1
|
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024; 13:2708. [PMID: 39272474 PMCID: PMC11394233 DOI: 10.3390/foods13172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, and I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Jelena Tošović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
2
|
Korin A, Gouda MM, Youssef M, Elsharkawy E, Albahi A, Zhan F, Sobhy R, Li B. Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules 2024; 29:2588. [PMID: 38893466 PMCID: PMC11174060 DOI: 10.3390/molecules29112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Mostafa M. Gouda
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Eman Elsharkawy
- Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Food Research Centre, Ministry of Agriculture and Natural Resources, Khartoum 113, Sudan
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
4
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
5
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
6
|
Zhang L, Wen JX, Hai L, Wang YF, Yan L, Gao WH, Hu ZD, Wang YJ. Preventive and therapeutic effects of green tea on lung cancer: a narrative review of evidence from clinical and basic research. J Thorac Dis 2022; 14:5029-5038. [PMID: 36647481 PMCID: PMC9840036 DOI: 10.21037/jtd-22-1791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
Background and Objective Green tea is a popular beverage worldwide and has numerous health-promoting properties. Accumulating evidence indicates that green tea has preventive and therapeutic effects on lung cancer. This study aimed to investigate the association between green tea consumption and lung cancer. Methods We performed a narrative review to summarized the association between green tea consumption and lung cancer. Key Content and Findings Green tea consumption is known to decrease lung cancer risk in the general population, as indicated by meta-analyses of observational studies. Two active components of green tea, theabrownin and (-)-epigallocatechin gallate (EGCG), mediate the antitumor activity of green tea. Theabrownin promotes apoptosis, induces cell cycle arrest, and inhibits the migration, clone formation, and proliferation of lung cancer cell lines in vitro and in vivo. EGCG inhibits lung cancer cell proliferation and promotes apoptosis, agenesis, and epithelial-mesenchymal transition (EMT). In addition, EGCG sensitizes lung cancer cells to cisplatin and tyrosine kinase inhibitors (TKIs). The possible molecular mechanisms underlying the antitumor activity of EGCG and theabrownin were reviewed. Conclusions Observational studies have indicated that green tea has preventive effects on lung cancer. In vitro and animal studies have indicated that green tea has therapeutic effects on lung cancer. Further clinical trials are needed to illustrate the therapeutic effects of green tea or its active components (i.e., theabrownin, EGCG) on lung cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, the College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, the College of Basic Medical, Inner Mongolia Medical University, Hohhot, China;,Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Hui Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Jun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Devi A, Dwibedi V, George N, Khan ZA. Response Surface Optimization for Investigating Antioxidant Potential of Camellia Sinensis and Withania Somnifera in Synergistic Manner. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA. SECTION B 2022; 93:397-408. [PMID: 36339934 PMCID: PMC9628569 DOI: 10.1007/s40011-022-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/26/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
The paper highlights the synergistic potential of the novel combination of Camellia sinensis (Kangra green tea) and Withania somnifera (Ashwagandha). One variable at a time approach was used to find antioxidant potential of C. sinensis and W. somnifera alone and in combination. Optimization of antioxidant potential was done by using different plant concentrations of C. sinensis and W. somnifera using a statistical approach of central composite design (CCD) of RSM (response surface methodology). Initial antioxidant activity during optimization of the solvent system was observed in methanol for C. sinensis with DPPH, superoxide radical scavenging assay and hydrogen peroxide scavenging assay (44.9 ± 0.62, 43.77 ± 0.10, 43.88 ± 0.10% scavenging) and for W. somnifera (40.22 ± 0.39, 43.29 ± 1.12, 41.88 ± 0.11% scavenging), respectively. Initially, IC50 has been calculated for C. sinensis (235.26 ± 0.012 μg/mL) and W. somnifera (256.39 ± 0.43 μg/mL) in methanol. Before statistical optimization, the maximum synergistic antioxidant potential of C. sinensis (200 μg/mL) and W. somnifera (150 μg/mL) with DPPH assay, superoxide radical scavenging and hydrogen peroxide scavenging assay was found to be 56.57 ± 0.62, 56.99 ± 0.42, 55.44 ± 0.53% scavenging, respectively. IC50 value has been calculated for C. sinensis + W. somnifera (IC50 = 215.47 ± 0.06 μg/mL). Optimization of plant concentration using CCD of RSM resulted in enhancement of antioxidant potential of C. sinensis (200.5 μg/mL) and W. somnifera (200.5 μg/mL) was found to be 78.01 ± 0.01% scavenging when compared to the initial antioxidant potential, i.e., 56.57 ± 0.62% scavenging shows a 1.37-fold increase from initial antioxidant potential. Research unveils that using various combination of C. sinensis and W. somnifera enhance the antioxidant potential in vitro. Supplementary Information The online version contains supplementary material available at 10.1007/s40011-022-01423-6.
