1
|
Ávila G, Bonnet M, Viala D, Dejean S, Grilli G, Lecchi C, Ceciliani F. Citrus pectin modulates chicken peripheral blood mononuclear cell proteome in vitro. Poult Sci 2024; 103:104293. [PMID: 39288719 PMCID: PMC11421475 DOI: 10.1016/j.psj.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown. This study investigated the activity of CP on chicken peripheral blood mononuclear cells (PBMC) proteome. An overall number of 1503 proteins were identified and quantified. The supervised sparse variant partial least squares-discriminant analysis (sPLS-DA) for paired data highlighted 373 discriminant proteins between CP-treated and the control group, of which 50 proteins with the highest abundance in CP and 137 in the control group were selected for Gene Ontology (GO) analyses using ProteINSIDE. Discriminant Protein highly abundant in CP-treated cells were involved in actin cytoskeleton organization and negative regulation of cell migration. Interestingly, MARCKSL1, a chemotaxis inhibitor, was upregulated in CP-treated cells. On the contrary, CP incubation downregulated MARCKS, LGALS3, and LGALS8, which are involved in cytoskeleton rearrangements, cell migration, and phagocytosis. In conclusion, these results provide a proteomics background to the anti-inflammatory activity of CP, demonstrating that the in vitro downregulation of phagocytosis and chemotaxis is related to changes in proteins related to the cytoskeleton.
Collapse
Affiliation(s)
- G Ávila
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - M Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - D Viala
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France; INRAE, Metabolomic and Proteomic Exploration Facility, Proteomic Component (PFEMcp), F-63122 Saint-Genès-Champanelle, France
| | - S Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - G Grilli
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - C Lecchi
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy
| | - F Ceciliani
- Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy.
| |
Collapse
|
2
|
Marsella R, Ahrens K, Wilkes R, Munguia N. Trichohyalin gene expression is negatively correlated with the severity of dermatitis in a canine atopic dermatitis model. Front Vet Sci 2024; 11:1396557. [PMID: 39234173 PMCID: PMC11371671 DOI: 10.3389/fvets.2024.1396557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Canine atopic dermatitis (AD) closely mimics human AD and is recognized as a beneficial animal model. House dust mites (HDM) are a common allergen for both species. The effects of chronic exposure to HDM on the skin have not been studied in this animal model, and it is not known how changes in gene expression correlate to the severity of dermatitis. Methods We used an established canine model of AD and took biopsies before HDM exposure (D0) and five times during repeated allergen challenges (on Days 1, 2, 8, 15, and 29, hereafter referred to as D1, D2, D8, D15, and D29). The severity of dermatitis was scored on the same days. Results Trichohyalin (TCHH) gene expression decreased the most (15-fold decrease on D29 vs. D0) and negatively correlated with the severity of dermatitis. Gap-junction protein gene expression increased over 3-fold on D1, D8, and D29 and positively correlated with the severity of dermatitis. Compared to D0, IL-31 gene expression significantly increased on D8 (p = 0.0098), D15 (p = 0.0068), and D29 (p = 0.0187), but the correlation with the severity of dermatitis did not reach significance. Discussion This is the first report on trichohyalin, a protein belonging to the S100 family, and gap-junction protein gene expression in the context of the clinical severity of AD. We propose that these proteins should be further investigated to better understand their role in this complex disease.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Rachel Wilkes
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Nathalie Munguia
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
4
|
Hirose S, Mashima T, Yuan X, Yamashita M, Kitano S, Torii S, Migita T, Seimiya H. Interleukin-4 induced 1-mediated resistance to an immune checkpoint inhibitor through suppression of CD8 + T cell infiltration in melanoma. Cancer Sci 2024; 115:791-803. [PMID: 38258342 PMCID: PMC10921010 DOI: 10.1111/cas.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer cells adopt multiple strategies to escape tumor surveillance by the host immune system and aberrant amino acid metabolism in the tumor microenvironment suppresses the immune system. Among the amino acid-metabolizing enzymes is an L-amino-acid oxidase called interleukin-4 induced 1 (IL4I1), which depletes essential amino acids in immune cells and is associated with a poor prognosis in various cancer types. Although IL4I1 is involved in immune metabolism abnormalities, its effect on the therapeutic efficacy of immune checkpoint inhibitors is unknown. In this study, we established murine melanoma cells overexpressing IL4I1 and investigated their effects on the intratumor immune microenvironment and the antitumor efficacy of anti-programmed death-ligand 1 (PD-L1) antibodies (Abs) in a syngeneic mouse model. As a result, we found that IL4I1-overexpressing B16-F10-derived tumors showed resistance to anti-PD-L1 Ab therapy. Transcriptome analysis revealed that immunosuppressive genes were globally upregulated in the IL4I1-overexpressing tumors. Consistently, we showed that IL4I1-overexpressing tumors exhibited an altered subset of lymphoid cells and particularly significant suppression of cytotoxic T cell infiltration compared to mock-infected B16-F10-derived tumors. After treatment with anti-PD-L1 Abs, we also found a more prominent elevation of tumor-associated macrophage (TAM) marker, CD68, in the IL4I1-overexpressing tumors than in the mock tumors. Consistently, we confirmed an enhanced TAM infiltration in the IL4I1-overexpressing tumors and a functional involvement of TAMs in the tumor growth. These observations indicate that IL4I1 reprograms the tumor microenvironment into an immunosuppressive state and thereby confers resistance to anti-PD-L1 Abs.
