1
|
Li N, Zhu F, Wang Z, Wu J, Gao Y, Li K, Zhao C, Wang X. Harnessing corn straw biochar: A breakthrough in eco-friendly Cu(II) wastewater treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 197:25-34. [PMID: 39986044 DOI: 10.1016/j.wasman.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
To investigate an energy-efficient, environmentally friendly, and highly efficient biochar for adsorbing Cu(II)-containing wastewater, corn straw hydrothermal char prepared at 240 °C for 2 h was used as a precursor. Silicon (Si)-Manganese (Mn) impregnation modification was then performed to produce the modified biochar (b-BC). The study found that Si and Mn were loaded onto the b-BC surface in the form of oxides. The distinct hierarchical Si membrane effectively stabilized Mn oxides and increased the specific surface area. Under different pH conditions, the effect of Mn rendered b-BC consistently negatively charged in the solution, facilitating electrostatic attraction with Cu(II). Fourier-transform infrared and X-ray photoelectron spectroscopy results revealed that b-BC's surface had numerous oxygen-containing functional groups, effectively binding with Cu(II). Adsorption experiments showed that, at an addition amount of 1.47 g/L and pH of 7, b-BC displayed a significant adsorption capacity for Cu(II) at 167.884 mg/g. Pseudo-second-order adsorption kinetics and Freundlich isotherm models better described the adsorption behavior of b-BC for Cu(II). The adsorption process was primarily dominated by multilayer chemical adsorption. Webber-Morris analysis indicated that the key adsorption process occurred during the membrane diffusion stage. At this stage, Cu(II) formed bonds with the b-BC surface in the forms of Cu-O, -COOCu, Cu(OH)2, and Si/Mn-O-Cu. Chelation emerged as the most significant mechanism for b-BC adsorbing Cu(II). Due to its environmentally friendly preparation method and high efficiency in adsorbing Cu(II) from water, b-BC can be considered as a feasible rich-carbon adsorbent in the field of waste treatment.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Fuchen Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhaowei Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Jinghui Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yidi Gao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Keqing Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunliang Zhao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xianze Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
2
|
Nasrollahpour S, Pulicharla R, Brar SK. Functionalized biochar for the removal of poly- and perfluoroalkyl substances in aqueous media. iScience 2025; 28:112113. [PMID: 40160421 PMCID: PMC11951031 DOI: 10.1016/j.isci.2025.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Biochar has gained attention as a promising adsorbent for removing various environmental pollutants due to its availability, cost-effectiveness, eco-friendly nature, and high adsorption capacity. This review focuses on using biochar to remove poly- and perfluoroalkyl substances (PFAS), emerging contaminants that pose significant environmental and health risks due to their toxicity, persistence, and bioaccumulation potential. The classification of biochar and using pristine and functionalized biochar for pollutant removal are addressed, along with an overview of the various functionalization techniques employed to enhance biochar's adsorption capacity. Different factors influencing the removal of poly- and perfluoroalkyl substances (PFAS), such as pH, the molecular chain length of PFAS, and biochar characteristics like pyrolysis temperature, particle size, and dosage, are investigated. Long-chain PFAS, such as perfluoro octane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are more effectively adsorbed than short-chain PFAS, with competitive sorption effects observed in mixed-solution environments. A decrease in pH, smaller biochar particle sizes, and optimized pyrolysis temperatures have been found to enhance biochar's sorption capacity. Furthermore, biochar demonstrates higher efficiency in single-solution systems compared to mixed solutions when removing PFAS.
Collapse
Affiliation(s)
- Sepideh Nasrollahpour
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Wang J, Zhu H, Hu Y, Hu L, Wei Z, Li YY, Hu X. Mn oxide-modified biochars with high adsorption capacity for Pb(II) in wastewater: Preparation and adsorption mechanisms. ENVIRONMENTAL RESEARCH 2025; 266:120553. [PMID: 39647685 DOI: 10.1016/j.envres.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The occurrence of excessive levels of bivalent plumbum (Pb(II)) in wastewater poses a notable threat to both human health and ecological safety. In this study, orthogonal experiments were conducted to prepare coprecipitation-modified biochar (C-BC) and impregnation pyrolysis-modified biochar (I-BC) via potassium permanganate (KMnO4) for removing Pb(II) from wastewater. Three types of modified biochars (BCs) (Mn-BCs) namely, C-BC400, I-BC400, and I-BC700, were selected as high-efficiency adsorbents on the basis of their high removal rates (87.2%, 88.0%, and 91.2%, respectively) for 400 mg/L Pb(II) solutions. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM)‒energy-dispersive X-ray spectroscopy (EDS) analysis results indicated that Mn elements were distributed only on the outer surfaces of the C-BC400 particles but occurred on the outer surface and were stably embedded in the I-BC400 and I-BC700 particles. Compared with those of the pristine (BCs), the Pb(II) adsorption rates of C-BC400, I-BC400, and I-BC700 increased by factors of 3.75, 2.09, and 5.70, respectively. The Pb(II) adsorption capacities of C-BC400, I-BC400, and I-BC700 (182.28, 133.16, and 69.25 mg/g, respectively) were significantly greater than those of the pristine BCs produced at 400 °C (45.43 mg/g) and 700 °C (40.71 mg/g). The excellent adsorption ability of Mn-BCs for Pb(II) depends on various adsorption mechanisms, including complexation, electrostatic attraction, surface adsorption, and ion exchange. These results suggest that Mn-BCs exhibit high application potential in the remediation of Pb(II)-contaminated wastewater.
Collapse
Affiliation(s)
- Jiabo Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Hongxia Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yue Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Zeming Wei
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yan Ying Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinglu Hu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
4
|
Pal CA, Choi YL, Lingamdinne LP, Kulkarni R, Karri RR, Koduru JR, Chang YY. Plasma-assisted MnO surface engineered activated carbon felt for enhanced heavy metal adsorption. Sci Rep 2025; 15:901. [PMID: 39762457 PMCID: PMC11704355 DOI: 10.1038/s41598-024-84872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study explores the enhanced adsorption performance of activated carbon felt (ACF) for Cu(II) and Cd(II) ions, achieved using a dual-synergistic approach combining MnO coating and plasma treatment. ACF's intrinsic properties, including a high surface area (~ 1000-2000 m²/g), large porosity, and excellent mechanical stability, make it a promising material for environmental applications. However, its limited surface functional groups hinder its adsorption efficiency for heavy metals. Conventional acid treatments, though effective in introducing functional groups, compromise ACF's structural integrity and pose environmental hazards. The non-thermal plasma method addresses these challenges by introducing oxygen-rich functional groups and MnO species without using harmful chemicals, preserving the material's mechanical and morphological properties. This study addresses key challenges in adsorption technologies, such as inefficiencies in multi-contaminant systems and adsorbent degradation through plasma-aided modifications. The synergistic modification enhances adsorption performance by leveraging mechanisms such as ion exchange, complexation, and co-precipitation. Adsorption experiments revealed maximum adsorption capacities of 163.39 mg/g for Cu(II) and 214.59 mg/g for Cd(II), with an extended equilibrium time of 720 min at pH 5. This research highlights the significance of plasma-aided modification strategies for developing sustainable and efficient heavy metal adsorbents, contributing to advancements in wastewater treatment technologies.
