1
|
Zhang J, Wang K, Sun Y. A Simple Schiff Base Probe for Quintuplicate-Metal Analytes with Four Emission-Wavelength Responses. Molecules 2023; 28:6400. [PMID: 37687230 PMCID: PMC10490265 DOI: 10.3390/molecules28176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A versatile mono-Schiff compound consisting of o-aminobenzene-hydroxyjulolidine (ABJ-MS) has been easily synthesized using a one-step reaction. ABJ-MS displays four diverse fluorescence responses to the addition of Zn2+/Al3+/Fe3+/Ag+, with the maximum fluorescence emission at 530 nm undergoing a hypsochromic shift to 502/490/440/430 nm, synchronously with the discriminating fluorescence enhancement being 10.6/22.8/2.6/7.1-fold, respectively. However, the addition of Cu2+ into ABJ-MS leads to an opposite behavior, namely, fluorescence quenching. Meanwhile, ABJ-MS also displays distinct absorption changes after adding these five metal ions due to different binding affinities between them and ABJ-MS, which gives ABJ-MS quite a versatile detecting nature for Cu2+/Zn2+/Al3+/Fe3+/Ag+. Moreover, ABJ-MS can mimic a series of versatile AND/OR/INH-consisting logic circuits on the basis of the Cu2+/Zn2+/Al3+/Fe3+/Ag+-mediated diverse optical responses. These will endow the smart ABJ-MS molecule and potential applications in the multi-analysis chemosensory and molecular logic material fields.
Collapse
Affiliation(s)
- Jingzhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaili Wang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- State Environmental Protection Engineering (Beijing) Center for Industrial Wastewater Pollution Control, Beijing 100037, China
| | - Yilu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Halim SA, Abdel-Rahman MA. First-principles density functional theoretical study on the structures, reactivity and spectroscopic properties of (NH) and (OH) Tautomer's of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one. Sci Rep 2023; 13:8909. [PMID: 37264069 DOI: 10.1038/s41598-023-35933-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The tautomerizations mechanism of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one were inspected in the gas phase and ethanol using density function theory (DFT) M06-2X and B3LYP methods. Thermo-kinetic features of different conversion processes were estimated in temperature range 273-333 K using the Transition state theory (TST) accompanied with one dimensional Eckert tunneling correction (1D-Eck). Acidity and basicity were computed as well, and the computational results were compared against the experimental ones. Additionally, NMR, global descriptors, Fukui functions, NBO charges, and electrostatic potential (ESP) were discussed. From thermodynamics analysis, the keto form of 4-(methylsulfanyl)-3-[(1Z)-1-(2 phenylhydrazinylidene) quinoline-2(1H)-one is the most stable form in the gas phase and ethanol and the barrier heights required for tautomerization process were found to be high in the gas phase and ethanol ~ 38.80 and 37.35 kcal/mol, respectively. DFT methods were used for UV-Vis electronic spectra simulation and the time-dependent density functional theory solvation model (TDDFT-SMD) in acetonitrile compounds.
Collapse
Affiliation(s)
- Shimaa Abdel Halim
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt.
| | | |
Collapse
|
3
|
Jóźwiak K, Jezierska A, Panek JJ, Kochel A, Filarowski A. Inter- vs. Intra-Molecular Hydrogen Bond in Complexes of Nitrophthalic Acids with Pyridine. Int J Mol Sci 2023; 24:ijms24065248. [PMID: 36982321 PMCID: PMC10048863 DOI: 10.3390/ijms24065248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
This study covers the analysis of isomeric forms of nitrophthalic acids with pyridine. This work dwells on the complementary experimental (X-ray, IR and Raman) and theoretical (Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT)) studies of the obtained complexes. The conducted studies showed that steric repulsion between the nitro group in ortho-position and the carboxyl group causes significant isomeric changes. Modeling of the nitrophthalic acid—pyridine complex yielded a short strong intramolecular hydrogen bond (SSHB). The transition energy from the isomeric form with an intermolecular hydrogen bond to the isomeric form with an intramolecular hydrogen bond was estimated.