Collapse
Affiliation(s)
- Shiho Hirose
- Division of Molecular Biotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesUniversity of TokyoTokyoJapan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Xunmei Yuan
- Division of Molecular Biotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Makiko Yamashita
- Division of Cancer Immunotherapy Development, Department of Advanced Medical DevelopmentThe Cancer Institute Hospital of JFCRTokyoJapan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Department of Advanced Medical DevelopmentThe Cancer Institute Hospital of JFCRTokyoJapan
| | - Shinichi Torii
- Division of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
- Vermilion Therapeutics Inc.TokyoJapan
| | - Toshiro Migita
- Division of Cancer Cell BiologyInstitute of Medical Science, University of TokyoTokyoJapan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesUniversity of TokyoTokyoJapan
| |
Collapse
|
5
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
6
|
Shimizu Y, Sugimoto C, Wakao H. Potential of MAIT cells to modulate asthma. Allergol Int 2024; 73:40-47. [PMID: 37567833 DOI: 10.1016/j.alit.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Despite recent advances in asthma treatments, the search for novel therapies remains necessary because there are still patients with recurrent asthma exacerbations and poor responses to the existing treatments. Since group 2 innate lymphoid cells (ILC2) play a pivotal role in asthma by triggering and exacerbating type 2 inflammation, controlling ILC2s function is key to combating severe asthma. Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans and are activated both in a T cell receptor-dependent and -independent manner. MAIT cells are composed of MAIT1 and MAIT17 based on the expression of transcription factors T-bet and RORγt, respectively. MAIT cells play pivotal roles in host defense against pathogens and in tissue repair and are essential for the maintenance of immunity and hemostasis. Our recent studies revealed that MAIT cells inhibit both ILC2 proliferation and functions in a mouse model of airway inflammation. MAIT cells may alleviate airway inflammation in two ways, by promoting airway epithelial cell barrier repair and by repressing ILC2s. Therefore, reagents that promote MAIT cell-mediated suppression of ILC2 proliferation and function, or designer MAIT cells (genetically engineered to suppress ILC2s or promote repair of airway damage), may be effective therapeutic agents for severe asthma.
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Tochigi, Japan; Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Tochigi, Japan; Regenerative Center, Dokkyo Medical University Hospital, Tochigi, Japan.
| | - Chie Sugimoto
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| | - Hiroshi Wakao
- Center for the Frontier Medicine, Host Defense Division, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Wang S, Huang T, Xie Z, Wan L, Ren H, Wu T, Xie L, Luo S, Li M, Xie Z, Fan Q, Huang J, Zeng T, Zhang Y, Zhang M, Wei Y. Transcriptomic and Translatomic Analyses Reveal Insights into the Signaling Pathways of the Innate Immune Response in the Spleens of SPF Chickens Infected with Avian Reovirus. Viruses 2023; 15:2346. [PMID: 38140587 PMCID: PMC10747248 DOI: 10.3390/v15122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-β, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.
Collapse
Affiliation(s)
- Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery, Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tian Wu
- NHC Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China;
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (S.W.); (L.W.); (H.R.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (J.H.); (T.Z.); (Y.Z.); (M.Z.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
8
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Run L, Tian Z, Xu L, Du J, Li N, Wang Q, Sun H. Knockdown of IL4I1 Improved High Glucose-evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity Through AHR Activation. Appl Biochem Biotechnol 2023; 195:6694-6707. [PMID: 36913096 DOI: 10.1007/s12010-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Insulin resistance (IR) is one of the leading causes of Type 2 diabetes mellitus (T2DM). Inflammation, as a result of the disordered immune response, plays important roles in IR and T2DM. Interleukin-4-induced gene 1 (IL4I1) has been shown to regulate immune response and be involved in inflammation progress. However, there was little known about its roles in T2DM. Here, high glucose (HG)-treated HepG2 cells were used for T2DM investigation in vitro. Our results indicated that the expression of IL4I1 was up-regulated in peripheral blood samples of T2DM-patients and HG-induced HepG2 cells. The silencing of IL4I1 alleviated the HG-evoked IR through elevating the expressions of p-IRS1, p-AKT and GLUT4, and enhancing glucose consumption. Furthermore, IL4I1 knockdown inhibited inflammatory response by reducing the levels of inflammatory mediators, and suppressed the accumulation of lipid metabolites triglyceride (TG) and palmitate (PA) in HG-induced cells. Notably, IL4I1 expression was positively correlated with aryl hydrocarbon receptor (AHR) in peripheral blood samples of T2DM-patients. The silencing of IL4I1 inhibited the AHR signaling by reducing the HG-induced expressions of AHR and CYP1A1. Subsequent experiments confirmed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AHR, reversed the suppressive effects of IL4I1 knockdown on HG-caused inflammation, lipid metabolism and IR in cells. In conclusion, we found that the silencing of IL4I1 attenuated inflammation, lipid metabolism and IR in HG-induced cells via inhibiting AHR signaling, suggesting that IL4I1 might be a potential therapy target for T2DM.