Collapse
Affiliation(s)
- Arti Devi
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab India
| | - Zaved Ahmed Khan
- Faculty of Sciences, Baba Farid College, BFGI, Muktsar Road, Bathinda, Punjab India
| |
Collapse
|
8
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
9
|
Money ME, Matthews CM, Tan-Shalaby J. Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers (Basel) 2022; 14:4780. [PMID: 36230703 PMCID: PMC9563303 DOI: 10.3390/cancers14194780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Patients and providers may not be aware that several adjunctive measures can significantly improve the quality of life, response to treatment, and possibly outcomes for cancer patients. This manuscript presents a review of practical under-recognized adjunctive therapies that are effective including exercise; stress-reduction techniques such as mindfulness, massage, yoga, Tai Chi, breathing exercises; importance of sleep quality; diet modifications such as calorie restriction at the time of chemotherapy and avoidance of high carbohydrate foods; supplements such as aspirin, green tea, turmeric, and melatonin; and repurposed prescription medications such as metformin and statins. Each recommendation should be tailored to the individual patient to assure no contraindications.
Collapse
Affiliation(s)
- Mary E. Money
- Department of Medicine, University of Maryland School of Medicine, 665 W Baltimore Street S, Baltimore, MD 21201, USA
- Meritus Medical Center, 11116 Medical Campus Rd., Hagerstown, MD 21742, USA
| | - Carolyn M. Matthews
- Texas Oncology, PA and Charles A. Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
- Gynecologic Oncology, Baylor Sammons Cancer Center, 3410 Worth St., Suite 400, Dallas, TX 75246, USA
| | - Jocelyn Tan-Shalaby
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15213, USA
- Department of Medicine, Veteran Affairs Pittsburgh Healthcare System, 4100 Allequippa St., Pittsburgh, PA 15240, USA
| |
Collapse
|
10
|
3,4,5-Trimethoxybenzoate of Catechin, an Anticarcinogenic Semisynthetic Catechin, Modulates the Physical Properties of Anionic Phospholipid Membranes. Molecules 2022; 27:molecules27092910. [PMID: 35566261 PMCID: PMC9105813 DOI: 10.3390/molecules27092910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
3,4,5-Trimethoxybenzoate of catechin (TMBC) is a semisynthetic catechin which shows strong antiproliferative activity against malignant melanoma cells. The amphiphilic nature of the molecule suggests that the membrane could be a potential site of action, hence the study of its interaction with lipid bilayers is mandatory in order to gain information on the effect of the catechin on the membrane properties and dynamics. Anionic phospholipids, though being minor components of the membrane, possess singular physical and biochemical properties that make them physiologically essential. Utilizing phosphatidylserine biomimetic membranes, we study the interaction between the catechin and anionic bilayers, bringing together a variety of experimental techniques and molecular dynamics simulation. The experimental data suggest that the molecule is embedded into the phosphatidylserine bilayers, where it perturbs the thermotropic gel to liquid crystalline phase transition. In the gel phase, the catechin promotes the formation of interdigitation, and in the liquid crystalline phase, it decreases the bilayer thickness and increases the hydrogen bonding pattern of the interfacial region of the bilayer. The simulation data agree with the experimental ones and indicate that the molecule is located in the interior of the anionic bilayer as monomer and small clusters reaching the carbonyl region of the phospholipid, where it also disturbs the intermolecular hydrogen bonding between neighboring lipids. Our observations suggest that the catechin incorporates well into phosphatidylserine bilayers, where it produces structural changes that could affect the functioning of the membrane.
