1
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Ahmed Mohamed Z, Yang J, Wen J, Jia F, Banerjee S. SEPHS1 Gene: A new master key for neurodevelopmental disorders. Clin Chim Acta 2024; 562:119844. [PMID: 38960024 DOI: 10.1016/j.cca.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The SEPHS1 (Selenophosphate Synthetase 1) gene encodes a critical enzyme for synthesizing selenophosphate, the active donor of selenium (Se) necessary for selenoprotein biosynthesis. Selenoproteins are vital for antioxidant defense, thyroid hormone metabolism, and cellular homeostasis. Mutations in SEPHS1 gene, are associated with neurodevelopmental disorders with developmental delay, poor growth, hypotonia, and dysmorphic features. Due to Se's critical role in brain development and function, SEPHS1 gene has taken center stage in neurodevelopmental research. This review explores the structure and function of the SEPHS1 gene, its role in neurodevelopment, and the implications of its dysregulation for neurodevelopmental disorders. Therapeutic strategies, including Se supplementation, gene therapy, and targeted therapies, are discussed as potential interventions to address SEPHS1 associated neurodevelopmental dysfunction. The study's findings reveal how SEPHS1 mutations disrupt neurodevelopment, emphasizing the gene's intolerance to loss of function. Future research should focus on functional characterization of SEPHS1 variants, broader genetic screenings, and therapeutic developments.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Shulhai AM, Rotondo R, Petraroli M, Patianna V, Predieri B, Iughetti L, Esposito S, Street ME. The Role of Nutrition on Thyroid Function. Nutrients 2024; 16:2496. [PMID: 39125376 PMCID: PMC11314468 DOI: 10.3390/nu16152496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Thyroid function is closely linked to nutrition through the diet-gut-thyroid axis. This narrative review highlights the influence of nutritional components and micronutrients on thyroid development and function, as well as on the gut microbiota. Micronutrients such as iodine, selenium, iron, zinc, copper, magnesium, vitamin A, and vitamin B12 influence thyroid hormone synthesis and regulation throughout life. Dietary changes can alter the gut microbiota, leading not just to dysbiosis and micronutrient deficiency but also to changes in thyroid function through immunological regulation, nutrient absorption, and epigenetic changes. Nutritional imbalance can lead to thyroid dysfunction and/or disorders, such as hypothyroidism and hyperthyroidism, and possibly contribute to autoimmune thyroid diseases and thyroid cancer, yet controversial issues. Understanding these relationships is important to rationalize a balanced diet rich in essential micronutrients for maintaining thyroid health and preventing thyroid-related diseases. The synthetic comprehensive overview of current knowledge shows the importance of micronutrients and gut microbiota for thyroid function and uncovers potential gaps that require further investigation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Maddalena Petraroli
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Viviana Patianna
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| |
Collapse
|
4
|
Ferreira RR, Carvalho RV, Coelho LL, Gonzaga BMDS, Bonecini-Almeida MDG, Garzoni LR, Araujo-Jorge TC. Current Understanding of Human Polymorphism in Selenoprotein Genes: A Review of Its Significance as a Risk Biomarker. Int J Mol Sci 2024; 25:1402. [PMID: 38338681 PMCID: PMC10855570 DOI: 10.3390/ijms25031402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Regina Vieira Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| |
Collapse
|
5
|
Moraes CO, Santos RBC, Cavalcante MFO, Guilhermi JS, Ali MA, Botteselle GV, Frizon TEA, Shah MIA, Lião LM, Beatriz A, Saba S, Rafique J. Urea Hydrogen Peroxide and Ethyl Lactate, an Eco-Friendly Combo System in the Direct C(sp 2)-H Bond Selenylation of Imidazo[2,1- b]thiazole and Related Structures. ACS OMEGA 2023; 8:39535-39545. [PMID: 37901565 PMCID: PMC10600889 DOI: 10.1021/acsomega.3c05338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Herein, we describe a urea hydrogen peroxide-mediated sustainable protocol for the synthesis of selenylated imidazo[2,1-b]thiazole by using half molar equivalent diorganyl diselenides in ethyl lactate as a greener solvent. The reaction features high yields, easy performance on gram scale, metal-free conditions, as well as applicability to imidazopyridine and imidazopyrimidine.