Collapse
Affiliation(s)
| | - Yu-Lim Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
5
|
Arabzadeh Nosratabad N, Yan Q, Cai Z, Wan C. Exploring nanomaterial-modified biochar for environmental remediation applications. Heliyon 2024; 10:e37123. [PMID: 39315228 PMCID: PMC11417198 DOI: 10.1016/j.heliyon.2024.e37123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Environmental pollution, particularly from heavy metals and toxic elements, poses a significant threat to both human health and ecological systems. While various remediation technologies exist, there is an urgent need for cost-effective and sustainable solutions. Biochar, a carbon-rich product derived from the pyrolysis of organic matter, has emerged as a promising material for environmental remediation. However, its pristine form has limitations, such as low adsorption capacities, a relatively narrow range of pH adaptability which can limit its effectiveness in diverse environmental conditions, and a tendency to lose adsorption capacity rapidly in the presence of competing ions or organic matters. This review aims to explore the burgeoning field of nanomaterial-modified biochar, which seeks to overcome the limitations of pristine biochar. By incorporating nanomaterials, the adsorptive and reactive properties of biochar can be significantly enhanced. Such modifications, especially biochar supported with metal nanoparticles (biochar-MNPs), have shown promise in various applications, including the removal of heavy metals, organic contaminants, and other inorganic pollutants from aqueous environments, soil, and air. This review provides a comprehensive overview of the synthesis techniques, characterization methods, and applications of biochar-MNPs, as well as discusses their underlying mechanisms for contaminant removal. It also offers insights into the advantages and challenges of using nanomaterial-modified biochar for environmental remediation and suggests directions for future research.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Qiangu Yan
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Zhiyong Cai
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726-2398, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Zouari M, Hribernik S, Marrot L, Tzolov M, DeVallance DB. Manganese dioxide-coated biocarbon for integrated adsorption-photocatalytic degradation of formaldehyde in indoor conditions. Heliyon 2024; 10:e29993. [PMID: 38694080 PMCID: PMC11061683 DOI: 10.1016/j.heliyon.2024.e29993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Formaldehyde is a common indoor air pollutant with hazardous effects on human health. This study investigated the efficiency of biocarbon (BC) functionalized with variable contents of MnO2 for formaldehyde removal in ambient conditions via integrated adsorption-photocatalytic degradation technology. The sample with the highest formaldehyde removal potential was used to prepare a functional coating made of acrylic binder mixed with 20 wt% of the particles and applied on beech (Fagus sylvatica L) substrate. SEM images showed that MnO2 was deposited around and inside the pores of the BC. EDX spectra indicated the presence of Mn peaks and increased content of oxygen in the doped BC compared to pure BC, which indicated the successful formation of MnO2. Raman spectra revealed that the disorder in the BC's structure increased with increasing MnO2 loadings. FTIR spectra of BC-MnO2 samples displayed additional peaks compared to the BC spectrum, which were attributed to MnO vibrations. Moreover, the deposition of increased MnO2 loadings decreased the porosity of the BC due to pores blockage. The BC sample containing 8 % Mn exhibited the highest formaldehyde removal efficiency in 8 h, which was 91 %. A synergetic effect between BC and MnO2 was observed. The formaldehyde removal efficiency and capacity of the coating reached 43 % and 6.1 mg/m2, respectively, suggesting that the developed coating can be potentially used to improve air quality in the built environment.
Collapse
Affiliation(s)
- Mariem Zouari
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Muzejski trg 2, 6000, Koper, Slovenia
| | - Silvo Hribernik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000, Maribor, Slovenia
| | - Laetitia Marrot
- FRISSBE, Slovenian National Building and Civil Engineering Institute (ZAG), 1000, Ljubljana, Slovenia
| | - Marian Tzolov
- College of Science and Technology, Commonwealth University of Pennsylvania, 401 North Fairview Street, Lock Haven, PA, 17745, United States
| | - David B. DeVallance
- College of Science and Technology, Commonwealth University of Pennsylvania, 401 North Fairview Street, Lock Haven, PA, 17745, United States
| |
Collapse
|
7
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Singh J, Verma M. Waste derived modified biochar as promising functional material for enhanced water remediation potential. ENVIRONMENTAL RESEARCH 2024; 245:117999. [PMID: 38154567 DOI: 10.1016/j.envres.2023.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The waste management and water purification are daunting environmental challenges. Biochar, a carbonaceous material prepared from diverse organic waste (agricultural, household residues and municipal sewage sludge) has garnered substantial attention due to its excellent attributes, including carbon content, cation exchange efficacy, ample specific surface area, and structural robustness. Thus, the present review comprehensively analyzes bio waste-derived biochar with a particular emphasis on water remediation applications. This article primarily delves into various strategies for modifying biochar, elucidating the underlying mechanisms behind these modifications and their potential for bolstering pollutant removal efficiency. Furthermore, it addresses the impact of functionalization on both biochar stability and cost for commercialization. Lastly, the article outlines key developments, SWOT analysis, and future prospects, offering insights into the practical execution of biochar applications at a larger scale. Therefore, this article paves the way for future research to deepen the understanding of modified biochar with mechanisms for exploring water remediation applications in a more sustainable manner.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| |
Collapse
|
9
|
Munir R, Muneer A, Younas F, Sayed M, Sardar MF, Albasher G, Noreen S. Actas Pink-2B dye removal in biochar nanocomposites augmented vertical flow constructed wetland (VF-CWs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1392-1409. [PMID: 38441053 DOI: 10.1080/15226514.2024.2324360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Industries generate hazardous dye wastewater, posing significant threats to public health and the environment. Removing dyes before discharge is crucial. The ongoing study primarily focused on synthesizing, applying, and understanding the mechanism of green nano-biochar composites. These composites, including zinc oxide/biochar, copper oxide/biochar, magnesium oxide/biochar, and manganese oxide/biochar, are designed to effectively remove Actas Pink-2B (Direct Red-31) in conjunction with constructed wetlands. Constructed wetland maintained pH 6.0-7.9. At the 10th week, the copper oxide/biochar treatment demonstrated the highest removal efficiency of total suspended solids (72%), dissolved oxygen (7.2 mg/L), and total dissolved solids (79.90%), followed by other biochar composites. The maximum removal efficiency for chemical oxygen demand (COD) and color was observed at a retention time of 60 days. The electrical conductivity also followed the same order, with a decrease observed up to the 8th week before becoming constant. A comprehensive statistical analysis was conducted, encompassing various techniques including variance analysis, regression analysis, correlation analysis, and principal component analysis. The rate of color and COD removal followed a second-order and first-order kinetics, respectively. A significant negative relationship was observed between dissolved oxygen and COD. The study indicates that employing biochar composites in constructed wetlands improves textile dye removal efficiency.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Murtaza Sayed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
11
|
Sani MNH, Amin M, Siddique AB, Nasif SO, Ghaley BB, Ge L, Wang F, Yong JWH. Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166881. [PMID: 37678534 DOI: 10.1016/j.scitotenv.2023.166881] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The greatest challenge for the agriculture sector in the twenty-first century is to increase agricultural production to feed the burgeoning global population while maintaining soil health and the integrity of the agroecosystem. Currently, the application of biochar is widely implemented as an effective means for boosting sustainable agriculture while having a negligible influence on ecosystems and the environment. In comparison to traditional biochar, nano-biochar (nano-BC) boasts enhanced specific surface area, adsorption capacity, and mobility properties within soil, allowing it to promote soil properties, crop growth, and environmental remediation. Additionally, carbon sequestration and reduction of methane and nitrous oxide emissions from agriculture can be achieved with nano-BC applications, contributing to climate change mitigation. Nonetheless, due to cost-effectiveness, sustainability, and environmental friendliness, waste-derived nano-BC may emerge as the most viable alternative to conventional waste management strategies, contributing to the circular bioeconomy and the broader goal of achieving the Sustainable Development Goals (SDGs). However, it's important to note that research on nano-BC is still in its nascent stages. Potential risks, including toxicity in aquatic and terrestrial environments, necessitate extensive field investigations. This review delineates the potential of waste-derived nano-BC for sustainable agriculture and environmental applications, outlining current advancements, challenges, and possibilities in the realms from a sustainability and circular bioeconomy standpoint.
