Tanner Roach
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Jeanne M Quinn
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Lei Guo
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Hollie M Beck
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Elena Lomonosova
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Anna R Ilivicky
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Courtney M Starks
- Sequoia Sciences, 1912 Innerbelt Business Center Drive, St. Louis, MO 63114, United States of America
| | - Julie A Lawrence
- Sequoia Sciences, 1912 Innerbelt Business Center Drive, St. Louis, MO 63114, United States of America
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Carolyn McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Matthew A Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America
| | - Katherine C Fuh
- Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, St. Louis, MO 63110, United States of America; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States of America.
| |
Collapse
|
48
|
Wang Q, Arnst KE, Wang Y, Kumar G, Ma D, Chen H, Wu Z, Yang J, White SW, Miller DD, Li W. Structural Modification of the 3,4,5-Trimethoxyphenyl Moiety in the Tubulin Inhibitor VERU-111 Leads to Improved Antiproliferative Activities. J Med Chem 2018; 61:7877-7891. [PMID: 30122035 DOI: 10.1021/acs.jmedchem.8b00827] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colchicine binding site inhibitors (CBSIs) hold great potential in developing new generations of antimitotic drugs. Unlike existing tubulin inhibitors such as paclitaxel, they are generally much less susceptible to resistance caused by the overexpression of drug efflux pumps. The 3,4,5-trimethoxyphenyl (TMP) moiety is a critical component present in many CBSIs, playing an important role in maintaining suitable molecular conformations of CBSIs and contributing to their high binding affinities to tubulin. Previously reported modifications to the TMP moiety in a variety of scaffolds of CBSIs have usually resulted in reduced antiproliferative potency. We previously reported a potent CBSI, VERU-111, that also contains the TMP moiety. Herein, we report the discovery of a VERU-111 analogue 13f that is significantly more potent than VERU-111. The X-ray crystal structure of 13f in complex with tubulin confirms its direct binding to the colchicine site. In addition, 13f exhibited a strong inhibitory effect on tumor growth in vivo.
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center of Biotherapy , Chengdu , Sichuan 610041 , China
| | - Gyanendra Kumar
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center of Biotherapy , Chengdu , Sichuan 610041 , China
| | - Stephen W White
- Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| |
Collapse
|
49
|
Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, Eastman H, Barrow AS, Lim KH, Kam TS, Smith BJ, Duivenvoorden HM, Parker BS, Bradshaw TD, Steinmetz MO, Moses JE. Sustainable Syntheses of (-)-Jerantinines A & E and Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Sci Rep 2018; 8:10617. [PMID: 30006510 PMCID: PMC6045569 DOI: 10.1038/s41598-018-28880-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
Collapse
Affiliation(s)
- Christopher J Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Paul A Stanley
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mohannad E Qazzaz
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Hilary Collins
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harry Eastman
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | | | - Belinda S Parker
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
- University of Basel, Biozentrum, CH-4056, Basel, Switzerland
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
50
|
Mphahlele MJ, Parbhoo N. Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization. Pharmaceuticals (Basel) 2018; 11:ph11020059. [PMID: 29891753 PMCID: PMC6027433 DOI: 10.3390/ph11020059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
The 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5a⁻h were prepared and evaluated for potential antigrowth effect in vitro against human lung cancer (A549) and cervical cancer (HeLa) cells and for the potential to inhibit tubulin polymerization. The corresponding intermediates, namely, the 3-unsubstituted 7-acetyl-2-aryl-5-bromoindole 2a⁻d and 7-acetamido-2-aryl-5-bromoindole 4a⁻d were included in the assays in order to correlate both structural variations and cytotoxicity. No cytotoxicity was observed for compounds 2a⁻d and their 3-trifluoroacetyl⁻substituted derivatives 5a⁻d against both cell lines. The 7-acetamido derivatives 4⁻d exhibited modest cytotoxicity against both cell lines. All of the 3-trifluoroacetyl⁻substituted 7-acetamido-2-aryl-5-bromoindoles 5e⁻h were found to be more active against both cell lines when compared to the chemotherapeutic drug, Melphalan. The most active compound, 5g, induced programmed cell death (apoptosis) in a caspase-dependent manner for both A549 and HeLa cells. Compounds 5e⁻h were found to significantly inhibit tubulin polymerization against indole-3-carbinol and colchicine as reference standards. Molecular docking of 5g into the colchicine-binding site suggests that the compounds bind to tubulin by different type of interactions including pi-alkyl, amide-pi stacked and alkyl interactions as well as hydrogen bonding with the protein residues to elicit anticancer activity.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Nishal Parbhoo
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|