Collapse
Affiliation(s)
- Cassio
A. O. Moraes
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Rafaely B. C. Santos
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Marcos F. O. Cavalcante
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jhefferson S. Guilhermi
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Muhammad A. Ali
- Institute
of Chemistry (ICS), University of Peshawar—UOP, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Giancarlo V. Botteselle
- Departamento
de Química, Universidade Estadual
do Centro-Oeste—UNICENTRO, Guarapuava, Paraná 85819110, Brazil
| | - Tiago E. A. Frizon
- Universidade
Federal de Santa Catarina—UFSC, Campus Araranguá, Araranguá, Santa Catarina 88905120, Brazil
| | - Muhammad I. A. Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Luciano M. Lião
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Adilson Beatriz
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Sumbal Saba
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jamal Rafique
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
6
|
Vargas-Uricoechea H, Bastidas B, Pinzón MV. Population status of selenium in Colombia and associated factors: a cross-sectional study. Horm Mol Biol Clin Investig 2023; 44:153-158. [PMID: 36573323 DOI: 10.1515/hmbci-2022-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/11/2022] [Indexed: 01/26/2024]
Abstract
OBJECTIVES This study aims to investigate the population status of selenium in Colombia and other associated factors. METHODS Cross-sectional study, in population of urban or rural origin (n=412). Main outcome measures were: median serum selenium, thyrotropin, the prevalence of and positivity of anti-thyroid peroxidase, anti-thyroglobulin, and anti-TSH receptor. RESULTS This study found that 96.6% of the subjects had normal selenium levels, and no significant associations were found between the population median of selenium and overweight/obesity, sociodemographic variables, age, goiter, and thyroid antibody positivity. CONCLUSIONS In Colombia, the population status of selenium is normal, and the geological characteristics may contribute to the state of selenium in this population. However, additional studies are required to evaluate the content of selenium in plants and other foods.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Popayán, Colombia
| | - Beatriz Bastidas
- Department of Social Medicine and Family Health, Universidad del Cauca, Popayán, Colombia
| | - María V Pinzón
- Health Research Group, Department of Internal Medicine, Universidad del Cauca, Popayán, Colombia
| |
Collapse
|
7
|
Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci 2023; 24:ijms24043393. [PMID: 36834802 PMCID: PMC9967593 DOI: 10.3390/ijms24043393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The adequate availability and metabolism of three essential trace elements, iodine, selenium and iron, provide the basic requirements for the function and action of the thyroid hormone system in humans, vertebrate animals and their evolutionary precursors. Selenocysteine-containing proteins convey both cellular protection along with H2O2-dependent biosynthesis and the deiodinase-mediated (in-)activation of thyroid hormones, which is critical for their receptor-mediated mechanism of cellular action. Disbalances between the thyroidal content of these elements challenge the negative feedback regulation of the hypothalamus-pituitary-thyroid periphery axis, causing or facilitating common diseases related to disturbed thyroid hormone status such as autoimmune thyroid disease and metabolic disorders. Iodide is accumulated by the sodium-iodide-symporter NIS, and oxidized and incorporated into thyroglobulin by the hemoprotein thyroperoxidase, which requires local H2O2 as cofactor. The latter is generated by the dual oxidase system organized as 'thyroxisome' at the surface of the apical membrane facing the colloidal lumen of the thyroid follicles. Various selenoproteins expressed in thyrocytes defend the follicular structure and function against life-long exposure to H2O2 and reactive oxygen species derived therefrom. The pituitary hormone thyrotropin (TSH) stimulates all processes required for thyroid hormone synthesis and secretion and regulates thyrocyte growth, differentiation and function. Worldwide deficiencies of nutritional iodine, selenium and iron supply and the resulting endemic diseases are preventable with educational, societal and political measures.