Collapse
Affiliation(s)
- Md Nasir Hossain Sani
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| | - Mehedi Amin
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Tasmania, Australia.
| | - Saifullah Omar Nasif
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 30, 2630 Taastrup, Denmark.
| | - Liya Ge
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| | - Feng Wang
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
| |
Collapse
|
12
|
Su X, He J, Khan MA, Chang K, Liu Y, Guo G, Li X, Jin F, Kuang M, Gouda S, Huang Q. Potential Application Performance of Hydrochar from Kitchen Waste: Effects of Salt, Oil, Moisture, and pH. TOXICS 2023; 11:679. [PMID: 37624184 PMCID: PMC10459985 DOI: 10.3390/toxics11080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The surge in kitchen waste production is causing food-borne disease epidemics and is a public health threat worldwide. Additionally, the effectiveness of conventional treatment approaches may be hampered by KW's high moisture, salt, and oil content. Hydrothermal carbonization (HTC) is a promising new technology to convert waste biomass into environmentally beneficial derivatives. This study used simulated KW to determine the efficacy of hydrothermal derivatives (hydrochar) with different salt and oil content, pH value, and solid-liquid ratio for the removal of cadmium (Cd) from water and identify their high heating value (HHV). The findings revealed that the kitchen waste hydrochar (KWHC) yield decreased with increasing oil content. When the water content in the hydrothermal system increased by 90%, the yield of KWHC decreased by 65.85%. The adsorption capacity of KWHC remained stable at different salinities. The KWHC produced in the acidic environment increases the removal efficiency of KWHC for Cd. The raw material was effectively transformed into a maximum HHV (30.01 MJ/kg). HTC is an effective and secure method for the resource utilization of KW based on the adsorption capacity and combustion characteristic indices of KWHC.
Collapse
Affiliation(s)
- Xuesong Su
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Jizu He
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | | | - Kenlin Chang
- Institute of Environmental Engineering, Department of Public Health, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Yin Liu
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Genmao Guo
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou 570100, China
| | - Fangming Jin
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Meijuan Kuang
- Hainan Pujin Environmental Engineeering, Haikou 570100, China
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Qing Huang
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Bhandari G, Gangola S, Dhasmana A, Rajput V, Gupta S, Malik S, Slama P. Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation. Front Microbiol 2023; 14:1214870. [PMID: 37547682 PMCID: PMC10400457 DOI: 10.3389/fmicb.2023.1214870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, India
| | - Archna Dhasmana
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vishal Rajput
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Department of Biosciences, Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
14
|
Munir R, Ali K, Naqvi SAZ, Muneer A, Bashir MZ, Maqsood MA, Noreen S. Green metal oxides coated biochar nanocomposites preparation and its utilization in vertical flow constructed wetlands for reactive dye removal: Performance and kinetics studies. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104167. [PMID: 36906994 DOI: 10.1016/j.jconhyd.2023.104167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 02/25/2023] [Indexed: 06/09/2023]
Abstract
Major causes of water pollution in the ecosystem are pollutants such as dyes which are noxious. The present study was based on the synthesis of the green nano-biochar composites from cornstalk and green metal oxide resulting in Copper oxide/biochar, Zinc oxide /biochar, Magnesium oxide/biochar, Manganese oxide/biochar, biochar for removal of dyes combined with the constructed wetland (CW). Biochar Augmentation in constructed wetland systems has improved dye removal efficiency to 95% in order of copper oxide/biochar > Magnesium oxide/biochar > Zinc oxide/biochar > Manganese oxide/biochar > biochar > control (without biochar) respectively in wetlands. It has increased the efficiency of pH by maintaining pH 6.9-7.4, while Total Suspended Solids (TSS) removal efficiency and Dissolved oxygen (DO) increased with the hydraulic retention time of about 7 days for 10 weeks. Chemical oxygen demand (COD) and colour removal efficiency increased with the hydraulic retention time of 12 days for 2 months and there was a low removal efficiency for total dissolved solids (TDS) from control (10.11%) to Copper oxide /biochar (64.44%) and Electrical conductivity (EC) from control (8%) to Copper oxide /biochar (68%) with the hydraulic retention time of about 7 days for 10 weeks. Colour and chemical oxygen demand removal kinetics followed second and first-order kinetic. A significant growth in the plants were also observed. These results proposed the use of agricultural waste-based biochar as part of a constructed wetland substratum can provide enhanced removal of textile dyes. That can be reused.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khuram Ali
- Department of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | | | - Muhammad Aamer Maqsood
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
15
|
Ge J, Tang N, Guo J, Yu M, Zhang Y, Li X, Liang J. Mussel-inspired magnetic adsorbent MnO 2/PDA@Fe 3O 4 for removing heavy metal ions contaminants in single and mixed systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40846-40859. [PMID: 36622594 DOI: 10.1007/s11356-022-25094-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution has been a magnificent concern for a long period. A novel magnetic material, MnO2/PDA@Fe3O4, was prepared in this paper. With the assistance of multiple characterization methods, it was confirmed that polydopamine coated the magnetic nucleus and acted as a dense intermediate layer for MnO2 attachment. Having superior adsorption performance, MnO2/PDA@Fe3O4 could remove heavy metal cations efficiently no matter in single or mixed systems. The maximum adsorption capacities calculated by the Langmuir model for Pb(II), Cu(II), and Cd(II) were 295.01 mg/g, 130.30 mg/g, and 115.16 mg/g, respectively. In mixed systems, the adsorbent showed obvious selectivity for Pb(II). And the variation of Cu(II) concentration was more responsible for Pb(II) adsorption than that of Cd(II). The kinetic and thermodynamic data revealed that the polluted ions immobilizations by MnO2/PDA@Fe3O4 were chemisorption and were endothermic, entropy increase, spontaneous process. The presence of humic acid and coexisting ions induced only a very limited interference. In addition, MnO2/PDA@Fe3O4 maintained excellent adsorption performance and stability after five cycles of adsorption and removed 98.33% Pb(II) and 71.24% Cu(II) from actual water, respectively. This study confirmed that the MnO2/PDA@Fe3O4 had great potential and broad prospects to remediate the heavy metal contaminants in water.
Collapse
Affiliation(s)
- Jiangyue Ge
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiayin Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Mengdie Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
16
|
Removal of Cu (II) Via chitosan-conjugated iodate porous adsorbent: Kinetics, thermodynamics, and exploration of real wastewater sample. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
17
|
Ahuja R, Kalia A, Sikka R, P C. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS OMEGA 2022; 7:45825-45836. [PMID: 36570198 PMCID: PMC9774412 DOI: 10.1021/acsomega.2c05117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) is a carbon-rich material that can be obtained by thermal decomposition of agricultural solid waste under oxygen-limited conditions. It has received increasing attention as a cost-effective sorbent to treat metal-contaminated water due to attributes such as high porosity and the presence of various functional groups. The heavy metal (HM) sorption and removal capacity of BC can be enhanced by developing novel biochar nanohybrids (BNHs) that can be produced via surface modification of BC with nanomaterials. Loading of nanomaterials on the biochar surface can improve its physicochemical properties through alterations in the functional group profile, porosity, and availability of active sites on the BC surface which can enhance the HM adsorption ability. This manuscript provides information on preparation of nano-based biochar hybrids emanating from the type of modifying agent for the removal of different HM ions from wastewaters, and the underlying mechanisms have been discussed. Further, this compilation discusses published literature depicting the influence of different processes of preparation on the physicochemical properties and adsorption capacity of nanobiochar hybrids. The potential risks of BNHs have been reviewed to effectively avoid the possible harmful impacts on the environment, and future research directions have been proposed.