Collapse
Affiliation(s)
- Lin Run
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Lin Xu
- Department of Endocrinology, The Affiliated Guangren Hospital, Xi'an Jiaotong University College of Medicine, 710004, Xi'an, Shaanxi, China
| | - Junhui Du
- Department of Medicine Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Nan Li
- Clinical Laboratory, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Nuclear Medicine, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District.
| |
Collapse
|
10
|
Badawy AB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep 2022; 42:BSR20221682. [PMID: 36286592 PMCID: PMC9653095 DOI: 10.1042/bsr20221682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Tumours utilise tryptophan (Trp) and its metabolites to promote their growth and evade host defences. They recruit Trp through up-regulation of Trp transporters, and up-regulate key enzymes of Trp degradation and down-regulate others. Thus, Trp 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase 1 (IDO1), IDO2, N'-formylkynurenine formamidase (FAMID) and Kyn aminotransferase 1 (KAT1) are all up-regulated in many cancer types, whereas Kyn monooxygenase (KMO), kynureninase (KYNU), 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD) and quinolinate phosphoribosyltransferase (QPRT) are up-regulated in a few, but down-regulated in many, cancers. This results in accumulation of the aryl hydrocarbon receptor (AhR) ligand kynurenic acid and in depriving the host of NAD+ by blocking its synthesis from quinolinic acid. The host loses more NAD+ by up-regulation of the NAD+-consuming poly (ADP-ribose) polymerases (PARPs) and the protein acetylaters SIRTs. The nicotinamide arising from PARP and SIRT activation can be recycled in tumours to NAD+ by the up-regulated key enzymes of the salvage pathway. Up-regulation of the Trp transporters SLC1A5 and SLC7A5 is associated mostly with that of TDO2 = FAMID > KAT1 > IDO2 > IDO1. Tumours down-regulate enzymes of serotonin synthesis, thereby removing competition for Trp from the serotonin pathway. Strategies for combating tumoral immune escape could involve inhibition of Trp transport into tumours, inhibition of TDO and IDOs, inhibition of FAMID, inhibition of KAT and KYNU, inhibition of NMPRT and NMNAT, inhibition of the AhR, IL-4I1, PARPs and SIRTs, and by decreasing plasma free Trp availability to tumours by albumin infusion or antilipolytic agents and inhibition of glucocorticoid induction of TDO by glucocorticoid antagonism.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
11
|
Neupane T, Chambers LR, Godfrey AJ, Monlux MM, Jacobs EJ, Whitworth S, Spawn JE, Clingman SHK, Vergunst KL, Niven FM, Townley JJ, Orion IW, Goodspeed CR, Cooper KA, Cronk JD, Shepherd JN, Langelaan DN. Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone. Commun Chem 2022; 5:89. [PMID: 36697674 PMCID: PMC9814641 DOI: 10.1038/s42004-022-00711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/20/2022] [Indexed: 01/28/2023] Open
Abstract
Rhodoquinone (RQ) is a close analogue of ubiquinone (UQ) that confers diverse bacterial and eukaryotic taxa the ability to utilize fumarate as an electron acceptor in hypoxic conditions. The RquA protein, identified in a Rhodospirillum rubrum RQ-deficient mutant, has been shown to be required for RQ biosynthesis in bacteria. In this report, we demonstrate that RquA, homologous to SAM-dependent methyltransferases, is necessary and sufficient to catalyze RQ biosynthesis from UQ in vitro. Remarkably, we show that RquA uses SAM as the amino group donor in a substitution reaction that converts UQ to RQ. In contrast to known aminotransferases, RquA does not use pyridoxal 5'-phosphate (PLP) as a coenzyme, but requires the presence of Mn2+ as a cofactor. As these findings reveal, RquA provides an example of a non-canonical SAM-dependent enzyme that does not catalyze methyl transfer, instead it uses SAM in an atypical amino transfer mechanism.