Collapse
|
11
|
Rivera-Tovar PR, Pérez-Manríquez J, Mariotti-Celis MS, Escalona N, Pérez-Correa JR. Adsorption of low molecular weight food relevant polyphenols on cross-linked agarose gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hou Y, Zhao C, Xu B, Huang Y, Liu C. Effect of docetaxel on mechanical properties of ovarian cancer cells. Exp Cell Res 2021; 408:112853. [PMID: 34597679 DOI: 10.1016/j.yexcr.2021.112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Docetaxel could inhibit the proliferation of tumor cells by targeting microtubules. The extension of cellular microtubules plays an important role in the invasion and metastasis of tumor cells. This paper aims to study the distribution and mechanical properties of cytoskeletal proteins with low concentration of docetaxel. MTT assay was used to detect the minimum drug activity concentration of docetaxel on SKOV-3 cells, fluorescence staining was used to analyze the distribution of cytoskeleton proteins, scanning electron microscopy(SEM) was used to observe the morphology of single cells, and atomic force microscopy(AFM) was used to determine the microstructure and mechanical properties of cells. The results showed that the IC10 of docetaxel was 1 ng/ml. Docetaxel can effectively inhibit the formation of cell pseudopodia, hinder the indirectness between cells, reduce the cell extension area, and make the cells malformed. In addition, when AFM analyzes the effects of drugs on cell microstructure and mechanical properties, the average cell surface roughness and cell height are positively correlated with the concentration of docetaxel. Especially when the concentration was 100 ng/ml, the adhesion decreased by 37.04% and Young's modulus increased by 1.57 times compared with the control group. This may be because docetaxel leads to microtubule remodeling and membrane protein aggregation, which affects cell microstructure and increases cell strength, leading to significant changes in the mechanical properties of ovarian cells. This is of great significance to the study of the formation mechanism of tumor cell invasion and migration activities mediated by actin.
Collapse
Affiliation(s)
- Yue Hou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chunru Zhao
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Binglin Xu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yuxi Huang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
13
|
Suganuma M, Rawangkan A, Wongsirisin P, Kobayashi N, Matsuzaki T, Yoshikawa HY, Watanabe T. Stiffening of Cancer Cell Membranes Is a Key Biophysical Mechanism of Primary and Tertiary Cancer Prevention with Green Tea Polyphenols. Chem Pharm Bull (Tokyo) 2021; 68:1123-1130. [PMID: 33268644 DOI: 10.1248/cpb.c20-00300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past 30 years, research of green tea polyphenols, especially (-)-epigallocatechin gallate (EGCG), has revealed that consumption of green tea is a practical and effective primary cancer prevention method for the general population. More recently, we believe that green tea polyphenols are beneficial for tertiary cancer prevention using green tea alone or combined with anticancer drugs because EGCG has the potential to inhibit metastatic progression and stemness, and enhance antitumor immunity. In an effort to identify a common underlying mechanism responsible for EGCG's multifunctional effects on various molecular targets, we studied the biophysical effects of EGCG on cell stiffness using atomic force microscopy. We found that EGCG acts to stiffen the membranes of cancer cells, leading to inhibition of signaling pathways of various receptors. Stiffening of membranes with EGCG inhibited AXL receptor tyrosine kinase, a stimulator of cell softening, motility and stemness, and expression of programmed cell death-ligand 1. This review covers the following: i) primary cancer prevention using EGCG or green tea, ii) tertiary cancer prevention by combining EGCG and anticancer drugs, iii) inhibition of metastasis with EGCG by stiffening the cell membrane, iv) inhibition of AXL receptor tyrosine kinase, a stimulator of cell softening and motility, with EGCG, v) inhibition of stemness properties with EGCG, and vi) EGCG as an alternative chemical immune checkpoint inhibitor. Development of new drugs that enhance stiffening of cancer cell membranes may be an effective strategy for tertiary cancer prevention and treatment.
Collapse
Affiliation(s)
- Masami Suganuma
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University.,Research Institute for Clinical Oncology, Saitama Cancer Center
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Ghasemi E, Afzalpour ME, Nayebifar S. Combined high-intensity interval training and green tea supplementation enhance metabolic and antioxidant status in response to acute exercise in overweight women. J Physiol Sci 2020; 70:31. [PMID: 32586268 PMCID: PMC10718018 DOI: 10.1186/s12576-020-00756-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 02/03/2023]
Abstract
Thirty sedentary overweight women were randomly assigned to three groups (n = 10), including HIIT + green tea, HIIT + placebo and green tea. The training program included 3 sessions/week HIIT while the supplement consuming groups took 3 * 500 mg of green tea tablets/day for 10 weeks. Results indicated that 10 weeks of HIIT and green tea meaningfully pronounced baseline serum levels of SIRT1 (P ≤ 0.0001), PGC-1α (P ≤ 0.0001) and CAT (P ≤ 0.0001). In addition, significant increase was observed in three indicators in HIIT + green tea group in comparison with two other research groups. Further, the responses of SIRT1 (P ≤ 0.01) and CAT (P ≤ 0.002) increased significantly to second acute exercise in all three groups. The combination of HIIT and green tea consumption may induce increasing SIRT1 and CAT in response to acute exercise and can improve antioxidant system, body composition and VO2 max results rather than green tea and training alone, in young sedentary overweight women.