Collapse
Affiliation(s)
- Radha Ahuja
- Department
of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anu Kalia
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Rajeev Sikka
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Chaitra P
- Electron
Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
18
|
Elsawy H, El-shahawy A, Ibrahim M, El-Halim AEHA, Talha N, Sedky A, Alfwuaires M, Alabbad H, Almeri N, Mahmoud E. Properties of Recycled Nanomaterials and Their Effect on Biological Activity and Yield of Canola in Degraded Soils. AGRICULTURE 2022; 12:2096. [DOI: 10.3390/agriculture12122096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Recycling waste, such as rice straw and water treatment residuals, is important to reduce harmful effects on the environment and to improve canola yield and soil quality in degraded soils. Nanotechnology for the production of nanomaterials from biochar and water treatment residues will be a future revolution for improving soil quality and increasing canola yield in degraded soil. Therefore, this study aims to identify the properties of some recycled nanomaterials, such as nanobiochar (nB) and nanowater treatment residue (nWTR), and their effect on the biological activity and productivity of canola in degraded soils. The results showed that the nWTR and nB contain many functional groups and minerals, and they also have high negative zeta potential. The addition of the studied soil amendments significantly improved microbial biomass carbon (MBC) and biological activity, which played a major role in increasing canola yield. The highest dehydrogenase (DHA) and catalase (CLA) activity was found in nWTR-treated soil at 50 mg kg−1, with increases of 32.8% and 566.7% compared to the control, respectively. The addition of nB greatly improved the growth of canola plants in the soil. This was evident from the increase in the weight of seeds, the weight of 1000 grains, the number of pods per plant, and the highest increase was for nB added at the rate of 250 mg per kg−1 soil. The addition of 50 mg kg−1 of nWTR gave the best results in seed yield by 150.64% compared to the control. These results indicate that recycled nWTR and nB are some of the best waste recycling treatments, in addition to good soil health, in increasing soil biology and canola yield in degraded soils. In the future, research on recycled nanomaterials should examine the residual effect they have on yield, soil quality, and soil fauna in the long term.
Collapse
|
19
|
Chang Chien SW, Weng CM, Chou JS, Liu CC. Application of δ-MnO 2 and biochar materials in an arsenic-contaminated groundwater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10811. [PMID: 36461752 DOI: 10.1002/wer.10811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Two activated biochar materials, peanut char (δ-MnO2 /A-PC) and corn char (δ-MnO2 /A-CC), were used to treat an arsenic solution containing 97.5% As(III) and 2.5% As(V). After reacting with δ-MnO2 /A-PC for 24 h, 18.8% of As(III) and 35.4% of As(V) remained in the solution, revealing that some As(III) was oxidized to As(V) and the other was removed by adsorption. However, δ-MnO2 /A-CC caused the solution to retain 15.6% of As(III) and 41.7% of As(V) under the same conditions, indicating that δ-MnO2 /A-CC had higher oxidation for arsenic species than δ-MnO2 /A-CC. Adsorption capacities for δ-MnO2 /A-PC and δ-MnO2 /A-CC to arsenic were 1.50 and 1.53 mg/g in a solution with 0.5 ppm As(III), respectively. After coating with δ-MnO2 , the proportion of mesopore surface areas of δ-MnO2 /A-CC increased from 33.3% to 79.0%, but their mesopore volumes increased from 67.6% to 89.4%. Fourier-transform infrared spectroscopy and X-ray diffraction analyses demonstrated that δ-MnO2 was coated onto the surfaces of the biochars. The 600°C-ACC had a higher specific surface area, 221 m2 /g, than the δ-600°C-APC, 81.5 m2 /g; δ-MnO2 /A-CC could attach more Mn (38.2%) than δ-MnO2 /A-PC (27.8%). The elemental analysis revealed that δ-MnO2 /A-PC and δ-MnO2 /A-CC had similar carbon contents of 26.2%. PRACTITIONER POINTS: The δ-MnO2 /biochar adsorbent can oxidize As(III) into As(V) in the groundwater. δ-MnO2 /biochar adsorbed large amounts of As(III) and As(V). Adsorbent that contains more δ-MnO2 has a higher oxidation capacity. The δ-MnO2 /biochar made from corn stalks could combine with more δ-MnO2 .
Collapse
Affiliation(s)
- Shui-Wen Chang Chien
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Chun-Ming Weng
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Jen-Shen Chou
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Cheng-Chung Liu
- Department of Environmental Engineering, National Ilan University, Ilan, Taiwan
| |
Collapse
|
20
|
Hamid Y, Liu L, Usman M, Naidu R, Haris M, Lin Q, Ulhassan Z, Hussain MI, Yang X. Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129337. [PMID: 35714538 DOI: 10.1016/j.jhazmat.2022.129337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) has been recognized as an effective adsorbent to remove trace elements (TEs) from water. However, low surface functionality and small pore size can limit the adsorption ability of pristine biochar. These limitations can be addressed by using functionalized biochars which are developed by physical, chemical, or biological activation of biochar to improve their physico-chemical properties and adsorption efficiency. Despite the large amount of research concerning functionalized biochars in recent decades, to our knowledge, no comprehensive review of this topic has been published. This review focuses solely on the synthesis, characterization, and applications of functionalized/engineered biochars for removing TEs from water. Firstly, we evaluate the synthesis of functionalized biochars by physical, chemical, and biological strategies that yield the desired properties in the final product. The following section describes the characterization of functionalized biochars using various techniques (SEM, TEM, EDS, XRD, XANES/NEXAFS, XPS, FTIR, and Raman spectroscopy). Afterward, the role of functionalized biochars in the adsorption of different TEs from water/wastewater is critically evaluated with an emphasis on the factors affecting sorption efficiency, sorption mechanisms, fate of sorbed TEs from contaminated environments and associated challenges. Finally, we specifically scrutinized the future recommendations and research directions for the application of functionalized biochar. This review serves as a comprehensive resource for the use of functionalized biochar as an emerging environmental material capable of removing TEs from contaminated water/wastewater.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Liu
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - M Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidade de Vigo, Campus Lagoas Marcosende, Vigo 36310, Spain
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Li C, Li Y, Cheng H, Jiang C, Zheng L. Remediation of Soil Mercury by Modified Vermiculite-Montmorillonite and Its Effect on the Growth of Brassica chinensis L. Molecules 2022; 27:5340. [PMID: 36014576 PMCID: PMC9416574 DOI: 10.3390/molecules27165340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, the surface of vermiculite-montmorillonite was modified by MnO2 loading. The modified vermiculite-montmorillonite was added to remediate the potentially toxic trace element (PTE) Hg present in soil containing coal gangue. Pot experiments were conducted to analyze and compare the pH values, Hg contents and Hg species present in coal gangue-containing soil, with and without the modified materials added, to determine whether the addition of modified materials had an effect on the growth of Brassica chinensis L. Results showed that with the addition of 35 g·kg-1 modified vermiculite-montmorillonite, the pH of soil increased by a value of 0.79, compared with that in the control group. When 15 g·kg-1 was added, the concentration of Hg in soil decreased by 98.2%. The addition of modified materials promoted the transformation of Hg in soil from a bioavailable form to an unavailable form; that is, the content of the residual form increased. The plant height and biomass of Brassica chinensis L. also increased, which indicated that the addition of modifiers can increase soil productivity, reduce the effects of PTEs on organisms in soil, and promote plant growth. Therefore, the addition of modified vermiculite-montmorillonite can achieve remediation of coal gangue-containing soil.