Collapse
Affiliation(s)
- Trilok Neupane
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Lydia R. Chambers
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Alexander J. Godfrey
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Melina M. Monlux
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Evan J. Jacobs
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Sophia Whitworth
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jamie E. Spawn
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Seo Hee K. Clingman
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathleen L. Vergunst
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Fair M. Niven
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - James J. Townley
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Iris W. Orion
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Carly R. Goodspeed
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Kathryn A. Cooper
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jeff D. Cronk
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - Jennifer N. Shepherd
- grid.256410.40000 0001 0668 7980Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA USA
| | - David N. Langelaan
- grid.55602.340000 0004 1936 8200Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
12
|
Peel E, Silver L, Brandies P, Hayakawa T, Belov K, Hogg CJ. Genome assembly of the numbat ( Myrmecobius fasciatus), the only termitivorous marsupial. GIGABYTE 2022; 2022:gigabyte47. [PMID: 36824518 PMCID: PMC9650251 DOI: 10.46471/gigabyte.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
The numbat (Myrmecobius fasciatus) is an endangered Australian marsupial, and the last surviving member of the Myrmecobiidae family. The numbat regularly undergoes torpor and is unique amongst marsupials as it is the only diurnal and termitivorous species. Here we sequenced the first draft genome of the numbat using 10× Genomics Chromium linked-read technology, resulting in a 3.42 Gbp genome with a scaffold N50 of 223 kbp. A global transcriptome from liver, lung and tongue was also generated to aid genome annotation, identifying 21,465 protein-coding genes. To investigate adaptation to the numbat's termitivorous diet and arid/semi-arid range, we interrogated the most highly expressed transcripts within the tongue and manually annotated taste, vomeronasal and aquaporin gene families. Antimicrobial proteins and proteins involved in digestion were highly expressed in the tongue, alongside umami taste receptors. However, sweet taste receptors were not expressed in this tissue, which combined with the putative contraction of the bitter taste receptor gene repertoire in the numbat genome, may indicate a potential evolutionary adaptation to their specialised termitivorous diet. Vomeronasal and aquaporin gene repertoires were similar to other marsupials. The draft numbat genome is a valuable tool for conservation and can be applied to population genetics/genomics studies and to investigate the unique biology of this interesting species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Rannug A. 6-Formylindolo[3,2-b]carbazole, a Potent Ligand for the Aryl Hydrocarbon Receptor Produced Both Endogenously and by Microorganisms, can Either Promote or Restrain Inflammatory Responses. FRONTIERS IN TOXICOLOGY 2022; 4:775010. [PMID: 35295226 PMCID: PMC8915874 DOI: 10.3389/ftox.2022.775010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) binds major physiological modifiers of the immune system. The endogenous 6-formylindolo[3,2-b]carbazole (FICZ), which binds with higher affinity than any other compound yet tested, including TCDD, plays a well-documented role in maintaining the homeostasis of the intestines and skin. The effects of transient activation of AHR by FICZ differ from those associated with continuous stimulation and, depending on the dose, include either differentiation into T helper 17 cells that express proinflammatory cytokines or into regulatory T cells or macrophages with anti-inflammatory properties. Moreover, in experimental models of human diseases high doses stimulate the production of immunosuppressive cytokines and suppress pathogenic autoimmunity. In our earlier studies we characterized the formation of FICZ from tryptophan via the precursor molecules indole-3-pyruvate and indole-3-acetaldehyde. In the gut formation of these precursor molecules is catalyzed by microbial aromatic-amino-acid transaminase ArAT. Interestingly, tryptophan can also be converted into indole-3-pyruvate by the amino-acid catabolizing enzyme interleukin-4 induced gene 1 (IL4I1), which is secreted by host immune cells. By thus generating derivatives of tryptophan that activate AHR, IL4I1 may have a role to play in anti-inflammatory responses, as well as in a tumor escape mechanism that reduces survival in cancer patients. The realization that FICZ can be produced from tryptophan by sunlight, by enzymes expressed in our cells (IL4I1), and by microorganisms as well makes it highly likely that this compound is ubiquitous in humans. A diurnal oscillation in the level of FICZ that depends on the production by the fluctuating number of microbes might influence not only intestinal and dermal immunity locally, but also systemic immunity.
Collapse
|
14
|
Sandholt AKS, Wattrang E, Lilja T, Ahola H, Lundén A, Troell K, Svärd SG, Söderlund R. Dual RNA-seq transcriptome analysis of caecal tissue during primary Eimeria tenella infection in chickens. BMC Genomics 2021; 22:660. [PMID: 34521339 PMCID: PMC8438895 DOI: 10.1186/s12864-021-07959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
15
|
Amperometric Biosensors for L-Arginine Determination Based on L-Arginine Oxidase and Peroxidase-Like Nanozymes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are limited data on amperometric biosensors (ABSs) for L-arginine (Arg) determination based on oxidases that produce hydrogen peroxide (H2O2) as a byproduct of enzymatic reaction, and artificial peroxidases (POs) for decomposition of H2O2. The most frequently proposed Arg-sensitive oxidase-based ABSs contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Therefore, the construction of a one-enzyme ABS for Arg analysis is a practical problem. In the current work, fabrication, and characterization of three ABS types for the direct measurement of Arg were proposed. L-arginine oxidase (ArgO) isolated from the mushroom Amanita phalloides was co-immobilized with PO-like nanozymes (NZs) on the surface of graphite electrodes. As PO mimetics, chemically synthesized NZs of CeCu (nCeCU) and NiPtPd (nNiPtPd), as well as green-synthesized hexacyanoferrate of copper (gCuHCF), were used. The novel ABSs exhibited high sensitivity and selectivity to Arg, broad linear ranges and good storage stabilities. Two ABSs were tested on real samples of products containing Arg, including the pharmaceutical preparation “Tivortine”, juices, and wine. A high correlation (R = 0.995) was demonstrated between the results of testing “Tivortine” and juice using nCeCU/GE and nNiPtPd/GE. It is worth mentioning that only a slight difference (less than 1%) was observed for “Tivortin” between the experimentally determined content of Arg and its value declared by the producer. The proposed ArgO-NZ-based ABSs may be promising for Arg analysis in different branches of science, medicine, and industry.