Collapse
|
4
|
Saura-Sanmartin A, Andreu-Ardil L. Recent Advances in the Preparation of Delivery Systems for the Controlled Release of Scents. Int J Mol Sci 2023; 24:ijms24054685. [PMID: 36902122 PMCID: PMC10002519 DOI: 10.3390/ijms24054685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Scents are volatile compounds highly employed in a wide range of manufactured items, such as fine perfumery, household products, and functional foods. One of the main directions of the research in this area aims to enhance the longevity of scents by designing efficient delivery systems to control the release rate of these volatile molecules and also increase their stability. Several approaches to release scents in a controlled manner have been developed in recent years. Thus, different controlled release systems have been prepared, including polymers, metal-organic frameworks and mechanically interlocked systems, among others. This review is focused on the preparation of different scaffolds to accomplish a slow release of scents, by pointing out examples reported in the last five years. In addition to discuss selected examples, a critical perspective on the state of the art of this research field is provided, comparing the different types of scent delivery systems.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| | | |
Collapse
|
5
|
Deneva V, Slavova S, Kumanova A, Vassilev N, Nedeltcheva-Antonova D, Antonov L. Favipiravir-Tautomeric and Complexation Properties in Solution. Pharmaceuticals (Basel) 2022; 16:ph16010045. [PMID: 36678542 PMCID: PMC9864296 DOI: 10.3390/ph16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The tautomeric properties of favipiravir were investigated experimentally for the first time by using molecular spectroscopy (UV-Vis absorption, fluorescence and NMR), as well as DFT quantum-chemical calculations. According to the obtained results, the enol tautomer is substantially more stable in most of the organic solvents. In the presence of water, a keto form appears to be favored due to the specific solute-solvent interactions. Upon the addition of alkaline-earth-metal ions, deprotonation and complexation occurred simultaneously, giving the formation of 2 : 1 ligand : metal complexes. According to the theoretical simulations, the metal ion is captured between the carbonyl groups as a result of the size-fit effect.
Collapse
Affiliation(s)
- Vera Deneva
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: (V.D.); (L.A.)
| | - Sofia Slavova
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alina Kumanova
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Nedeltcheva-Antonova
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Luidmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
- Correspondence: (V.D.); (L.A.)
| |
Collapse
|
6
|
Tzeli D, Gerontitis IE, Petsalakis ID, Tsoungas PG, Varvounis G. Self Cycloaddition of o-Naphthoquinone Nitrosomethide to (±) Spiro{naphthalene(naphthopyranofurazan)}-one Oxide: An Insight into its Formation. Chempluschem 2022; 87:e202200313. [PMID: 36479609 DOI: 10.1002/cplu.202200313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Indexed: 11/25/2022]
Abstract
2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou Athens, 157 84, Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Ioannis E Gerontitis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Petros G Tsoungas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21, Athens, Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
7
|
Inhibitory effect of protonic bis(5-amino-1,10-phenanthroline) on proliferation of hepatocellular carcinoma and its molecular mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Mahmoud NH, Elsayed GH, Aboelnaga A, Fahim AM. Spectroscopic studies, DFT calculations, Cytotoxicity activity, docking stimulation of novel metal complexes of Schiff base ligand of isonicotinohydrazide derivative. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6697] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nelly H. Mahmoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| | - Ghada H. Elsayed
- Department of Hormones, National Research Center (NRC) Giza Egypt
- Stem Cells lab, Center of Excellence for Advanced Sciences, National Research Center (NRC) Giza Egypt
| | - Asmaa Aboelnaga
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain‐Shams University Cairo Egypt
| | - Asmaa M. Fahim
- Department of Green chemistry, National Research Center (NRC) Giza Egypt
| |
Collapse
|
9
|