Collapse
Affiliation(s)
- Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Yuchen Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| |
Collapse
|
22
|
Ghosh N, Das S, Biswas G, Haldar PK. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3370-3395. [PMID: 35771052 DOI: 10.2166/wst.2022.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water contamination has turned into one of the most serious issues in the world. Nanomaterials are proficient to carry away heavy metals, organic and inorganic dyes, pesticides, and small molecules from polluted water. In this regard, nanoparticles have gained much attention due to their extraordinary properties compared to bulk materials. Metal oxide nanoparticles and nanocomposites have several advantages such as elevated surface area, low concentration, easily separable after treatment and so on. Among many feasible techniques, the adsorption process is one of the most useful techniques for removing heavy ions and dyes from wastewater and has gained much attention from researchers. Several studies on metal oxide nanoparticles and their use in wastewater treatment have been published in the literature. This chapter gives an outline about five metal oxide based nanomaterials and nanocomposites as well as their applications in water pollution removal where the efficiency, limits and favourable circumstances are compared and explored. This article surely helps to gather information about some metal oxide nanoparticles and nanocomposites in wastewater treatment by the adsorption technique. In this review article, we primarily focused on five metal oxide nanoparticles and some of their recent applications published in the last two years.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Susmita Das
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Prabir Kumar Haldar
- Department of Physics, Cooch Behar Panchanan Barma University, Vivekananda Street, CoochBehar, WestBengal 736101, India E-mail:
| |
Collapse
|
23
|
Tan WT, Zhou H, Tang SF, Zeng P, Gu JF, Liao BH. Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118899. [PMID: 35085653 DOI: 10.1016/j.envpol.2022.118899] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron-manganese oxides could be introduced into biochar. In this study, iron-manganese (Fe-Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5-10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe-Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
Collapse
Affiliation(s)
- Wen-Tao Tan
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Shang-Feng Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| |
Collapse
|
24
|
Shaheen SM, Mosa A, El-Naggar A, Faysal Hossain M, Abdelrahman H, Khan Niazi N, Shahid M, Zhang T, Fai Tsang Y, Trakal L, Wang S, Rinklebe J. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. BIORESOURCE TECHNOLOGY 2022; 346:126581. [PMID: 34923078 DOI: 10.1016/j.biortech.2021.126581] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613 Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
25
|
Chen K, Ng KH, Cheng CK, Cheng YW, Chong CC, Vo DVN, Witoon T, Ismail MH. Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010. CHEMOSPHERE 2022; 287:132222. [PMID: 34826917 DOI: 10.1016/j.chemosphere.2021.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Biomass, which defined as plant- or animal-based materials, is intriguing tremendous scientific attentions due to its renewable attribute in serving energy security. Amongst, the plant-based biomasses, particularly those that co-generated in the agriculture activities, are commonly regarded as fuel for burning, which overlooked their hidden potentials for high-end applications. Organically, the plant-based biomass constitutes of lignocellulose components, which can be served as promising precursors for functionalized carbon materials. Meanwhile, its inorganic counterpart made up of various minerals, with Si being the most concerned one. With the advancement of biomass technologies and material synthesis in recent years, numerous attempts were endeavoured to obtain valorised products from biomass. Particularly, syntheses of catalytic and adsorptive materials are actively researched in the field of biomass reutilization. Herein, our work systematically summarized the advancements of biomass-materials for these applications in recent 10 years (2010-2020), with a special focus on the carbon-based and Si-based catalytic/adsorptive materials. Significantly, the deriving steps, inclusive of both pre-treatment and post-treatment of such materials, are incorporated in the discussion, alongside with their significances revealed too. The performance of the as-obtained materials in the respective application is systematically correlated to their physicochemical properties, hence providing valuable insights to the readers. Challenges and promising directions to be explored are raised too at the end of the review, aiming to advocate better-usage of biomass while offering great opportunities to sustain catalysis and adsorption in the industrial scale.
Collapse
Affiliation(s)
- Kaijuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Yoke Wang Cheng
- Department of Chemical Engineering, School of Science and Engineering, Manipal International University, 71800, Putra Nilai, Negeri Sembilan, Malaysia
| | - Chi Cheng Chong
- Department of Chemical Engineering, School of Science and Engineering, Manipal International University, 71800, Putra Nilai, Negeri Sembilan, Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Muhammad Heikal Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra, Malaysia
| |
Collapse
|
26
|
The study of MnO2 with different crystalline structures for U(VI) elimination from aqueous solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Biochar from waste biomass as a biocatalyst for biodiesel production: an overview. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01924-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Zhao C, Wang B, Theng BKG, Wu P, Liu F, Wang S, Lee X, Chen M, Li L, Zhang X. Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145305. [PMID: 33636788 DOI: 10.1016/j.scitotenv.2021.145305] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Biochar, a carbon-rich material, has been widely used to adsorb a range of pollutants because of its low cost, large specific surface area (SSA), and high ion exchange capacity. The adsorption capacity of biochar, however, is limited by its small porosity and low content of surface functional groups. Nano-metal oxides have a large SSA and high surface energy but tend to aggregate and passivate because of their fine-grained nature. In combining the positive qualities of both biochar and nano-metal oxides, nano-metal oxide-biochar composites (NMOBCs) have emerged as a group of effective and novel adsorbents. NMOBCs improve the dispersity and stability of nano-metal oxides, rich in adsorption sites and surface functional groups, maximize the adsorption capacity of biochar and nano-metal oxides respectively. Since the adsorption capacity and mechanisms of NMOBCs vary greatly amongst different preparations and application conditions, there is a need for a review of NMOBCs. Herein we firstly summarize the recent methods of preparing NMOBCs, the factors influencing their efficacy in the removal of several pollutants, mechanisms underlying the adsorption of different pollutants, and their potential applications for pollution control. Recommendations and suggestions for future studies on NMOBCs are also proposed.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Benny K G Theng
- Manaaki Whenua-Landcare Research, Palmerston North 4442, New Zealand
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Ling Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou 221018, China
| |
Collapse
|
29
|
Yin Z, Zhu L, Mo F, Li S, Hu D, Chu R, Liu C, Hu C. Preparation of biochar grafted with amino-riched dendrimer by carbonization, magnetization and functional modification for enhanced copper removal. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Noreen S, Abd-Elsalam KA. Biochar-based nanocomposites: A sustainable tool in wastewater bioremediation. AQUANANOTECHNOLOGY 2021:185-200. [DOI: 10.1016/b978-0-12-821141-0.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Zheng Q, Yang L, Song D, Zhang S, Wu H, Li S, Wang X. High adsorption capacity of Mg-Al-modified biochar for phosphate and its potential for phosphate interception in soil. CHEMOSPHERE 2020; 259:127469. [PMID: 32640377 DOI: 10.1016/j.chemosphere.2020.127469] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 05/28/2023]
Abstract
In this study, Mg and/or Al modified biochars (MABC1, MBC2, ABC3) prepared by co-precipitation were to explore their phosphate adsorption capacity from aqueous solution and the potential for soil phosphate interception. The results revealed that MABC composites contained more functional groups than MBC and showed a higher surface area than ABC. The surface of MABC contained dispersed MgAl2O4, Mg(OH)2, AlOOH and Al2O3 crystals that were associated with its enhanced maximum phosphate adsorption capacity (153.40 mg g-1). According to Langmuir model, the maximum adsorption capacity of MABC was 15.91, 1.85, and 93.54 times the capacity of MBC, ABC, and raw biochar (BC4), respectively. The addition of MABC in red soil could significantly slow down the release of soil phosphorus, and MABC also had a stronger phosphate interception capacity (59.89%) than other BCs. In summary, MABC exhibits superior phosphate adsorption and interception capacity, making it ideal for treatment and prevention of phosphorus-polluted water.