Collapse
Affiliation(s)
- Elham Ghasemi
- Department of Sport Sciences, Faculty of Literature and Humanities, University of Zabol, Zabol, Iran
| | | | - Shila Nayebifar
- Department of Sport Sciences, Faculty of Educational Sciences and Psychology, University of Sistan and Baluchestan, Zahedan, Iran.
| |
Collapse
|
16
|
Namiki K, Wongsirisin P, Yokoyama S, Sato M, Rawangkan A, Sakai R, Iida K, Suganuma M. (-)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci Rep 2020; 10:2444. [PMID: 32051483 PMCID: PMC7016176 DOI: 10.1038/s41598-020-59281-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young’s modulus value of 1.52 kPa for H1299-sdCSCs, which showed low stiffness compared with that of H1299 cells, with a Young’s modulus value of 2.24 kPa. (−)-Epigallocatechin gallate (EGCG) reversed the average Young’s modulus value of H1299-sdCSCs to that of H1299 cells. EGCG treatment inhibited tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. AXL receptor tyrosine kinase is highly expressed in H1299-sdCSCs and AXL knockdown with siAXLs significantly reduced tumour sphere formation and ALDH1A1 and SNAI2 (Slug) expression. An AXL-high population of H1299-sdCSCs was similarly reduced by treatment with EGCG and siAXLs. Transplantation of an AXL-high clone isolated from H1299 cells into SCID/Beige mice induced faster development of bigger tumour than bulk H1299 cells, whereas transplantation of the AXL-low clone yielded no tumours. Oral administration of EGCG and green tea extract (GTE) inhibited tumour growth in mice and reduced p-AXL, ALDH1A1, and SLUG in tumours. Thus, EGCG inhibits the stemness and tumourigenicity of human lung cancer cells by inhibiting AXL.
Collapse
Affiliation(s)
- Kozue Namiki
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Shota Yokoyama
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Motoi Sato
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,School of Medical Science, University of Phayao, Phayao, Thailand, 56000
| | - Ryo Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.,Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan. .,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, 362-0806, Japan.
| |
Collapse
|
17
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
18
|
Liang D, Wang J, Li D, Shi J, Jing J, Shan B, He Y. Lung Cancer in Never-Smokers: A Multicenter Case-Control Study in North China. Front Oncol 2019; 9:1354. [PMID: 31921627 PMCID: PMC6914814 DOI: 10.3389/fonc.2019.01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed at estimating the effects of epidemiological risk factors for lung cancer in never-smokers. A multicenter and matched case-control study was conducted in the cities of Shijiazhuang, Xingtai, Qinhuangdao, Baoding, and Chengde in North China. It comprised 1,086 cases and 2,172 healthy subjects as controls, all of whom had smoked fewer than 100 cigarettes in their lifetimes. Patients were newly diagnosed with lung cancer between January 2015 and December 2017. Each patient was matched to two control participants for sex and age (±5 years). Both univariate analysis and multivariate conditional logistic regression models were used to estimate the odds ratio (OR) and 95% confidence interval (95% CI). Subsequently, data were stratified by participant sex and different air quality conditions for analysis. Type of job, exposure to environmental tobacco smoke in the workplace or at home, above-average exposure to cooking oil fumes, depression, poor sleep quality, occupational exposure, cardiovascular diseases, and family history of cancer were revealed as significant risk factors for lung cancer in never-smokers. However, higher educational level, frequent use of a PM2.5 mask, cooking using clean fuels, and consumption of dietary supplements and tea reduced the risk of lung cancer. Risk factors varied between males and females. In areas with air pollution, the number of risk factors was greater than elsewhere, and the magnitudes of their effects were different. Hence, focusing on these risk factors is important for the prevention and control of lung cancer in never-smokers.
Collapse
Affiliation(s)
- Di Liang
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingxi Wang
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Daojuan Li
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Shi
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Jing
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yutong He
- Cancer Institute in Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Pires F, Geraldo VPN, Rodrigues B, Granada-Flor AD, de Almeida RFM, Oliveira ON, Victor BL, Machuqueiro M, Raposo M. Evaluation of EGCG Loading Capacity in DMPC Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6771-6781. [PMID: 31006246 DOI: 10.1021/acs.langmuir.9b00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catechins are molecules with potential use in different pathologies such as diabetes and cancer, but their pharmaceutical applications are often hindered by their instability in the bloodstream. This issue can be circumvented using liposomes as their nanocarriers for in vivo delivery. In this work, we studied the molecular details of (-)-epigallocatechin-3-gallate (EGCG) interacting with 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) monolayer/bilayer systems to understand the catechin loading ability and liposome stability, using experimental and computational techniques. The molecular dynamics simulations show the EGCG molecules deep inside the lipid bilayer, positioned below the lipid ester groups, generating a concentration-dependent lipid condensation. This effect was also inferred from the surface pressure isotherms of DMPC monolayers. In the polarization-modulated infrared reflection absorption spectra assays, the predominant effect at higher concentrations of EGCG (e.g., 20 mol %) was an increase in lipid tail disorder. The steady-state fluorescence data confirmed this disordered state, indicating that the catechin-induced liposome aggregation outweighs the condensation effects. Therefore, by adding more than 10 mol % EGCG to the liposomes, a destabilization of the vesicles occurs with the ensuing release of entrapped catechins. The loading capacity for DMPC seems to be limited by its disordered lipid arrangements, typical of a fluid phase. To further increase the clinical usefulness of liposomes, lipid bilayers with more stable and organized assemblies should be employed to avoid aggregation at large concentrations of catechin.