Zarycz MNC, Schiel MA, Angelina E, Enriz RD. Covalence and π-electron delocalization influence on hydrogen bonds in proton transfer process of o-hydroxy aryl Schiff bases: A combined NMR and QTAIM analysis. J Chem Phys 2021; 155:054307. [PMID: 34364326 DOI: 10.1063/5.0058422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Within the framework of the density functional theory approach, we studied the relationship between the chemical nature of intramolecular hydrogen bonds (HBs) and nuclear magnetic resonance (NMR) parameters, J-couplings and 1H-chemical shifts [δ(1H)], of the atoms involved in such bonds in o-hydroxyaryl Schiff bases during the proton transfer process. For the first time, the shape of the dependence of the degree of covalence in HBs on 1J(N-H), 1J(O-H), 2hJ(O-N), and δ(1H) during the proton transfer process in o-hydroxyaryl Schiff bases was analyzed. Parameters obtained from Bader's theory of atoms in molecules were used to assess the dependence of covalent character in HBs with both the NMR properties. The influence of π-electronic delocalization on 2hJ(N-O) under the proton transfer process was investigated. 2hJ(O-N) in a Mannich base was also studied in order to compare the results with an unsaturated system. In addition, substituent effects on the phenolic ring were investigated. Our results indicate that the covalent character of HBs on both sides of the transition state undergoes a smooth exponential increase as the δ(1H) moves downfield. The degree of covalence of the N⋯H (O⋯H) bond increases linearly as 1J(N-H) (1J(O-H)) becomes more negative, even after reaching the transition state. Non-vanishing values of spin dipolar (SD) and paramagnetic spin orbital terms of 2hJ(O-N) show that π-electronic delocalization has a non-negligible effect on tautomeric equilibrium and gives evidence of the presence of the resonance assisted HB.Variation of the SD term of 2hJ(O-N) follows a similar pattern as the change in the para-delocalization aromaticity index of the chelate ring.
Collapse
Affiliation(s)
- M Natalia C Zarycz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - M Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste; Instituto de Química Básica y Aplicada (IQUIBA-NEA). CONICET, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
10
|
Hetmańczyk Ł, Szklarz P, Kwocz A, Wierzejewska M, Pagacz-Kostrzewa M, Melnikov MY, Tolstoy PM, Filarowski A. Polymorphism and Conformational Equilibrium of Nitro-Acetophenone in Solid State and under Matrix Conditions. Molecules 2021; 26:molecules26113109. [PMID: 34067498 PMCID: PMC8197010 DOI: 10.3390/molecules26113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022] Open
Abstract
Conformational and polymorphic states in the nitro-derivative of o-hydroxy acetophenone have been studied by experimental and theoretical methods. The potential energy curves for the rotation of the nitro group and isomerization of the hydroxyl group have been calculated by density functional theory (DFT) to estimate the barriers of the conformational changes. Two polymorphic forms of the studied compound were obtained by the slow and fast evaporation of polar and non-polar solutions, respectively. Both of the polymorphs were investigated by Infrared-Red (IR) and Raman spectroscopy, Incoherent Inelastic Neutron Scattering (IINS), X-ray diffraction, nuclear quadrupole resonance spectroscopy (NQR), differential scanning calorimetry (DSC) and density functional theory (DFT) methods. In one of the polymorphs, the existence of a phase transition was shown. The position of the nitro group and its impact on the crystal cell of the studied compound were analyzed. The conformational equilibrium determined by the reorientation of the hydroxyl group was observed under argon matrix isolation. An analysis of vibrational spectra was achieved for the interpretation of conformational equilibrium. The infrared spectra were measured in a wide temperature range to reveal the spectral bands that were the most sensitive to the phase transition and conformational equilibrium. The results showed the interrelations between intramolecular processes and macroscopic phenomena in the studied compound.
Collapse
Affiliation(s)
- Łukasz Hetmańczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Przemysław Szklarz
- Faculty of Chemistry, Wrocław University, I14 F. Joliot-Curie st., 50-383 Wrocław, Poland; (P.S.); (A.K.); (M.W.); (M.P.-K.)
| | - Agnieszka Kwocz
- Faculty of Chemistry, Wrocław University, I14 F. Joliot-Curie st., 50-383 Wrocław, Poland; (P.S.); (A.K.); (M.W.); (M.P.-K.)
| | - Maria Wierzejewska
- Faculty of Chemistry, Wrocław University, I14 F. Joliot-Curie st., 50-383 Wrocław, Poland; (P.S.); (A.K.); (M.W.); (M.P.-K.)
| | - Magdalena Pagacz-Kostrzewa
- Faculty of Chemistry, Wrocław University, I14 F. Joliot-Curie st., 50-383 Wrocław, Poland; (P.S.); (A.K.); (M.W.); (M.P.-K.)
| | - Mikhail Ya. Melnikov
- Department of Chemistry, Moscow State University, F. Joliot-Curie 14, 119991 Moscow, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
| | - Aleksander Filarowski
- Faculty of Chemistry, Wrocław University, I14 F. Joliot-Curie st., 50-383 Wrocław, Poland; (P.S.); (A.K.); (M.W.); (M.P.-K.)
- Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna, Russia
- Correspondence: ; Tel.: +48-71-3757283
| |
Collapse
|
11
|
Hansen PE. A Spectroscopic Overview of Intramolecular Hydrogen Bonds of NH…O,S,N Type. Molecules 2021; 26:2409. [PMID: 33919132 PMCID: PMC8122615 DOI: 10.3390/molecules26092409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Intramolecular NH…O,S,N interactions in non-tautomeric systems are reviewed in a broad range of compounds covering a variety of NH donors and hydrogen bond acceptors. 1H chemical shifts of NH donors are good tools to study intramolecular hydrogen bonding. However in some cases they have to be corrected for ring current effects. Deuterium isotope effects on 13C and 15N chemical shifts and primary isotope effects are usually used to judge the strength of hydrogen bonds. Primary isotope effects are investigated in a new range of magnitudes. Isotope ratios of NH stretching frequencies, νNH/ND, are revisited. Hydrogen bond energies are reviewed and two-bond deuterium isotope effects on 13C chemical shifts are investigated as a possible means of estimating hydrogen bond energies.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
PPO-Inhibiting Herbicides and Structurally Relevant Schiff Bases: Evaluation of Inhibitory Activities against Human Protoporphyrinogen Oxidase. Processes (Basel) 2021. [DOI: 10.3390/pr9020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study of human protoporphyrinogen oxidase (hPPO) inhibition can contribute significantly to a better understanding of some pathogeneses (e.g., porphyria, herbicide exposure) and the development of anticancer agents. Therefore, we prepared new potential inhibitors with Schiff base structural motifs (2-hydroxybenzaldehyde-based Schiff bases 9–13 and chromanone derivatives 17–19) as structurally relevant to PPO herbicides. The inhibitory activities (represented by the half maximal inhibitory concentration (IC50) values) and enzymatic interactions (represented by the hPPO melting temperatures) of these synthetic compounds and commercial PPO herbicides used against hPPO were studied by a protoporphyrin IX fluorescence assay. In the case of PPO herbicides, significant hPPO inhibition and changes in melting temperature were observed for oxyfluorten, oxadiazon, lactofen, butafenacil, saflufenacil, oxadiargyl, chlornitrofen, and especially fomesafen. Nevertheless, the prepared compounds did not display significant inhibitory activity or changes in the hPPO melting temperature. However, a designed model of hPPO inhibitors based on the determined IC50 values and a docking study (by using AutoDock) found important parts of the herbicide structural motif for hPPO inhibition. This model could be used to better predict PPO herbicidal toxicity and improve the design of synthetic inhibitors.
Collapse
|
13
|
Reviglio AL, Martínez FA, Montero MDA, Garro-Linck Y, Aucar GA, Sperandeo NR, Monti GA. Accurate location of hydrogen atoms in hydrogen bonds of tizoxanide from the combination of experimental and theoretical models. RSC Adv 2021; 11:7644-7652. [PMID: 35423249 PMCID: PMC8695048 DOI: 10.1039/d0ra10609g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
To obtain detailed information about the position of hydrogen atoms in hydrogen bonds, HBs, of crystalline organic molecular compounds is not an easy task. In this work we propose a combination of ssNMR experimental data with theoretical procedures to get such information. Furthermore, the combination of experimental and theoretical models provides us with well-defined grounds to analyse the strength of π-stacking interactions between layers of hydrogen bonded molecules. Two different theoretical models were considered, both approaches being quite different. The first one is a solid-state model, so that the periodicity of a crystalline system underlies calculations of the electronic energy, the electronic density and NMR parameters. The other one is a molecular model in which molecules are taken as isolated monomers, dimers and tetramers. These two models were applied to the tizoxanide, TIZ, molecular crystal though it can widely be applied to any other molecular crystal. By the application of the quantum molecular model it was possible to learn about the way the intermolecular HBs affect the position of hydrogen atoms that belong to HBs in TIZ. This molecule has two intermolecular HBs that stabilize the structure of a basic dimer, but it also has an intramolecular HB in each monomer whose position should be optimized together with the other ones. We found that by doing this it is possible to obtain reliable results of calculations of NMR spectroscopic parameters. Working with the solid-state model we found that any local variation of the TIZ crystalline structure is correlated with the variation of the values of the NMR parameters of each nucleus. The excellent agreement between experimental and calculated chemical shifts leads to the conclusion that the N10-H10 bond distance should be (1.00 ± 0.02) Å.