Collapse
|
16
|
Leu JH, Tsai CH, Yang CH, Chou HY, Wang HC. Identification and characterization of l-amino acid oxidase 2 gene in orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104058. [PMID: 33657430 DOI: 10.1016/j.dci.2021.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Recently, l-amino acid oxidases (LAAOs) have been identified in several fish species as first-line defense molecules against bacterial infection. Here, we report the cloning and characterization of a fish LAAO gene, EcLAAO2, from orange-spotted grouper (Epinephelus coioides). The full-length cDNA is 3030 bp, with an ORF encoding a protein of 511 amino acids. EcLAAO2 is mainly expressed in the fin, gill, and intestine. Its expression is upregulated in several immune organs after challenge with lipopolysaccharide (LPS) and poly (I:C). The recombinant EcLAAO2 protein (rEcLAAO2), expressed and purified from a baculovirus expression system, was determined to be a glycosylated dimer. According to a hydrogen peroxide-production assay, the recombinant protein was identified as having LAAO enzyme activity with substrate preference for L-Phe and L-Trp, but not L-Lys as other known fish LAAOs. rEcLAAO2 could effectively inhibit the growth of Vibrio parahaemolyticus, Staphylococcus aureus, and Bacillus subtilis while exhibiting less effective inhibition of the growth of Escherichia coli. Finally, protein models based on sequence homology were constructed to predict the three-dimensional structure of EcLAAO2 as well as to explain the difference in substrate specificity between EcLAAO2 and other reported fish LAAOs. In conclusion, this study identifies EcLAAO2 as a novel fish LAAO with a substrate preference distinct from other known fish LAAOs and reveals that it may function against invading pathogens.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| | - Chi-Hang Tsai
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Chia-Hsun Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Hsin-Yiu Chou
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC; Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 115, Taiwan, ROC; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
17
|
Wu J, Xu C, Guan X, Ni D, Yang X, Yang Z, Wang M. Comprehensive analysis of tumor microenvironment and identification of an immune signature to predict the prognosis and immunotherapeutic response in lung squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:569. [PMID: 33987267 DOI: 10.21037/atm-21-463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tumor mutation burden (TMB) and immune microenvironment are important determinants of prognosis and immunotherapeutic efficacy for cancer patients. The aim of the present study was to develop an immune signature to effectively predict prognosis and immunotherapeutic response in patients with lung squamous cell carcinoma (LUSC). Methods TMB and immune microenvironment characteristics were comprehensively analyzed by multi-omics data in LUSC. The immune signature was further constructed and validated in multiple independent datasets by LASSO Cox regression analysis. Next, the value of immune signature in predicting the response of immunotherapy was evaluated. Finally, the possible mechanism of immune signature was also investigated. Results A novel immune signature based on 5 genes was constructed and validated to predict the prognosis of LUSC patients. These genes were filamin-C, Rho family GTPase 1, interleukin 4-induced gene-1, transglutaminase 2, and prostaglandin I2 synthase. High-risk patients had significantly poorer survival than low-risk patients. A nomogram was also developed based on the immune signature and tumor stage, which showed good application. Furthermore, we found that the immune signature had a significant correlation with immune checkpoint, microsatellite instability, tumor infiltrating lymphocytes, cytotoxic activity scores, and T-cell-inflamed score, suggesting low-risk patients are more likely to benefit from immunotherapy. Finally, functional enrichment and pathway analyses revealed several significantly enriched immune-related biological processes and metabolic pathways. Conclusions In the present study, we developed a novel immune signature that could predict prognosis and immunotherapeutic response in LUSC patients. The results not only help identify LUSC patients with poor survival, but also increase our understanding of the immune microenvironment and immunotherapy in LUSC.
Collapse
Affiliation(s)
- Jinlong Wu
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengfeng Xu
- Department of Pharmacy, Shidong Hospital of Shanghai Yangpu District, Shanghai, China
| | - Xin Guan
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Ni
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuhui Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyin Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Magalhães ACM, de Santana CJC, Melani RD, Domont GB, Castro MS, Fontes W, Roepstorff P, Júnior ORP. Exploring the biological activities and proteome of Brazilian scorpion Rhopalurus agamemnon venom. J Proteomics 2021; 237:104119. [PMID: 33540062 DOI: 10.1016/j.jprot.2021.104119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Scorpion venoms are formed by toxins harmful to various organisms, including humans. Several techniques have been developed to understand the role of proteins in animal venoms, including proteomics approach. Rhopalurus agamemnon (Koch, 1839) is the largest scorpion in the Buthidae family in the Brazilian Cerrado, measuring up to 110 mm in total length. The accident with R. agamemnon is painful and causes some systemic reactions, but the specie's venom remains uninvestigated. We explore the venom protein composition using a proteomic and a biological-directed approach identifying 230 protein compounds including enzymes like Hyaluronidase, metalloproteinase, L-amino acid oxidase and amylase, the last two are first reported for scorpion venoms. Some of those new reports are important to demonstrate how distant we are from a total comprehension of the diversity about venoms in general, due to their diversity in composition and function. BIOLOGICAL SIGNIFICANCE: In this study, we explored the composition of venom proteins from the scorpion Rhopalurus agamemnon. We identified 230 proteins from the venom including new enzyme reports. These data highlight the unique diversity of the venom proteins from the scorpion R. agamemnon, provide insights into new mechanisms of envenomation and enlarge the protein database of scorpion venoms. The discovery of new proteins provides a new scenario for the development of new drugs and suggests molecular targets to venom components.