Collapse
Affiliation(s)
- Filipa Pires
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - Vananélia P N Geraldo
- Instituto de Física de São Carlos , Universidade de São Paulo , 13560-970 Sao Carlos , Brazil
| | - Bárbara Rodrigues
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| | - António de Granada-Flor
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos , Universidade de São Paulo , 13560-970 Sao Carlos , Brazil
| | - Bruno L Victor
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Miguel Machuqueiro
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande, 1749-016 Lisboa , Portugal
| | - Maria Raposo
- Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
20
|
Xu XY, Zhao CN, Cao SY, Tang GY, Gan RY, Li HB. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2019; 60:1693-1705. [PMID: 30869995 DOI: 10.1080/10408398.2019.1588223] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tea is a traditional and popular beverage worldwide, and the consumption of tea has been demonstrated to possess many health benefits, such as cardiovascular protection, anti-obesity, anti-diabetes, and anticancer. Epidemiological studies have shown that the consumption of tea is inversely associated with the risk of several cancers. In addition, experimental studies have revealed that the anticancer actions of tea are mainly attributed to tea polyphenols, such as epigallocatechin-3-gallate and theaflavins. Both in vitro and in vivo studies have demonstrated that the possible anticancer mechanisms are the inhibition on proliferation, anti-angiogenesis, induction of apoptosis, suppression on metastasis, inhibition on cancer stem cells, and modulation on gut microbiota. Its synergetic anticancer effects with drugs or other compounds could promote anticancer therapies. Furthermore, clinical trials have elucidated that intervention of tea phytochemicals is effective in the prevention of several cancers. This paper is an updated review for the prevention and management of cancers by tea based on the findings from epidemiological, experimental and clinical studies, and special attention is paid on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, Lu JL, Ye JH, Liang YR, Zheng XQ. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019; 24:molecules24050954. [PMID: 30857144 PMCID: PMC6429180 DOI: 10.3390/molecules24050954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (−)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.
Collapse
Affiliation(s)
- Liu-Xiang Wang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Zhengzhou 450008, Henan, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1029-1043. [PMID: 30653316 DOI: 10.1021/acs.jafc.8b06146] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tea, leaf, or bud from the plant Camellia sinensis, make up some of the beverages popularly consumed in different parts of the world as green tea, oolong tea, or black tea. More particularly, as a nonfermented tea, green tea has gained more renown because of the significant health benefits assigned to its rich content in polyphenols. As a main constituent, green tea polyphenols were documented for their antioxidant, anti-inflammation, anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Recent reports demonstrate that green tea may exert a positive effect on the reduction of medical chronic conditions such as cardiovascular disease, cancer, Alzheimer's disease, Parkinson's disease, and diabetes. The health benefits of green teas, in particular EGCG, are widely investigated, and these effects are known to be primarily associated with the structure and compositions of its polyphenols. This Review focuses on the diverse constituents of green tea polyphenols and their molecular mechanisms from the perspective of their potential therapeutic function. Recent advances of green tea polyphenols on their bioavailability, bioaccessibility, and microbiota were also summarized in this article. Dietary supplementation with green tea represents an attractive alternative toward promoting human health.