Collapse
Affiliation(s)
- Ana L Reviglio
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| | - Fernando A Martínez
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Marcos D A Montero
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Yamila Garro-Linck
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| | - Gustavo A Aucar
- Institute of Modelling and Innovation on Technology (IMIT), CONICET-UNNE Corrientes Argentina
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina Corrientes Argentina
| | - Norma R Sperandeo
- Departamento de Ciencias Farmacéuticas, FCQ, UNC Córdoba Argentina
- UNITEFA-CONICET Córdoba Argentina
| | - Gustavo A Monti
- FAMAF, UNC Córdoba Argentina
- Instituto de Física Enrique Gaviola (IFEG), CONICET-UNC Córdoba Argentina
| |
Collapse
|
14
|
Stogniy MY, Anufriev SA, Shmal'ko AV, Antropov SM, Anisimov AA, Suponitsky KY, Filippov OA, Sivaev IB. The unexpected reactivity of 9-iodo-nido-carborane: from nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4',4''-(MeOCH 2CH 2O) 3-3,3',3''-Co 3(μ 3-O)(μ 3-S)(1,2-C 2B 9H 10) 3]. Dalton Trans 2021; 50:2671-2688. [PMID: 33533344 DOI: 10.1039/d0dt03857a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unusual reactivity of 9-iodo-nido-carborane [9-I-7,8-C2B9H11]- towards nucleophiles under strong basic conditions was revealed. The nucleophilic substitution of iodine with O- and N-nucleophiles results in [9-RO-7,8-C2B9H11]- (R = H, CH2CH2OMe) and [9-L-7,8-C2B9H11] (L = Py, NEt3, Me2NCH2CH2NMe2), respectively. Reaction of [9-I-7,8-C2B9H11]- with CoCl2 in 1,2-dimethoxyethane in the presence of t-BuOK, depending on the order of addition of the reagents, leads either to a diastereomeric mixture of diiodo derivatives cobalt bis(dicarbollide) rac-[4,4'-I2-3,3'-Co(1,2-C2B9H10)2]- and meso-[4,7'-I2-3,3'-Co(1,2-C2B9H10)2]- or to the corresponding mixture of 2-methoxyethoxy derivatives rac-[4,4'-(MeOCH2CH2O)2-3,3'-Co(1,2-C2B9H10)2]- and meso-[4,7'-(MeOCH2CH2O)2-3,3'-Co(1,2-C2B9H10)2]-. In the presence of accidental admixture of sodium thiosulfate, the reactions of 9-iodo-nido-carborane and 9-(2'-methoxyethoxy)-nido-carborane with CoCl2 in 1,2-dimethoxyethane were found to produce additionally unprecedented tricobalt tris(dicarbollide) cluster Na[4,4',4''-(MeOCH2CH2O)3-3,3',3''-Co3(μ3-O)(μ3-S)(1,2-C2B9H10)3], the central fragment of which is a trigonal bipyramid with apical oxygen and sulfur atoms, and the base is formed by the Co3 triangle flanked by three dicarbollide ligands. In addition, the 2-methoxyethoxy substituents of the dicarbollide ligands chelate the sodium cation in such a way that they form a helix whose rotation direction depends on the enantiomer of the parent ligand. Thus, in this case, induction of the helical chirality of the complex occurs due to the point chirality of the initial inorganic ligand. It is worth noting that in the case of symmetrically substituted 2-methoxyethoxy derivative of nido-carborane [10-MeOCH2CH2O-7,8-C2B9H11]- only formation of the corresponding cobalt bis(dicarbollide) complex [8,8'-(MeOCH2CH2O)2-3,3'-Co(1,2-C2B9H10)2]- was observed.