Collapse
Affiliation(s)
- Ana Carolina Martins Magalhães
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil.
| | - Carlos José Correia de Santana
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Rafael D Melani
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Castro
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Osmindo Rodrigues Pires Júnior
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| |
Collapse
|
19
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
20
|
Pająk M. Methylated derivatives of l-tyrosine in reaction catalyzed by l-amino acid oxidase: isotope and inhibitory effects. J Biochem 2020; 168:509-514. [PMID: 32569353 DOI: 10.1093/jb/mvaa066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 11/14/2022] Open
Abstract
l-Amino acid oxidase (LAAO) is widely distributed in nature and shows important biological activity. It induces cell apoptosis and has antibacterial properties. This study was designed to investigate the effect of methyl substituent on its activity as methylated derivatives of l-tyrosine, labelled with short-lived B+ emitters, have been used in oncological diagnostics. To study isotope effects in the oxidative deamination of O-methyl-l-tyrosine, the deuterated isotopomer, i.e. O-methyl-[2-2H]-l-tyrosine, was synthesized by isotope exchange, catalyzed enzymatically by tryptophanase. Isotope effects were determined using the spectrophotometric non-competitive method. The values of isotope effects indicate that the α-C-H bond cleavage occurs in the rate determining step of the investigated reaction and α-hydrogen plays a role in the substrate binding process at the enzyme active site. The inhibitory effect on LAAO activity was studied with α-methyl-l-tyrosine and N-methyl-l-tyrosine. The mode of inhibition was determined based on Lineweavear-Burk plots intersections. α-Methyl-l-tyrosine has been found a mixed type inhibitor of the investigated enzyme, whereas N-methyl-l-tyrosine is a non-competitive inhibitor of LAAO.
Collapse
Affiliation(s)
- Małgorzata Pająk
- Faculty of Chemistry, University of Warsaw, Pasteur 1 Str, 02-093 Warsaw, Poland
| |
Collapse
|
21
|
Kitani Y, Nagashima Y. l-Amino acid oxidase as a fish host-defense molecule. FISH & SHELLFISH IMMUNOLOGY 2020; 106:685-690. [PMID: 32822860 DOI: 10.1016/j.fsi.2020.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.
Collapse
Affiliation(s)
- Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi Mu 4-1 Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University, Hirakidai 2416, Tainai, Niigata, 995-2702, Japan
| |
Collapse
|
22
|
Wu F, Cheng Y, Wu L, Zhang W, Zheng W, Wang Q, Cao H, Pan X, Tang W. Emerging Landscapes of Tumor Immunity and Metabolism. Front Oncol 2020; 10:575037. [PMID: 33117713 PMCID: PMC7575711 DOI: 10.3389/fonc.2020.575037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic reprogramming of cancer tissue has higher metabolic activity than surrounding tissues. At the same time, the local infiltration of immunosuppressive cells is also significantly increased, resulting in a significant decrease in tumor immunity. During the progression of cancer cells, immunosuppressive tumor microenvironment is formed around the tumor due to their metabolic reprogramming. In addition, it is the changes in metabolic patterns that make tumor cells resistant to certain drugs, impeding cancer treatment. This article reviews the mechanisms of immune escape caused by metabolic reprogramming, and aims to provide new ideas for clinical tumor immunotherapy combined with metabolic intervention for tumor treatment.