Collapse
Affiliation(s)
- Lujuan Xing
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Key Lab of Meat Processing and Quality Control, College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hua Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ruili Qi
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
23
|
Villalaín J. Epigallocatechin-3-gallate location and interaction with late endosomal and plasma membrane model membranes by molecular dynamics. J Biomol Struct Dyn 2018; 37:3122-3134. [PMID: 30081748 DOI: 10.1080/07391102.2018.1508372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and it has been reported to have many beneficial properties against many different types of illnesses and infections. However, the exact mechanism/s underlying its biological effects are unknown. It has been previously shown that EGCG is capable of binding to and disrupting the membrane, so that some of its effects on biological systems could be ascribed to its capacity to incorporate into the biological membrane and modulate its structure. In this work, we have used atomistic molecular dynamics (MD) to discern the location and orientation of EGCG in model membranes and the possible existence of specific interactions with membrane lipids. For that goal, we have used in our simulation two complex model membranes, one resembling the plasma membrane (PM) and the other one the late endosome (LE) membrane. Our results support that EGCG tends to associate with the membrane and exists inside it in a relatively stable and steady location with a low propensity to be associated with other EGCG molecules. Interestingly, EGCG forms hydrogen bonds with POPC and POPE in the PM system but POPC and BMP and no POPE in the LE. These data suggest that the broad beneficial effects of EGCG could be mediated, at least in part, through its membranotropic effects and therefore membrane functioning. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- a Molecular and Cellular Biology Institute (IBMC) and Institute for Biotechnological Research, Development and Innovation (IDiBE) , Universitas "Miguel Hernández" , Alicante , Spain
| |
Collapse
|
24
|
He J, Xu L, Yang L, Wang X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med Sci Monit 2018; 24:8198-8206. [PMID: 30428482 PMCID: PMC6247744 DOI: 10.12659/msm.911175] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Hydrogen peroxide-induced neuronal oxidative stress is a serious threat to the nervous system. Catechins and related compounds are effective radical scavengers that protect against nerve cell damage. Material/Methods Here, we investigated the antioxidant property of various catechins in protecting against hydrogen peroxide, as well as their radical-scavenging activity. Result We found that catechins treatment effectively protected HT22 cells against H2O2-induced cell viability by decreasing and attenuating reactive oxidative species production in different proportions. In addition, all tested catechins performed radical scavenging activity, and partially removed the free radicals. Among all investigated catechins, epigallocatechin gallate was the most effective against ROS production and had the strongest radical-scavenging activity. These results suggest that beneficial effects were strongly related with structure of catechins, mainly because of the hydroxyl and galloyl groups. Conclusions In conclusion, epigallocatechin gallate is the most effective antioxidant polyphenol against hydrogen peroxide and radical-scavenging activity.
Collapse
Affiliation(s)
- Jinting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China (mainland)
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China (mainland)
| | - Le Yang
- People's Hospital of Jilin Province, Changchun, Jilin, China (mainland)
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
25
|
Del Favero G, Zaharescu R, Marko D. Functional impairment triggered by altertoxin II (ATXII) in intestinal cells in vitro: cross-talk between cytotoxicity and mechanotransduction. Arch Toxicol 2018; 92:3535-3547. [PMID: 30276433 PMCID: PMC6290659 DOI: 10.1007/s00204-018-2317-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Intestinal cells are able to continuously integrate response to multiple stimuli/stressors; these include the concomitant activation of “chemically driven” pathways, of paramount importance in the response to toxicants, as well as physical stimulation derived from motility. Altertoxin II (ATXII, 0.1, 1 and 10 µM), a mycotoxin produced by the food contaminant fungus Alternaria alternata was studied in HT-29 intestinal adenocarcinoma cells and in non-transformed intestinal epithelial cells, HCEC. One-hour incubation with ATXII was sufficient to trigger irreversible cytotoxicity in both cell types, as well as to modify cellular responses to concomitant pro-oxidant challenge (H2O2, 100–500 µM, DCF-DA assay) suggesting that even relatively short-time exposure of the intestinal cells could be sufficient to alter their functionality. Combination of ATXII (1 µM) with physical stimulation typical of the intestinal compartment (shear stress) revealed differential response of tumor-derived epithelial cells HT-29 in comparison to HCEC, in particular in the localization of the transcription factor Nrf2 (NF-E2-related factor 2). Moreover, ATXII reduced the migratory potential of HCEC as well as their membrane fluidity, but had no respective impact on HT-29 cells. Taken together, ATXII appeared to alter predominantly membrane functionality in HCEC thus hampering crucial functions for cellular motility/turnover, as well as barrier function of healthy intestinal cells and had very limited activity on the tumor counterparts.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria.