Collapse
Affiliation(s)
- Marina Yu Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow, 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Santos GFN, Carvalho LC, Oliveira DAS, Rego DG, Bueno MA, Oliveira BG. The definitive challenge of forming uncommon pseudo‐π···H–F and C···H–F hydrogen bonds on cyclic and cubic nonpolar hydrocarbons. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Leila Cardoso Carvalho
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | | | - Danilo Guimarães Rego
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | - Mauro Alves Bueno
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| | - Boaz Galdino Oliveira
- Centro das Ciências Exatas e das Tecnologias Universidade Federal do Oeste da Bahia Barreiras Brazil
| |
Collapse
|
16
|
Jóźwiak K, Jezierska A, Panek JJ, Goremychkin EA, Tolstoy PM, Shenderovich IG, Filarowski A. Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules 2020; 25:E4720. [PMID: 33066679 PMCID: PMC7587347 DOI: 10.3390/molecules25204720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023] Open
Abstract
Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering spectroscopies and the Car-Parrinello Molecular Dynamics and Density Functional Theory calculations was used. This integrated approach made it possible to assess the balance of repulsive and attractive intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of this balance on steric confinement and the effect of this balance on intermolecular interactions of the carboxyl groups.
Collapse
Affiliation(s)
- Kinga Jóźwiak
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| | - Eugene A. Goremychkin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 6 F. Joliot-Curie str., 141980 Dubna, Russia;
| | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia;
| | - Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; (K.J.); (A.J.); (J.J.P.)
| |
Collapse
|
17
|
Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands. CRYSTALS 2020. [DOI: 10.3390/cryst10050354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The synthesis and properties of new chalcone ligand 4I-L ((2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) and tetracoordinate Co(II) complex [Co(4I-L)2Cl2], (1a), are reported in this article. Upon recrystallization of 1a, the single crystals of [Co(4I-L)4Cl2]·2DMF·3Et2O (1b) were obtained and crystal structure was determined using X-ray diffraction. The non-covalent interactions in 1b were thoroughly analyzed and special attention was dedicated to interactions formed by the peripheral iodine substituents. The density functional theory (DFT), atoms in molecule (AIM) and noncovalent interaction (NCI) methods and electronic localization function (ELF) calculations were used to investigate halogen bond formed between the iodine functional groups and co-crystallized molecules of diethyl ether.
Collapse
|
18
|
Theoretical study of intramolecular hydrogen bond in selected symmetric "proton sponges" on the basis of DFT and CPMD methods. J Mol Model 2020; 26:37. [PMID: 31989276 DOI: 10.1007/s00894-020-4296-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
"Proton sponges," derivatives of prototypic 1,8-bis(dimethylamino)naphthalene (DMAN), exhibit remarkable basicity, which made them interesting for various experimental and theoretical studies. The details of bridged proton dynamics in protonated DMAN and its derivative denoted as TMGN (1,8-bis(tetramethylguanidino)naphthalene) were investigated on the basis of density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) methods. Special attention was paid to the effects of symmetry of the molecular skeleton and the type of substituent on the bridged proton neighborhood statistics and dynamics. The metric parameter analyses of hydrogen bridge provided us with a conclusion that proton migration events in TMGNH+ are less numerous than in DMANH+, which can be rationalized by noticing the slower dynamics of large substituents of TMGN with respect to the smaller -N(Me)2 groups of DMAN. The atomic velocity power spectra served as computational models of the vibrational signatures associated with the presence of the intramolecular hydrogen bond. A broad feature was registered for hydrogen bonds present in both compounds. The computations were verified by experimental data available.