Collapse
Affiliation(s)
- Qin Zheng
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China; Hubei University, Wuhan, 430062, China
| | | | - Dali Song
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China
| | - Shuai Zhang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China
| | - Hang Wu
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China
| | - Shutian Li
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China.
| | - Xiubin Wang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences/Key Lab of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
32
|
Khan ZH, Gao M, Qiu W, Song Z. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution. CHEMOSPHERE 2020; 255:126995. [PMID: 32416394 DOI: 10.1016/j.chemosphere.2020.126995] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we present the preparation of MoS2-modified magnetic biochar (MoS2@MBC) as a novel adsorbent by a simple hydrothermal method. MoS2@MBC contains abundant S-containing functional groups that facilitate efficient Cd(II) removal from aqueous systems. We employed various characterization techniques to explore the morphology, surface area, and chemical composition of MoS2@MBC; these included Brunauer-Emmett-Teller analysis scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction,. The results indicated the successful decoration of the surface of MoS2@MBC with iron and MoS2, and a higher surface area of MoS2@MBC than that of unmodified biochar. Moreover, adsorption properties including thermodynamics and kinetics were investigated along with the effects of pH, humic acid, and ionic strength on the Cd(II) adsorption onto MoS2@MBC. The O-, C-, S-, and Fe-containing functional groups on the surface of MoS2@MBC led to an electrostatic attraction of Cd(II) and strong Cd-S complexation. The Langmuir and pseudo second-order models fitted best for the batch adsorption experiments results. The adsorption capacity of MoS2@MBC (139 mg g-1 on the basis of the Langmuir model) was 7.81 times higher than that of pristine biochar. The adsorption process was found to be pH-dependent. The experimental results indicated that MoS2@MBC is an effective adsorbent for removing Cd(II) from water solutions. Further, the adsorption process involved the complexation of Cd(II) with oxygen-based functional groups, ion exchange, electrostatic attraction, Cd(II)-π interactions, metal-sulfur complexation, and inner-surface complexation. This work provides new insights into the Cd(II) ions removal from water via adsorption. It also demonstrates that MoS2@MBC is an efficient and economic adsorbent to treat Cd(II)-contaminated water.
Collapse
Affiliation(s)
- Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China; Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
33
|
Saadati F, Kaboudin B, Hasanloei R, Namazifar Z, Marset X, Guillena G. Manganese oxide nanoparticles supported on graphene oxide as an efficient nanocatalyst for the synthesis of 1,2,4‐oxadiazoles from aldehydes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fariba Saadati
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan 45371‐38791 Iran
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137‐66731 Iran
| | - Rana Hasanloei
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan 45371‐38791 Iran
| | - Zeinab Namazifar
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan 45371‐38791 Iran
| | - Xavier Marset
- Departamento de Química Orgánica, e Instituto de Síntesis Orgánica (ISO) Universidad de Alicante Alicante 03080‐ Alicante Spain
| | - Gabriela Guillena
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137‐66731 Iran
| |
Collapse
|
34
|
Huang Y, Gao M, Deng Y, Khan ZH, Liu X, Song Z, Qiu W. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136957. [PMID: 32014778 DOI: 10.1016/j.scitotenv.2020.136957] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
The by-product of the traditional Fenton reaction, colloidal arsenic-‑iron oxide, is migratable and may cause secondary environmental pollution. This paper reported a new strategy involving oxidizing and immobilizing inorganic arsenic using the Fenton reaction, and avoiding the risk of secondary contamination. Lab synthesized ferrihydrite-loaded biochar (FhBC) was developed for oxidizing and binding As(III) and As(V) in aqueous solution. Batch experiments and a series of spectrum analysis (e.g., X-ray photoelectron spectroscopy [XPS], electron paramagnetic resonance [EPR], and Fourier transform infrared spectroscopy [FTIR]) were conducted to study the oxidizing or adsorption capacity and mechanism. The maximum adsorption capacity of FhBC for As(III) and As(V) is 1.315 and 1.325 mmol/g, respectively. In addition, FhBC has an efficient oxidizing capacity within a wide pH range, which is because biochar promotes the Fenton reaction by acting as an electron donator, electron shuttler, or by providing persistent free radicals. Moreover, the adsorption mechanism was studied by FTIR spectroscopy, XPS, and X-ray diffraction (XRD). The formation of internal spherical complexes and iron oxides with a higher degree of crystallization was observed, which indicate that the products of adsorption are stable and robust in a complex environment and can exist in a highly crystallized form after adsorbing arsenic ions. Therefore, the use of FhBC as an adsorbent for arsenic represents a new strategy of using the Fenton reaction while reducing secondary contamination. These results may contribute to further mechanistic studies or extensive practical applications of FhBC.
Collapse
Affiliation(s)
- Yifan Huang
- Soil Chemistry and Chemical Soil Quality Group, Wageningen University & Research, P.O. BOX 47, Wageningen, AA 6700, Netherlands; Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yingxuan Deng
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
| | - Xuewei Liu
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China.
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| |
Collapse
|
35
|
Khan ZH, Gao M, Qiu W, Islam MS, Song Z. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. CHEMOSPHERE 2020; 246:125701. [PMID: 31891847 DOI: 10.1016/j.chemosphere.2019.125701] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 05/22/2023]
Abstract
There is a demand to develop techniques for the continuous removal/immobilization of heavy metals from contaminated soil and water bodies. In this study, a unique biochar preparation method was developed for the removal of cadmium. First, conventional biochars of corn straw were produced by pyrolysis at two temperatures and then treated using one-step synthesis at different ferric nitrate ratios and different calcination temperatures to produce magnetic biochars. Second, the prepared biochars were used as adsorbents for Cd(II) removal from a solution, and the best one was selected for further evaluation. Various techniques were used to characterize the adsorbents and determine the main adsorption mechanism. The results indicated that the biochars successfully carried iron particles within, which improved the specific surface area, formed inner-sphere complexes with oxygen-containing groups, and increased the number of oxygen-containing groups. The adsorption experiments revealed that MBC800-0.6300 had a higher affinity for Cd(II) than the other adsorbents. Batch adsorption experiments were performed to explore the influence of the kinetics, isotherm, pH, thermodynamics, ionic strength, and humic acid on Cd(II) adsorption. The results indicated that the Langmuir model fit the Cd(II) adsorption best with MBC800-0.6300 having the highest adsorption capacity (46.90 mg g-1). The sorption kinetics of Cd(II) on the adsorbent follows a pseudo-second-order kinetics model. Because MBC800-0.6300 is loaded with metal ions, it can be conveniently collected by a magnet. Thus, biochar modification methods with ferric nitrate impregnation provide an excellent approach to eliminating Cd(II) from aqueous solutions. The possible adsorption mechanisms include chemisorption, electrostatic interaction, and monolayer adsorption.
Collapse
Affiliation(s)
- Zulqarnain Haider Khan
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China; Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Md Shafiqul Islam
- Agro-Environmental Protection Institute, Ministry of Agriculture of China, Tianjin, 300191, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
36
|
Mahmoud E, El Baroudy A, Ali N, Sleem M. Spectroscopic studies on the phosphorus adsorption in salt-affected soils with or without nano-biochar additions. ENVIRONMENTAL RESEARCH 2020; 184:109277. [PMID: 32120120 DOI: 10.1016/j.envres.2020.109277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Biochar amendment may be an effective solution of maintaining phosphorus (P) and sustaining agricultural production in salt affected soils. However, the behavior of P adsorption in salt-affected soils with nano-biochar (nB) amendment is unclear. Batch adsorption experiments were conducted to investigate the impacts of different levels of soil salinity amended with nB at rates of 0, 0.10%, 0.20%, and 0.50% (w/w) on the P adsorption isotherm and also, mechanisms of P adsorption by using spectroscopic analysis. The results showed that P adsorption increased with increasing soil salinity with or without nB addition. Under level of 120 mg P L-1, adsorption capacity of P increased from 992.8 mg kg-1 for high saline soil (S5) to 1144.0 mg kg-1 after treated with 0.20% nB. The results of P adsorption were agreed with Langmuir and Freundlich isotherm models. Fourier transform infrared analysis (FTIR) of nB showed that the surface of nB decorated with oxygenated functional groups which play an important role in the adsorption of P anions. Analyzes of FTIR and XRD indicated that the main adsorption mechanism for P adsorption on nB in salt affected soils was surface precipitation. Our findings suggest that the nano-biochar amendment in salt affected soils can be a promising enhancer for P adsorption.