Collapse
Affiliation(s)
- Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wubing Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Gibb Z, Griffin RA, Aitken RJ, De Iuliis GN. Functions and effects of reactive oxygen species in male fertility. Anim Reprod Sci 2020; 220:106456. [DOI: 10.1016/j.anireprosci.2020.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
24
|
Möbus L, Rodriguez E, Harder I, Stölzl D, Boraczynski N, Gerdes S, Kleinheinz A, Abraham S, Heratizadeh A, Handrick C, Haufe E, Werfel T, Schmitt J, Weidinger S. Atopic dermatitis displays stable and dynamic skin transcriptome signatures. J Allergy Clin Immunol 2020; 147:213-223. [PMID: 32615169 DOI: 10.1016/j.jaci.2020.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Skin transcriptome studies in atopic dermatitis (AD) showed broad dysregulation as well as "improvement" under therapy. These observations were mainly made in trials and based on microarray data. OBJECTIVES Our aim was to explore the skin transcriptome and the impact of systemic treatment in patients of the TREATgermany registry. METHODS Biopsy specimens from 59 patients with moderate-to-severe AD before and 30 patients 12 weeks after start of systemic treatment (dupilumab [n = 22] or cyclosporine [n = 8]) and from 31 healthy controls were subjected to mRNA sequencing. Differential expression, pathway enrichment, correlation, and coexpression network analysis were conducted. RESULTS Both lesional and nonlesional skin showed a stable "core" signature characterized by disturbed epidermal differentiation and activation of IL-31/IL-1 signaling. A second dynamic signature showed progressive enrichment for type 2 inflammation, TH17 signaling, and natural killer cell function. Markers correlated with disease activity have functions in epidermal barrier properties and immune modulation. IL4RA was among the top 3 central dysregulated genes. Cyclosporine led to a more pronounced global transcriptome reversion and normalized TH17 cell/IL23 signaling, whereas dupilumab led to a stronger increase in level of epidermal differentiation markers. Both treatments strongly decreased levels of type 2 markers, but overall the residual profile was still profoundly different from that of healthy skin. Lower levels of IL4RA and IL13 and high IL36A expression were related to a stronger clinical response to dupilumab. CONCLUSION The AD core signature is characterized by dysregulation of genes related to keratinocyte differentiation and itch signaling. A dynamic signature reflects progressive immune responses dominated by type 2 cytokines with an additional role of TH17 and natural killer cell signaling.
Collapse
Affiliation(s)
- Lena Möbus
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inken Harder
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dora Stölzl
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicole Boraczynski
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Susanne Abraham
- University Allergy Centre, Carl Gustav Carus University Medical Centre, TU Dresden, Dresden, Germany
| | - Annice Heratizadeh
- Division of Immunodermatology and Allergy Research, Department of Dermatology, Allergy, and Venereology, Hannover Medical School, Hannover, Germany
| | - Christiane Handrick
- Practice for Dermatology and Venereology, Christiane Handrick, MD, Berlin, Germany
| | - Eva Haufe
- Center for Evidence-Based Health Care, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology, Allergy, and Venereology, Hannover Medical School, Hannover, Germany
| | - Jochen Schmitt
- Center for Evidence-Based Health Care, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
25
|
Tararina MA, Allen KN. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. J Mol Biol 2020; 432:3269-3288. [PMID: 32198115 DOI: 10.1016/j.jmb.2020.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
The flavin-dependent amine oxidase (FAO) superfamily consists of over 9000 nonredundant sequences represented in all domains of life. Of the thousands of members identified, only 214 have been functionally annotated to date, and 40 unique structures are represented in the Protein Data Bank. The few functionally characterized members share a catalytic mechanism involving the oxidation of an amine substrate through transfer of a hydride to the FAD cofactor, with differences observed in substrate specificities. Previous studies have focused on comparing a subset of superfamily members. Here, we present a comprehensive analysis of the FAO superfamily based on reaction mechanism and substrate recognition. Using a dataset of 9192 sequences, a sequence similarity network, and subsequently, a genome neighborhood network were constructed, organizing the superfamily into eight subgroups that accord with substrate type. Likewise, through phylogenetic analysis, the evolutionary relationship of subgroups was determined, delineating the divergence between enzymes based on organism, substrate, and mechanism. In addition, using sequences and atomic coordinates of 22 structures from the Protein Data Bank to perform sequence and structural alignments, active-site elements were identified, showing divergence from the canonical aromatic-cage residues to accommodate large substrates. These specificity determinants are held in a structural framework comprising a core domain catalyzing the oxidation of amines with an auxiliary domain for substrate recognition. Overall, analysis of the FAO superfamily reveals a modular fold with cofactor and substrate-binding domains allowing for diversity of recognition via insertion/deletions. This flexibility allows facile evolution of new activities, as shown by reinvention of function between subfamilies.