| | - Ronita Zaharescu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| |
Collapse
|
26
|
Rawangkan A, Wongsirisin P, Namiki K, Iida K, Kobayashi Y, Shimizu Y, Fujiki H, Suganuma M. Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth. Molecules 2018; 23:molecules23082071. [PMID: 30126206 PMCID: PMC6222340 DOI: 10.3390/molecules23082071] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The anticancer activity of immune checkpoint inhibitors is attracting attention in various clinical sites. Since green tea catechin has cancer-preventive activity in humans, whether green tea catechin supports the role of immune checkpoint inhibitors was studied. We here report that (−)-epigallocatechin gallate (EGCG) inhibited programmed cell death ligand 1 (PD-L1) expression in non–small-cell lung cancer cells, induced by both interferon (IFN)-γ and epidermal growth factor (EGF). The mRNA and protein levels of IFN-γ–induced PD-L1 were reduced 40–80% after pretreatment with EGCG and green tea extract (GTE) in A549 cells, via inhibition of JAK2/STAT1 signaling. Similarly, EGF-induced PD-L1 expression was reduced about 37–50% in EGCG-pretreated Lu99 cells through inhibition of EGF receptor/Akt signaling. Furthermore, 0.3% GTE in drinking water reduced the average number of tumors per mouse from 4.1 ± 0.5 to 2.6 ± 0.4 and the percentage of PD-L1 positive cells from 9.6% to 2.9%, a decrease of 70%, in lung tumors of A/J mice given a single intraperitoneal injection of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In co-culture experiments using F10-OVA melanoma cells and tumor-specific CD3+ T cells, EGCG reduced PD-L1 mRNA expression about 30% in F10-OVA cells and restored interleukin-2 mRNA expression in tumor-specific CD3+ T cells. The results show that green tea catechin is an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan.
| | - Pattama Wongsirisin
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan.
| | - Kozue Namiki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan.
| | - Keisuke Iida
- Molecular Chirality Research Center and Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Yasuhito Kobayashi
- Saitama Cardiovascular and Respiratory Center, Kumagaya, Saitama 360-0197, Japan.
| | - Yoshihiko Shimizu
- Saitama Cardiovascular and Respiratory Center, Kumagaya, Saitama 360-0197, Japan.
| | - Hirota Fujiki
- Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama 362-0806, Japan.
| |
Collapse
|
27
|
He YT, Zhang YC, Shi GF, Wang Q, Xu Q, Liang D, Du Y, Li DJ, Jin J, Shan BE. Risk factors for pulmonary nodules in north China: A prospective cohort study. Lung Cancer 2018; 120:122-129. [PMID: 29748006 DOI: 10.1016/j.lungcan.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Pulmonary nodules have become common incidental findings with the widespread use of computed tomography (CT) technology. Such nodules have the potential to become early lung cancer lesions, so understanding more about factors that may be associated with them is important. MATERIALS AND METHODS The present work was based on a large prospective cohort comprising 32,438 participants in Hebei Province (China) between January 2014 and March 2016. Participants aged 40-75 years completed a questionnaire, underwent low-dose CT (LDCT), and were followed up to March 2017. Grouped by the results of LDCT, normal participants and those with pulmonary nodules were included in the data analysis. RESULTS In total 7752 subjects were included in this study, of whom 2040 (26.32%) were pulmonary nodule patients. Older age, current smoking status (hazard ratio (HR) = 1.43, 95% confidence interval (95%CI): 1.21, 1.68), exposure to second-hand smoke (SHS) at work (HR = 1.17, 95%CI: 1.01, 1.35), dust exposure (HR = 1.49, 95%CI: 1.06, 2.11), history of lung disease (HR = 1.44, 95%CI: 1.16, 1.77), and family history of cancer (HR = 1.28, 95%CI: 1.12, 1.48) were associated with pulmonary nodules. However, consumption of vegetables (HR = 0.82, 95%CI: 0.68, 0.99), tea (HR = 0.88, 95%CI: 0.78, 0.99) and legumes reduced the risk. Approximately 10.09% and 8.58% of pulmonary nodule incidences were attributed to tobacco smoking and low fruit intake, respectively. An estimated 6.36% and 3.88% of patients with pulmonary nodules attributable to family history of cancer and history of lung disease were detected. CONCLUSION The results of this study suggest that age, smoking, SHS, dietary factors, occupational exposures, history of disease and family history of cancer may affect the incidence of pulmonary nodules.
Collapse
Affiliation(s)
- Yu-Tong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Ya-Chen Zhang
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Gao-Feng Shi
- Department of Radiology, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Qi Wang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Qian Xu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Yu Du
- Department of Radiology, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Dao-Juan Li
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China
| | - Bao-En Shan
- Cancer Institute, The Fourth Hospital of Hebei Medical University, The Tumor Hospital of Hebei Province, Shijiazhuang, Hebei 050011, PR China.
| |
Collapse
|
28
|
Fujiki H, Watanabe T, Sueoka E, Rawangkan A, Suganuma M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells. Mol Cells 2018; 41:73-82. [PMID: 29429153 PMCID: PMC5824026 DOI: 10.14348/molcells.2018.2227] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer preventive activities of green tea and its main constituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes ground-breaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stemness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.