Collapse
|
19
|
Xi H, Zhang Z, Zhang W, Li M, Lian C, Luo Q, Tian H, Zhu WH. All-Visible-Light-Activated Dithienylethenes Induced by Intramolecular Proton Transfer. J Am Chem Soc 2019; 141:18467-18474. [DOI: 10.1021/jacs.9b07357] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hancheng Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qianfu Luo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Teran R, Guevara R, Mora J, Dobronski L, Barreiro-Costa O, Beske T, Pérez-Barrera J, Araya-Maturana R, Rojas-Silva P, Poveda A, Heredia-Moya J. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019; 24:E2696. [PMID: 31344947 PMCID: PMC6696115 DOI: 10.3390/molecules24152696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023] Open
Abstract
Our main interest is the characterization of compounds to support the development of alternatives to currently marketed drugs that are losing effectiveness due to the development of resistance. Schiff bases are promising biologically interesting compounds having a wide range of pharmaceutical properties, including anti-inflammatory, antipyretic, and antimicrobial activities, among others. In this work, we have synthesized 12 Schiff base derivatives of 4-aminoantipyrine. In vitro antimicrobial, antioxidant, and cytotoxicity properties are analyzed, as well as in silico predictive adsorption, distribution, metabolism, and excretion (ADME) and bioactivity scores. Results identify two potential Schiff bases: one effective against E. faecalis and the other with antioxidant activity. Both have reasonable ADME scores and provides a scaffold for developing more effective compounds in the future. Initial studies are usually limited to laboratory in vitro approaches, and following these initial studies, much research is needed before a drug can reach the clinic. Nevertheless, these laboratory approaches are mandatory and constitute a first filter to discriminate among potential drug candidates and chemical compounds that should be discarded.
Collapse
Affiliation(s)
- Rommy Teran
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rommel Guevara
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jessica Mora
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lizeth Dobronski
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
| | - Olalla Barreiro-Costa
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Timo Beske
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jorge Pérez-Barrera
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile
| | - Patricio Rojas-Silva
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ana Poveda
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador.
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador.
| | - Jorge Heredia-Moya
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador.
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.
| |
Collapse
|
21
|
Nikitin K, O'Gara R. Mechanisms and Beyond: Elucidation of Fluxional Dynamics by Exchange NMR Spectroscopy. Chemistry 2019; 25:4551-4589. [PMID: 30421834 DOI: 10.1002/chem.201804123] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/31/2022]
Abstract
Detailed mechanistic information is crucial to our understanding of reaction pathways and selectivity. Dynamic exchange NMR techniques, in particular 2D exchange spectroscopy (EXSY) and its modifications, provide indispensable intricate information on the mechanisms of organic and inorganic reactions and other phenomena, for example, the dynamics of interfacial processes. In this Review, key results from exchange NMR studies of small molecules over the last few decades are systemised and discussed. After a brief introduction to the theory, the key types of dynamic processes are identified and fundamental examples given of intra- and intermolecular reactions, which, in turn, could involve, or not, bond-making and bond-breaking events. Following that logic, internal molecular rotation, intramolecular stereomutation and molecular recognition will first be considered because they do not typically involve bond breaking. Then, rearrangements, substitution-type reactions, cyclisations, additions and other processes affecting chemical bonds will be discussed. Finally, interfacial molecular dynamics and unexpected combinations of different types of fluxional processes will also be highlighted. How exchange NMR spectroscopy helps to identify conformational changes, coordination and molecular recognition processes as well as quantify reaction energy barriers and extract detailed mechanistic information by using reaction rate theory in conjunction with computational techniques will be shown.
Collapse
Affiliation(s)
- Kirill Nikitin
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Ryan O'Gara
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
22
|
Afonin AV, Pavlov DV, Vashchenko AV. Case study of 2-vinyloxypyridine: Quantitative assessment of the intramolecular C H⋯N hydrogen bond energy and its contribution to the one-bond 13C1H coupling constant. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Benković T, Kenđel A, Parlov-Vuković J, Kontrec D, Chiş V, Miljanić S, Galić N. Multiple dynamics of aroylhydrazone induced by mutual effect of solvent and light - spectroscopic and computational study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kwocz A, Jan Panek J, Jezierska A, Hetmańczyk Ł, Pawlukojć A, Kochel A, Lipkowski P, Filarowski A. A molecular roundabout: triple cyclically arranged hydrogen bonds in light of experiment and theory. NEW J CHEM 2018. [DOI: 10.1039/c8nj04339f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper dwells on the synthesis and diverse studies of cyclically arranged hydrogen bridges in tris-hydroxy aryl Schiff bases. Experimental (IINS, IR, Raman and X-ray) and theoretical (CPMD, DFTP and DFT) studies of tris-hydroxy aryl Schiff bases have been performed in the solid state.