Collapse
|
8
|
Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, Li C. Selenium species transforming along soil-plant continuum and their beneficial roles for horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhac270. [PMID: 36789256 PMCID: PMC9923214 DOI: 10.1093/hr/uhac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/01/2022] [Indexed: 05/15/2023]
Abstract
Selenium (Se) acquirement from daily diet can help reduce the risk of many diseases. The edible parts of crop plants are the main source of dietary Se, while the Se content in crops is determined by Se bioavailability in soil. We summarize recent research on the biogeochemical cycle of Se driven by specific microorganisms and emphasize the oxidizing process in the Se cycle. Moreover, we discuss how plant root exudates and rhizosphere microorganisms affect soil Se availability. Finally, we cover beneficial microorganisms, including endophytes, that promote crop quality and improve crop tolerance to environmental stresses. Se availability to plants depends on the balance between adsorption and desorption, reduction, methylation and oxidation, which are determined by interactions among soil properties, microbial communities and plants. Reduction and methylation processes governed by bacteria or fungi lead to declined Se availability, while Se oxidation regulated by Se-oxidizing microorganisms increases Se availability to plants. Despite a much lower rate of Se oxidization compared to reduction and methylation, the potential roles of microbial communities in increasing Se bioavailability are probably largely underestimated. Enhancing Se oxidation and Se desorption are crucial for the promotion of Se bioavailability and uptake, particularly in Se-deficient soils. Beneficial roles of Se are reported in terms of improved crop growth and quality, and enhanced protection against fungal diseases and abiotic stress through improved photosynthetic traits, increased sugar and amino acid contents, and promoted defense systems. Understanding Se transformation along the plant-soil continuum is crucial for agricultural production and even for human health.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhui Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianming Zeng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
10
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
11
|
Deng X, Xie B, Li Q, Xiao Y, Hu Z, Deng X, Fang P, Dong C, Zhou HB, Huang J. Discovery of Novel Bicyclic Phenylselenyl-Containing Hybrids: An Orally Bioavailable, Potential, and Multiacting Class of Estrogen Receptor Modulators against Endocrine-Resistant Breast Cancer. J Med Chem 2022; 65:7993-8010. [PMID: 35611405 DOI: 10.1021/acs.jmedchem.2c00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is a multifactorial disease and is prone to drug resistance during treatment. In this study, we described a new class of multifunctional estrogen receptor (ER) modulators ground on a prerogative indirect antagonism skeleton (OBHS, oxabicycloheptene sulfonate) of ER containing a phenylselenyl group. Compound 34b showed significant antiproliferative activities against tamoxifen-sensitive (MCF-7) and -resistant (LCC2) cells. Moreover, hexokinase 1 (HK1) was identified as a direct target of 34b. Further mechanism investigations proved that 34b induced apoptosis, which was associated with mitochondrial dysfunction caused by the synergistic effects of downregulating mitochondrial-bound HK1 protein and promoting reactive oxygen species generation. In vivo, 34b had a favorable pharmacokinetic profile with a bioavailability of 23.20% and exhibited more potent tumor suppression than tamoxifen both in MCF-7 and LCC2 tumor xenograft models. Collectively, our studies showed that 34b is a promising new multifunctional candidate compound for ERα+ BC treatment, particularly for tamoxifen-resistant BC.
Collapse
Affiliation(s)
- Xiangping Deng
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Baohua Xie
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Qiuzi Li
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Yuan Xiao
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Zhiye Hu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Xiaofei Deng
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Pingping Fang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chune Dong
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan 430071, China
| | - Jian Huang
- College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| |
Collapse
|
12
|
Mal’tseva VN, Goltyaev MV, Turovsky EA, Varlamova EG. Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. Int J Mol Sci 2022; 23:ijms23042360. [PMID: 35216476 PMCID: PMC8880504 DOI: 10.3390/ijms23042360] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The review presents the latest data on the role of selenium-containing agents in the regulation of diseases of the immune system. We mainly considered the contributions of selenium-containing compounds such as sodium selenite, methylseleninic acid, selenomethionine, and methylselenocysteine, as well as selenoproteins and selenium nanoparticles in the regulation of defense mechanisms against various viral infections, including coronavirus infection (COVID-19). A complete description of the available data for each of the above selenium compounds and the mechanisms underlying the regulation of immune processes with the active participation of these selenium agents, as well as their therapeutic and pharmacological potential, is presented. The main purpose of this review is to systematize the available information, supplemented by data obtained in our laboratory, on the important role of selenium compounds in all of these processes. In addition, the presented information makes it possible to understand the key differences in the mechanisms of action of these compounds, depending on their chemical and physical properties, which is important for obtaining a holistic picture and prospects for creating drugs based on them.