Collapse
Affiliation(s)
- Esawy Mahmoud
- Department of Soil and Water Science, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt.
| | - Ahmed El Baroudy
- Department of Soil and Water Science, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nehal Ali
- Engineering Physics and Mathematics, Faculty of Engineering, Tanta University, Egypt
| | - Mahmoud Sleem
- Department of Soil and Water Science, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
37
|
Shen Q, Wang Z, Yu Q, Cheng Y, Liu Z, Zhang T, Zhou S. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. ENVIRONMENTAL RESEARCH 2020; 183:109195. [PMID: 32044570 DOI: 10.1016/j.envres.2020.109195] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 05/13/2023]
Abstract
Biochar (BC) derived from Chinese herbal medicine residues has been investigated for its performance as a potential adsorbent in tetracycline (TC) removal. In the present study, a chemical co-precipitation method was carried out to prepare manganese dioxide modified biochar (Mn-BC) to increase its sorption capacity. The properties of the modified biochar were characterized for further enhancing TC removal from an aqueous solution. Mn-BC was successfully synthesized and resulted in a much higher specific surface area, total pore volume and pore diameter. The sorption kinetics of TC on Mn-BC was described by the pseudo-second-order model. The sorption data of Mn-BC were fitted by Langmuir and Freundlich models. The study findings revealed a maximum adsorption capacity of Mn-BC (1:10) to TC was up to 131.49 mg/g. The adsorption process was endothermic and spontaneous. The degradation of TC was further enhanced by MnO2 acting as an oxidizer on Mn-BC. Overall, the modified biochar derived from Chinese herbal medicine residues is a superior alternative for the removal of TC from an aqueous solution.
Collapse
Affiliation(s)
- Qibin Shen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhaoyue Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Qiao Yu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yang Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zidan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Taiping Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China; Guizhou Academy of Sciences, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
38
|
Husnain SM, Asim U, Yaqub A, Shahzad F, Abbas N. Recent trends of MnO2-derived adsorbents for water treatment: a review. NEW J CHEM 2020. [DOI: 10.1039/c9nj06392g] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the years, manganese dioxide (MnO2) and its different allotropes have gained significant research attention in the field of wastewater treatment because of their exciting physicochemical properties.
Collapse
Affiliation(s)
- Syed M. Husnain
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Umar Asim
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| | - Azra Yaqub
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Faisal Shahzad
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| | - Naseem Abbas
- Institute of Chemical Sciences
- Bahauddin Zakariya University
- Multan 60800
- Pakistan
| |
Collapse
|
39
|
Laysandra L, Ondang IJ, Ju YH, Putro JN, Santoso SP, Soetarejo FE, Ismadji S. An environment-friendly composite as an adsorbent for removal Cu (II) ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22979-22989. [PMID: 31183754 DOI: 10.1007/s11356-019-05524-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The low-cost composite film was prepared by incorporating chitosan, berry soap fruit extract (rarasaponin), and bentonite as the raw materials. The produced chitosan/rarasaponin/bentonite (CRB) composite exhibits outstanding adsorption capability toward copper metal ions (Cu(II)). A series of static adsorption experiments were carried out to determine the isotherm and kinetic properties of CRB composite in the adsorption process. The adsorption equilibrium shows a good fit with the Langmuir isotherm model; the CRB composite has maximum uptake of Cu (II) of 412.70 mg/g; the kinetic adsorption data exhibit a good fit with the pseudo-second-order model. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, obtained from the isotherm data indicate that the uptake of copper ions by CRB composite is more favored at low temperatures. This study shows that physicochemical modified adsorbent, namely CRB composite, can remove Cu (II) better than pristine adsorbent of AAB and chitosan. The CRB composite also shows potential reusability.
Collapse
Affiliation(s)
- Livy Laysandra
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan
| | - Immanuel Joseph Ondang
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia
| | - Yi-Hsu Ju
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan
| | - Jindrayani Nyoo Putro
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan
| | - Felycia Edi Soetarejo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan.
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya, 60114, Indonesia.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Sec 4, Keelung Rd, Da'an District, Taipei City, 106, Taiwan.
| |
Collapse
|
40
|
|
41
|
Sun C, Chen T, Huang Q, Wang J, Lu S, Yan J. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO 4 modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8902-8913. [PMID: 30715697 DOI: 10.1007/s11356-019-04321-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 05/22/2023]
Abstract
Novel KMnO4-treated magnetic biochar (FMBC) was successfully synthesized by addition of Fe(NO3)3 during carbonization and KMnO4 treatment following for Pb(II) and Cd(II) adsorption. SEM-EDS, XPS, and ICP-AES were used to evaluate the FMBC and magnetic biochar (FBC) on surface morphology, surface chemistry characteristics, surface functional groups, and Pb(II) and Cd(II) adsorption behavior. Results showed that the Langmuir maximum adsorption quantity of FMBC reached 148 mg/g for Pb(II) and 79 mg/g for Cd(II), nearly 7 times of that of FBC. The enhancement of FMBC for heavy metal adsorption was due to the successful load of manganese oxides and the increased oxygen functional groups consistent with XPS and FTIR results. The adsorption capacities of FMBC were maintained over 95% when the pH value was higher than 2.5 and 3.5 for Pb(II) and Cd(II), respectively. The adsorption performances of both heavy metals by FMBC were hardly influenced by ionic strength and humid acid. The adsorption capacities of FMBC could maintain over 50% and 87% after four cycles for Pb(II) and Cd(II), respectively. The saturation magnetization of FMBC was about 11.5 emu/g, which did not change after adsorption. This work proposed a new method to fabricate a magnetic biochar with high adsorption capacities of heavy metals Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jun Wang
- Everbright Envirotech (China) Ltd. Institute of Incineration Technology, Nanjing, 211106, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
42
|
Mojoudi F, Hamidian AH, Zhang Y, Yang M. Synthesis and evaluation of activated carbon/nanoclay/ thiolated graphene oxide nanocomposite for lead(II) removal from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:466-479. [PMID: 30924801 DOI: 10.2166/wst.2019.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel porous nanocomposite (AC/NC/TGO) was successfully synthesized through the composition of activated carbon, nanoclay and graphene oxide as a Pb(II) adsorbent for the treatment of contaminated aqueous environment. The physicochemical properties and morphology of AC/NC/TGO were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. Results showed Pb(II) adsorption on the AC/NC/TGO was rapid in the first 20 min and reached equilibrium in 40 min. Kinetic studies showed significant fit to the pseudo second order kinetic model (R2 ≥ 0.9965) giving an equilibrium rate constant (K2) of 0.0017 g mg-1 min-1 for Pb(II) loaded. The experimental adsorption data were better fitted with the Langmuir isotherm model than with the Freundlich isotherm model. Prepared nanocomposite exhibited high values of Brunauer-Emmett-Teller (BET) surface area of 1,296 m2 g-1 and total pore volume of 1.01 cm3 g-1. Maximum adsorption capacity (Qmax = 208 mg g-1) and a relatively high adsorption rate was achieved at pH 5.0 using an adsorbent dose of 0.5 g L-1 and an initial lead concentration of 50 mg L-1. High adsorption capacity, reusability, fast kinetics and simple synthesis method indicate that prepared nanocomposite can be suggested as a high-performance adsorbent for Pb(II) removal from polluted water.