Collapse
Affiliation(s)
- Agnieszka Kwocz
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Aneta Jezierska
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Łukasz Hetmańczyk
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Kraków
- Poland
- Frank Laboratory of Neutron Physics
| | - Andrzej Pawlukojć
- Frank Laboratory of Neutron Physics
- Joint Institute for Nuclear Research
- 141980 Dubna
- Russia
- Institute of Nuclear Chemistry and Technology
| | - Andrzej Kochel
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Paweł Lipkowski
- Department of Physical and Quantum Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | | |
Collapse
|
25
|
François B, Szczubelek L, Berrée F, Roisnel T, Carboni B. Palladium-Catalyzed Cross-Coupling/Annulation Cascade for Synthesis of 9-Hydroxy and 9-Aminofluorenes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Benjamin François
- Institut des Sciences Chimiques de Rennes; UMR CNRS 6226; Université de Rennes 1; 263, Avenue du Général Leclerc, Campus de Beaulieu 35042 Rennes CEDEX France
| | - Luc Szczubelek
- Institut des Sciences Chimiques de Rennes; UMR CNRS 6226; Université de Rennes 1; 263, Avenue du Général Leclerc, Campus de Beaulieu 35042 Rennes CEDEX France
| | - Fabienne Berrée
- Institut des Sciences Chimiques de Rennes; UMR CNRS 6226; Université de Rennes 1; 263, Avenue du Général Leclerc, Campus de Beaulieu 35042 Rennes CEDEX France
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes; UMR CNRS 6226; Université de Rennes 1; 263, Avenue du Général Leclerc, Campus de Beaulieu 35042 Rennes CEDEX France
| | - Bertrand Carboni
- Institut des Sciences Chimiques de Rennes; UMR CNRS 6226; Université de Rennes 1; 263, Avenue du Général Leclerc, Campus de Beaulieu 35042 Rennes CEDEX France
| |
Collapse
|
26
|
Special Issue: Intramolecular Hydrogen Bonding 2017. Molecules 2017; 22:molecules22091521. [PMID: 28892003 PMCID: PMC6151796 DOI: 10.3390/molecules22091521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/24/2022] Open
|
27
|
Martínez-Cifuentes M, Cardona W, Saitz C, Weiss-López B, Araya-Maturana R. A Study about Regioisomeric Hydroquinones with Multiple Intramolecular Hydrogen Bonding. Molecules 2017; 22:molecules22040593. [PMID: 28387716 PMCID: PMC6153943 DOI: 10.3390/molecules22040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/19/2022] Open
Abstract
A theoretical exploration about hydrogen bonding in a series of synthetic regioisomeric antitumor tricyclic hydroquinones is presented. The stabilization energy for the intramolecular hydrogen bond (IHB) formation in four structurally different situations were evaluated: (a) IHB between the proton of a phenolic hydroxyl group and an ortho-carbonyl group (forming a six-membered ring); (b) between the oxygen atom of a phenolic hydroxyl group and the proton of an hydroxyalkyl group (seven membered ring); (c) between the proton of a phenolic hydroxyl group with the oxygen atom of the hydroxyl group of a hydroxyalkyl moiety (seven-membered ring); and (d) between the proton of a phenolic hydroxyl group and an oxygen atom directly bonded to the aromatic ring in ortho position (five-membered ring). A conformational analysis for the rotation around the hydroxyalkyl substituent is also performed. It is observed that there is a correspondence between the conformational energies and the IHB. The strongest intramolecular hydrogen bonds are those involving a phenolic proton and a carbonyl oxygen atom, forming a six-membered ring, and the weakest are those involving a phenolic proton with the oxygen atom of the chromenone, forming five-membered rings. Additionally, the synthesis and structural assignment of two pairs of regioisomeric hydroquinones, by 2D-NMR experiments, are reported. These results can be useful in the design of biologically-active molecules.
Collapse
Affiliation(s)
- Maximiliano Martínez-Cifuentes
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, Casilla 9845, Santiago 8940577, Chile.
| | - Wilson Cardona
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile.
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago 8380494, Chile.
| | - Boris Weiss-López
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Av. Lircay s/n, Casilla 747, Talca 3460000, Chile.
| |
Collapse
|