Collapse
|
13
|
Wang D, Rensing C, Zheng S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126684. [PMID: 34339989 DOI: 10.1016/j.jhazmat.2021.126684] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium is an essential trace element for humans, animals and microorganisms. Microbial transformations, in particular, selenium dissimilatory reduction and bioremediation applications have received increasing attention in recent years. This review focuses on multiple Se-reducing pathways under anaerobic and aerobic conditions, and the phylogenetic clustering of selenium reducing enzymes that are involved in these processes. It is emphasized that a selenium reductase may have more than one metabolic function, meanwhile, there are several Se(VI) and/or Se(IV) reduction pathways in a bacterial strain. It is noted that Se(IV)-reducing efficiency is inconsistent with Se(IV) resistance in bacteria. Moreover, we discussed the links of selenium transformations to biogeochemical cycling of other elements, roles of Se-reducing bacteria in soil, plant and digestion system, and the possibility of using functional genes involved in Se transformation as biomarker in different environments. In addition, we point out the gaps and perspectives both on Se transformation mechanisms and applications in terms of bioremediation, Se fortification or dietary supplementation.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Botteselle GV, Elias WC, Bettanin L, Canto RFS, Salin DNO, Barbosa FAR, Saba S, Gallardo H, Ciancaleoni G, Domingos JB, Rafique J, Braga AL. Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics. Molecules 2021; 26:molecules26154446. [PMID: 34361597 PMCID: PMC8347129 DOI: 10.3390/molecules26154446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Herein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the electronic properties of the substituents determine the charge delocalization and the partial charge on selenium, which correlate with the catalytic performances. The amino group concurs in the stabilization of the selenolate intermediate through a hydrogen bond with the selenium.
Collapse
Affiliation(s)
- Giancarlo V. Botteselle
- Departamento de Química, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava 85040-167, PR, Brazil
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| | - Welman C. Elias
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Luana Bettanin
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Rômulo F. S. Canto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil;
| | - Drielly N. O. Salin
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Flavio A. R. Barbosa
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Sumbal Saba
- Instituto de Química—IQ, Universidade Federal de Goiás—(UFG), Goiânia 74690-900, GO, Brazil;
| | - Hugo Gallardo
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy;
| | - Josiel B. Domingos
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Jamal Rafique
- Instituto de Química—INQUI, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79074-460, MS, Brazil
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| |
Collapse
|
15
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
16
|
Fiorito S, Epifano F, Marchetti L, Genovese S. Semisynthesis of Selenoauraptene. Molecules 2021; 26:molecules26092798. [PMID: 34068532 PMCID: PMC8126015 DOI: 10.3390/molecules26092798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, the most of efforts have been directed to build pure synthetic Se containing molecules, while less attention have been devoted to Se-based semisynthetic products resembling natural compounds like terpenes, polyphenols, and alkaloids. The aim of this short communication is to report the synthesis of the first example of a Se-phenylpropanoids, namely selenoauraptene, containing a selenogeranyl side chain in position 7 of the umbelliferone core. The key step was the Newman-Kwart rearrangement to obtain a selenocarbamate in which the Se atom was directly attached to umbelliferone (replacing its 7-OH function) followed by hydrolysis to get diumbelliferyl diselenide, which was finally easily converted to the desired Se-geranyl derivative in quite a good overall yield (28.5%). The synthesized adduct displayed a greater antioxidant and a radical scavenger in vitro activity than parent auraptene. The procedure we describe herein, to the best of our knowledge for the first time in the literature, represents an easy-to-handle method for the synthesis of a wide array of seleno analogues of naturally occurring biologically active oxyprenylated secondary metabolites.
Collapse
|
17
|
Ribaudo G, Bortoli M, Oselladore E, Ongaro A, Gianoncelli A, Zagotto G, Orian L. Selenoxide Elimination Triggers Enamine Hydrolysis to Primary and Secondary Amines: A Combined Experimental and Theoretical Investigation. Molecules 2021; 26:2770. [PMID: 34066723 PMCID: PMC8125833 DOI: 10.3390/molecules26092770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
We discuss a novel selenium-based reaction mechanism consisting in a selenoxide elimination-triggered enamine hydrolysis. This one-pot model reaction was studied for a set of substrates. Under oxidative conditions, we observed and characterized the formation of primary and secondary amines as elimination products of such compounds, paving the way for a novel strategy to selectively release bioactive molecules. The underlying mechanism was investigated using NMR, mass spectrometry and density functional theory (DFT).