Collapse
Affiliation(s)
- Hirota Fujiki
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Tatsuro Watanabe
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Eisaburo Sueoka
- Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501,
Japan
| | - Anchalee Rawangkan
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570,
Japan
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570,
Japan
| |
Collapse
|
29
|
Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, Kobayashi N, Suganuma M, Nakabayashi S, Yoshikawa HY, Tanaka M. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys 2018; 19:19937-19947. [PMID: 28721420 DOI: 10.1039/c7cp02771k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 μM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 μM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Chemistry, Saitama University, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zemła J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S, Lekka M. Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol 2018; 73:115-124. [DOI: 10.1016/j.semcdb.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/27/2022]
|
31
|
Cell softening in malignant progression of human lung cancer cells by activation of receptor tyrosine kinase AXL. Sci Rep 2017; 7:17770. [PMID: 29259259 PMCID: PMC5736582 DOI: 10.1038/s41598-017-18120-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023] Open
Abstract
To study the role of cell softening in malignant progression, Transwell assay and atomic force microscope were used to classify six human non-small cell lung cancer cell lines into two groups: a high motility-low stiffness (HMLS) group and a low motility-high stiffness (LMHS) group. We found a significant role of activity of the AXL receptor tyrosine kinase, which belongs to the TAM (Tyro3, AXL, Mer) family, in the stimulation of motility and cell softening. HMLS cells expressed higher AXL levels than LMHS cells and contained phosphorylated AXL. H1703 LMHS cells transfected with exogenous AXL exhibited increased motility and decreased stiffness, with low levels of actin stress fibre formation. Conversely, the AXL-specific inhibitor R428 and AXL-targeting siRNA reduced motility and increased stiffness in H1299 HMLS cells. Knockdown of AXL stimulated actin stress fibre formation, which inhibited tumour formation in a mouse xenograft model. The Ras/Rac inhibitor SCH 51344, which blocks disruption of actin stress fibres, exerted similar effects to AXL inactivation. We therefore propose that the Ras/Rac pathway operates downstream of AXL. Thus, AXL activation-induced cell softening promotes malignant progression in non-small cell lung cancer and represents a key biophysical property of cancer cells.
Collapse
|
32
|
Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J Cancer Res Clin Oncol 2017; 143:2401-2412. [PMID: 28942499 PMCID: PMC5693978 DOI: 10.1007/s00432-017-2515-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Purpose Our previous experiments show that the main constituent of green-tea catechins, (−)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. Methods The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Results Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Conclusions Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.
Collapse
|
33
|
Emanuele S, Lauricella M, Calvaruso G, D'Anneo A, Giuliano M. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients 2017; 9:nu9090992. [PMID: 28885570 PMCID: PMC5622752 DOI: 10.3390/nu9090992] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppe Calvaruso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
34
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
35
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
36
|
Meng J, Tong Q, Liu X, Yu Z, Zhang J, Gao B. Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncol Lett 2017; 14:1152-1156. [PMID: 28693288 DOI: 10.3892/ol.2017.6248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of treatment with epigallocatechin-3-gallate (EGCG) on the human esophageal cancer cell line ECa109 and elucidate the associated underlying mechanisms. ECa109 cells were cultured and treated with increasing concentrations of EGCG for various durations. Cell viability was evaluated using the MTT assay and apoptosis was detected using flow cytometry. The methylation status of the cyclin-dependent kinase inhibitor 2A (p16) gene was analyzed using the methylation-specific polymerase chain reaction (PCR). p16 mRNA and protein expression was measured using reverse transcription-quantitative PCR and western blot analysis, respectively. The results of the present study demonstrated that, following treatment with EGCG, ECa109 cell viability was significantly decreased, while the rate of apoptosis was significantly increased (P<0.01), in a dose- and time-dependent manner. Following treatment of ECa109 cells with EGCG, p16 gene demethylation, and its mRNA and protein expression, were significantly increased compared with the untreated cells (P<0.01). EGCG may induce ECa109 cell apoptosis and inhibit cell growth through p16 gene demethylation, which restores its expression.
Collapse
Affiliation(s)
- Jianchao Meng
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qiang Tong
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaobo Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zongtao Yu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bo Gao
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
37
|
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct 2017. [DOI: 10.1039/c7fo00611j] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green tea has been consumed for centuries in Japan, China and Morocco.
Collapse
Affiliation(s)
- S. Pastoriza
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - M. Mesías
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC)
- Madrid
- Spain
| | - C. Cabrera
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - J. A. Rufián-Henares
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| |
Collapse
|