Collapse
Affiliation(s)
- Fatemeh Mojoudi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran E-mail:
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran E-mail: ; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Haas S, Boschi V, Grannas A. Metal sorption studies biased by filtration of insoluble metal oxides and hydroxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1433-1439. [PMID: 30235628 DOI: 10.1016/j.scitotenv.2018.07.419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Toxic metals in the environment are often remediated using sorption techniques, particularly in aquatic and drinking water systems. However, a review of over 30 published sorption studies in the past two years alone revealed that the use of filtration to separate sorbed from unsorbed metals do not take into account metal hydroxide and oxide formation, and thus likely produce erroneous results. We quantified the effect of filtration on the removal of metal oxide/hydroxides from solution using a 0.45 μm filter as a function of pH, initial metal concentration and ionic strength for As, Be, Cd, Cu, Cr, Pb and Zn. We found that even when the initial metal concentration was as low as 0.1 mg/L, up to 93% of metals in solution were removed and up to 100% removal was observed when the initial metal concentration was 5 mg/L at a pH of 7. If this was unaccounted for, precipitated metal oxide/hydroxide removed via filtration will be inaccurately attributed to metal sorption. Additionally, we demonstrate that speciation modeling can underestimate the pH at which insoluble metal species form and therefore can only be used to approximate metal precipitation, especially in complex matrices. Overestimating the sorption capacity of sorbent materials has major implications if these sorbents are used for the purification of drinking water or other vital environmental remediation efforts. We recommend sorption studies using filtration prepare the appropriate matrix-matched control samples to quantify potential metal oxide/hydroxide formation.
Collapse
Affiliation(s)
- Savannah Haas
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States of America
| | - Vanessa Boschi
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States of America.
| | - Amanda Grannas
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States of America
| |
Collapse
|
44
|
Jung KW, Lee SY, Lee YJ. Hydrothermal synthesis of hierarchically structured birnessite-type MnO 2/biochar composites for the adsorptive removal of Cu(II) from aqueous media. BIORESOURCE TECHNOLOGY 2018; 260:204-212. [PMID: 29626779 DOI: 10.1016/j.biortech.2018.03.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, hierarchical birnessite-type MnO2/biochar composites (δ-MnO2/BCs) were synthesized by a hydrothermal technique, and their Cu(II) removal performance was examined in aqueous solution. Morphological characterization confirmed that a three-dimensional flower-like structure of δ-MnO2 was formed, which results in effective adsorption affinity towards Cu(II). The effects of solution pH, adsorbent dosage, and ionic strength on the adsorption behavior of the prepared materials were systemically investigated. The adsorption kinetics indicated that Cu(II) adsorption onto δ-MnO2/BCs follows a pseudo-second-order model. Analysis of possible adsorption/diffusion mechanisms suggested that the adsorption process is controlled by both film and pore diffusion. The adsorption isotherms fit closely to the Sips isotherm model, and the theoretical maximum adsorption capacities of Cu(II) on the synthesized δ-MnO2/BCs are approximately 124, 154, 199, and 230 mg/g at 15, 25, 35, and 45 °C, respectively. Adsorption-desorption studies demonstrated the recyclability of the δ-MnO2/BCs for the removal of Cu(II) from aqueous solutions.
Collapse
Affiliation(s)
- Kyung-Won Jung
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seon Yong Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Jae Lee
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Kar AS, Saha A, Chandane A, Kumar S, Tomar BS. Effect of carbonate on U(VI) sorption by nano-crystalline α-MnO2. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractU(VI) sorption on nano-crystalline α-MnO2was studied in NaClO4medium as a function of pH by batch sorption method in presence and absence of carbonate and subsequently employing surface complexation modeling (SCM) to predict species responsible for U(VI) sorption. The kinetic study of U(VI) sorption on nano-crystalline α-MnO2was carried out to fix the time of equilibration. In presence of carbonate, U(VI) sorption on nano-crystalline α-MnO2increases with pH of the suspension, leveling off in the pH range 5–8.5 thereafter decreasing at higher pH. However, in absence of carbonate, U(VI) sorption on nano-crystalline α-MnO2remains close to 100% at pH>5. The difference in sorption behavior of uranium in the presence and absence of carbonate can be explained in terms of uranium speciation in the two systems. The dissolution of nano-crystalline α-MnO2was studied in presence and absence of carbonate to ascertain its role in sorption. Surface complexation modeling was satisfactorily able to explain the sorption phenomena in all the systems. In addition, U(VI) sorption on nano-crystalline α-MnO2was compared with literature data on U(VI) sorption by δ-MnO2.
Collapse
|
46
|
Zhou Q, Liao B, Lin L, Qiu W, Song Z. Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:115-122. [PMID: 28963893 DOI: 10.1016/j.scitotenv.2017.09.220] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Remediation of heavy metal-contaminated soil and water bodies necessitates the continuous development of effective decontamination techniques. To address this issue, ferromanganese binary oxide-biochar composites (FMBC) were prepared using impregnation/sintering methods, and their physicochemical properties and morphologies were examined. Kinetic modeling and adsorption isotherms were used to characterize the adsorption of Cu(II) and Cd(II) on FMBC, revealing that adsorption was well represented by pseudo-second-order kinetics (R2>0.99) and the Langmuir isotherm model. The prepared FMBC exhibited maximum Cu(II) and Cd(II) adsorption capacities of 64.9 and 101.0mg/g, respectively, exceeding the corresponding values of biochar (21.7 and 28.0mg/g, respectively). Moreover, adsorption was favored by increased pH and high humic acid concentration. X-ray photoelectron spectroscopy and Fourier transform infrared analyses confirmed that the heavy metal ions adsorbed on FMBC were divalent, indicating that the uptake of Cu(II) and Cd(II) was mainly due to the formation of strong mono- or multidentate inner-sphere complexes (e.g., COO-M (M=Cu or Cd) and Fe-Mn-O-M). Thus, the prepared composites exhibited potential applications as excellent adsorbents for Cu(II) and Cd(II) removal from contaminated water.
Collapse
Affiliation(s)
- Qiwen Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lina Lin
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Ltd., Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
47
|
Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E. Biochar modification to enhance sorption of inorganics from water. BIORESOURCE TECHNOLOGY 2017; 246:34-47. [PMID: 28781204 DOI: 10.1016/j.biortech.2017.07.082] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 05/27/2023]
Abstract
Biochar can be used as a sorbent to remove inorganic pollutants from water but the efficiency of sorption can be improved by activation or modification. This review evaluates various methods to increase the sorption efficiency of biochar including activation with steam, acids and bases and the production of biochar-based composites with metal oxides, carbonaceous materials, clays, organic compounds, and biofilms. We describe the approaches, and explain how each modification alters the sorption capacity. Physical and chemical activation enhances the surface area or functionality of biochar, whereas modification to produce biochar-based composites uses the biochar as a scaffold to embed new materials to create surfaces with novel surface properties upon which inorganic pollutants can sorb. Many of these approaches enhance the retention of a wide range of inorganic pollutants in waters, but here we provide a comparative assessment for Cd2+, Cu2+, Hg2+, Pb2+, Zn2+, NH4+, NO3-, PO43-, CrO42- and AsO43-.
Collapse
Affiliation(s)
- Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Teresa Fresno
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Gökçen Akgül
- Recep Tayyip Erdogan University, Engineering Faculty, Department of Energy Systems Engineering, 53100 Rize, Turkey
| | - Harrison Frost
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|