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.R.); (E.O.); (A.O.); (A.G.)
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - Erika Oselladore
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.R.); (E.O.); (A.O.); (A.G.)
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.R.); (E.O.); (A.O.); (A.G.)
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.R.); (E.O.); (A.O.); (A.G.)
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
18
|
Yang N, Sun K, Wang X, Wang K, Kong X, Gao J, Wen D. Melatonin Participates in Selenium-Enhanced Cold Tolerance of Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:786043. [PMID: 35003171 PMCID: PMC8728364 DOI: 10.3389/fpls.2021.786043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 05/19/2023]
Abstract
Melatonin is an important and widespread plant hormone. However, the underlying physiological and molecular mechanisms of melatonin as a secondary messenger in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that exogenous application of selenite improved the cold tolerance of cucumber seedlings, which was dependent on the concentration effect. In the present experiment, 1 μM of selenite showed the best effect on alleviating cold stress. Interestingly, we found that in the process of alleviating cold stress, selenite increased the content of endogenous melatonin by regulating the expression of melatonin biosynthesis genes (TDC, T5H, SNAT, and COMT). To determine the interrelation between selenite and melatonin in alleviating cold stress, melatonin synthesis inhibitor p-chlorophenylalanine and melatonin were used for in-depth study. This study provides a theoretical basis for cucumber cultivation and breeding.
Collapse
Affiliation(s)
- Ning Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaining Sun
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kean Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianghua Kong
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dan Wen
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Dan Wen ;
| |
Collapse
|
19
|
Xu H, Su X, Guo MB, An R, Mou YH, Hou Z, Guo C. Design, synthesis, and biological evaluation of novel miconazole analogues containing selenium as potent antifungal agents. Eur J Med Chem 2020; 198:112360. [DOI: 10.1016/j.ejmech.2020.112360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
|
20
|
Ribaudo G, Bortoli M, Ongaro A, Oselladore E, Gianoncelli A, Zagotto G, Orian L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv 2020; 10:18583-18593. [PMID: 35518299 PMCID: PMC9053872 DOI: 10.1039/d0ra03509b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fluoxetine finds application in the treatment of depression and mood disorders. This selective serotonin-reuptake inhibitor (SSRI) also contrasts oxidative stress by direct ROS scavenging, modulation of the endogenous antioxidant defense system, and/or enhancement of the serotonin antioxidant capacity. We synthesised some fluoxetine analogues incorporating a selenium nucleus, thus expanding its antioxidant potential by enabling a hydroperoxides-inactivating, glutathione peroxidase (GPx)-like activity. Radical scavenging and peroxidatic activity were combined in a water-soluble, drug-like, tandem antioxidant molecule. Selenofluoxetine derivatives were reacted with H2O2 in water, and the mechanistic details of the reaction were unravelled combining nuclear magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and quantum chemistry calculations. The observed oxidation–elimination process led to the formation of seleninic acid and cinnamylamine in a trans-selective manner. This mechanism is likely to be extended to other substrates for the preparation of unsaturated cinnamylamines. We modified fluoxetine by incorporating a selenium nucleus enabling a hydroperoxide-inactivating, glutathione peroxidase (GPx)-like activity and paving the way for its use as green catalyst.![]()
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Erika Oselladore
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
21
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
22
|
Tanini D, Capperucci A, Scopelliti M, Milaneschi A, Angeli A, Supuran CT. Syntesis of thio- and seleno-acetamides bearing benzenesulfonamide as potent inhibitors of human carbonic anhydrase II and XII. Bioorg Chem 2019; 89:102984. [PMID: 31112841 DOI: 10.1016/j.bioorg.2019.102984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
A novel series of thio- and seleno-acetamides bearing benzenesulfonamide were synthetized and tested as human carbonic anhydrase inhibitors. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX/XII). Several derivatives showed potent inhibition activity in low nanomolar range such as 3a, 4a, 7a and 8a. Furthermore, based on the tail approach we explain the interesting and selective inhibition profile of compound such as 5a and 9a, which were more selective for hCA I, 9b which was selective for hCA II, 3f selective for hCA IX and finally, 3e and 4b selective for hCA XII, over the other three isoforms. They are interesting leads for the development of more effective and isoform-selective inhibitors.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Martina Scopelliti