Collapse
Affiliation(s)
- Margarita A Tararina
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Karen N Allen
- Program in Biomolecular Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Han X, Huang Y, Hou Y, Dang H, Li R. Recombinant expression and functional analysis of antimicrobial Siganus oraminl-amino acid oxidase using the Bac-to-Bac baculovirus expression system. FISH & SHELLFISH IMMUNOLOGY 2020; 98:962-970. [PMID: 31783145 DOI: 10.1016/j.fsi.2019.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Siganus oraminl-amino acid oxidase (SR-LAAO), isolated from the serum of Siganus oramin, is an innate immune protein with significant antibacterial activity. The aim of this study was to express SR-LAAO in insect cells using a baculovirus expression system and evaluate the function of the recombinant SR-LAAO. To this end, an optimized sequence of the SR-LAAO gene was designed and synthesized, based on the codon bias of insect cells. Bacmid shuttle vectors and recombinant baculovirus were successfully constructed, and the recombinant baculovirus was transfected into Sf9 insect cells. The antibacterial activity and enzymatic characteristics of the recombinant SR-LAAO were investigated. The results showed that the pFastBac-optiSR-LAAO shuttle vectors and Bacmid-optiSR-LAAO were correctly constructed. The Sf9 insect cells exhibited significant cytopathic effects following infection with Bacmid-optiSR-LAAO and Bacmid; the specific PCR analysis proved that the recombinant baculovirus was successfully constructed. The immunofluorescence assay revealed that the recombinant baculovirus rSR-LAAO was abundantly expressed in infected Sf9 insect cells; the results of SDS/PAGE and Western blot analyses showed that a specific band appeared at about 60 kDa. Moreover, the crude rSR-LAAO enzyme displayed strong antibacterial activity against aquatic pathogens, particularly Streptococcus agalactiae and Streptococcus iniae. In addition, the results of catalase interference test implied that the antibacterial activity of rSR-LAAO was directly associated with (H2O2 production). The results of the rSR-LAAO enzymatic characteristics test indicated that the Km value with l-Lysine as a substrate was 16.61 mM when the temperature was under 37 °C, and the optimum pH was 7. The antibacterial activity of rSR-LAAO could be completely inhibited by 10 mg/mL of pepsin, trypsin, and proteinase K compared with both methanol and acetone. Adding an equal volume of ethanol had a minimal impact on the antibacterial activity of rSR-LAAO. The crude enzyme could maintain a high level of antibacterial activity against both Gram-positive and -negative bacteria from 4 °C to 30 °C. In the present study, SR-LAAO was successfully expressed in Sf9 cells using the baculovirus expression system, and provides basic references for further research into the role of LAAO in marine animals and the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Xiao Han
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yuxi Huang
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yulin Hou
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Huifeng Dang
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ruijun Li
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
27
|
Ye L, Pan J, Pasha MA, Shen X, D'Souza SS, Fung ITH, Wang Y, Guo B, Tang DD, Yang Q. Mucosal-associated invariant T cells restrict allergic airway inflammation. J Allergy Clin Immunol 2019; 145:1469-1473.e4. [PMID: 31874183 DOI: 10.1016/j.jaci.2019.12.891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Longyun Ye
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Jiexue Pan
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Muhammad Asghar Pasha
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY
| | - Xiaofei Shen
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Shanti S D'Souza
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Ivan Ting Hin Fung
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY
| | - Bingnan Guo
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY
| | - Qi Yang
- Department of Immunology & Microbial Diseases, Albany Medical College, Albany, NY; Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY.
| |
Collapse
|
28
|
Presset M, Djordjevic D, Dupont A, Le Gall E, Molinier-Frenkel V, Castellano F. Identification of inhibitors of the immunosuppressive enzyme IL4I1. Bioorg Chem 2019; 94:103463. [PMID: 31812258 DOI: 10.1016/j.bioorg.2019.103463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Marc Presset
- Electrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Diana Djordjevic
- INSERM, U955, Equipe 09, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France
| | - Aurélie Dupont
- INSERM, U955, Equipe 09, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France
| | - Erwan Le Gall
- Electrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2 rue Henri Dunant, F-94320 Thiais, France
| | - Valérie Molinier-Frenkel
- INSERM, U955, Equipe 09, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France; AP-HP, Hôpital H. Mondor - A. Chenevier, Laboratoire d'Immunologie, Créteil, France.
| | - Flavia Castellano
- INSERM, U955, Equipe 09, Créteil, France; Université Paris Est, Faculté de Médecine, Créteil, France.
| |
Collapse
|
29
|
Abstract
The 19th International Symposium on Flavins and Flavoproteins was held from 2⁻6 July 2017 in Groningen, The Netherlands.[...].
Collapse
|
30
|
l-Amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon 2018; 150:270-279. [DOI: 10.1016/j.toxicon.2018.06.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
|
31
|
Imine Deaminase Activity and Conformational Stability of UK114, the Mammalian Member of the Rid Protein Family Active in Amino Acid Metabolism. Int J Mol Sci 2018; 19:ijms19040945. [PMID: 29565811 PMCID: PMC5979572 DOI: 10.3390/ijms19040945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/18/2022] Open
Abstract
Reactive intermediate deaminase (Rid) protein family is a recently discovered group of enzymes that is conserved in all domains of life and is proposed to play a role in the detoxification of reactive enamines/imines. UK114, the mammalian member of RidA subfamily, was identified in the early 90s as a component of perchloric acid-soluble extracts from goat liver and exhibited immunomodulatory properties. Multiple activities were attributed to this protein, but its function is still unclear. This work addressed the question of whether UK114 is a Rid enzyme. Biochemical analyses demonstrated that UK114 hydrolyzes α-imino acids generated by l- or d-amino acid oxidases with a preference for those deriving from Ala > Leu = l-Met > l-Gln, whereas it was poorly active on l-Phe and l-His. Circular Dichroism (CD) analyses of UK114 conformational stability highlighted its remarkable resistance to thermal unfolding, even at high urea concentrations. The half-life of heat inactivation at 95 °C, measured from CD and activity data, was about 3.5 h. The unusual conformational stability of UK114 could be relevant in the frame of a future evaluation of its immunogenic properties. In conclusion, mammalian UK114 proteins are RidA enzymes that may play an important role in metabolism homeostasis also in these organisms.
Collapse
|