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Andrea Milaneschi
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
23
|
Lewandowska M, Sajdak S, Lubiński J. Serum Selenium Level in Early Healthy Pregnancy as a Risk Marker of Pregnancy Induced Hypertension. Nutrients 2019; 11:nu11051028. [PMID: 31071931 PMCID: PMC6566672 DOI: 10.3390/nu11051028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023] Open
Abstract
Selenium (Se) is an antioxidant nutrient whose deficiency can influence adverse outcomes of pregnancy. The aim of this study is to determine whether serum Se level in early healthy pregnancy may be a risk marker for pregnancy induced hypertension. We obtained data from our prospective study in which we recruited healthy women in weeks 10–14 of a single pregnancy. In this analysis, we examined 121 women who subsequently developed pregnancy-induced hypertension and matched 363 women who remained normotensive. We measured Se levels (using the ICP-MS technique) in the serum in weeks 10–14 of the pregnancy. The odds ratios of pregnancy-induced hypertension (95% confidence intervals) were calculated using multivariate logistic regression. We found that the mean Se level was lower in the case group compared to the control (57.51 vs. 62.89 μg/L; p = 2.6 × 10−10). Excessive body mass index (BMI) and smoking influenced the estimated odds ratios. In the subgroup of women who had never smoked with normal pre-pregnancy BMI, the adjusted odds ratio (AOR) of pregnancy-induced hypertension was 15.34 (95% CI: 2.73–86.31, p = 0.002) for Se levels in the lowest quartile (≤57.68 µg/L), as compared to the highest quartile (>66.60 µg/L), after adjusting for all the accepted confounders. In the whole cohort, the prognostic value of Se by logistic regression showed that the area under curve (AUC) = 0.814. In our study, one can consider the role of Se as a risk marker of pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Małgorzata Lewandowska
- Division of Gynecological Surgery, Poznań University of Medical Sciences, 60-535 Poznań, Poland.
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznań University of Medical Sciences, 60-535 Poznań, Poland.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252 Szczecin, Poland.
| |
Collapse
|
24
|
Fiorito S, Epifano F, Preziuso F, Taddeo VA, Genovese S. Selenylated plant polysaccharides: A survey of their chemical and pharmacological properties. PHYTOCHEMISTRY 2018; 153:1-10. [PMID: 29803859 DOI: 10.1016/j.phytochem.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Polysaccharides from plants and fungi are considered nowadays as powerful pharmacological tools with a great therapeutic potential. In the meantime, efforts have been addressed to set up effective chemical modifications of naturally occurring polysaccharides to improve their biological effects as well as to positively modify some key parameters like solubility, bioavailability, pharmacokinetic, and similar. To this concern much attention has been focused during the last decade to the selenylation of natural polysaccharides from plants, algae, and fungi, the use of which is already encoded in ethnomedical traditions. The aim of this review article is to provide a detailed survey of the in so far reported literature data and a deeper knowledge about the state of the art on the chemical and pharmacological properties of selenylated polysaccharides of plant, algal, and fungal origin in terms of anti-oxidant, anti-cancer, anti-diabetic, and immunomodulatory activities. In all cases, literature data revealed that selenylation greatly improved such properties respect to the parent polysaccharides, indicating that selenylation is a valid, alternative, and effective chemical modification of naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy; Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123, Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Francesca Preziuso
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Vito Alessandro Taddeo
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
25
|
Rodrigues J, Saba S, Joussef AC, Rafique J, Braga AL. KIO3
-Catalyzed C(sp2
)-H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Anti-Alzheimer Activity. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800346] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janh Rodrigues
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Sumbal Saba
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Antônio C. Joussef
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| | - Jamal Rafique
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
- Instituto de Química; Universidade Federal do Mato Grosso do Sul - UFMS; Campo Grande 79074-460, MS Brasil
| | - Antonio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina - UFSC; Florianópolis 88040-900, SC Brazil
| |
Collapse
|