1
|
Sangavi R, Malligarjunan N, Satish L, Raja V, Pandian SK, Gowrishankar S. Anticariogenic activity of marine brown algae Padina boergesenii and its active components towards Streptococcus mutans. Front Cell Infect Microbiol 2024; 14:1458825. [PMID: 39654980 PMCID: PMC11625749 DOI: 10.3389/fcimb.2024.1458825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Streptococcus mutans is a well-recognized bacterium that plays a predominant role in the progression of dental caries. Its pathogenicity is linked to several key characteristics, including the ability to produce organic acids (acidogenicity), thrive in low pH environments (aciduricity), synthesize exopolysaccharides (EPS) via glucosyltransferases, and form retentive biofilms. The treatment of dental caries with conventional antibiotics is often ineffective due to the bacterium's capacity to form recalcitrant biofilms. To address these challenges, strategies that specifically target the pathogen's virulence without affecting its viability have emerged as promising alternatives. In this context, we investigated the anticariogenic properties of the methanolic extract of Padina boergesenii (MEPB). MEPB demonstrated substantial, dose-dependent antibiofilm activity, with a maximum inhibition of 93% at 128 μg/mL, without compromising the viability of S. mutans. Anti-virulence assays using sub-MIC (minimum inhibitory concentration) levels of MEPB showed significant reductions in key virulence factors: 75% reduction in sucrose-dependent adherence, 65% reduction in sucrose-independent adherence, along with notable decreases in acid production, acid tolerance, and water-insoluble (85%) and water-soluble (52%) glucan synthesis. Additionally, MEPB significantly reduced cell surface hydrophobicity (55%) and extracellular DNA (eDNA) production (64%). qPCR analysis corroborated these in vitro findings, revealing that MEPB suppresses the expression of genes involved in S. mutans virulence, particularly genes related to EPS synthesis (gtfB, gtfC & gtfD) biofilm formation(gbpB & gbpC) and two-component regulatory system (vicR) were downregulated. Toxicity testing on human buccal epithelial cells confirmed the non-toxic nature of MEPB, suggesting its safety for potential therapeutic use. Furthermore, GC-MS/MS analysis identified palmitic acid, myristic acid, and stearic acid as the major active constituents of the MEPB extract. Subsequent biofilm inhibitory assays confirmed the potent antibiofilm efficacy of these compounds: palmitic acid (85%), myristic acid (72%) and stearic acid (83%). In conclusion, this study identifies P. boergesenii and its active biomolecules as potential anticariogenic agents, offering an alternative approach to combat dental caries by targeting bacterial virulence mechanisms rather than viability.
Collapse
Affiliation(s)
| | | | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR-Central Salt & Marine Chemical Research Institute, Mandapam, India
| | - Veerapandian Raja
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | | | | |
Collapse
|
2
|
Chantanawilas P, Pahumunto N, Teanpaisan R. Aggregation and adhesion ability of various probiotic strains and Candida species: An in vitro study. J Dent Sci 2024; 19:2163-2171. [PMID: 39347096 PMCID: PMC11437301 DOI: 10.1016/j.jds.2024.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/13/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The ability of probiotics to inhibit Candida adhesion is a crucial characteristic that prevents Candida colonization and infection progression. This study aimed to explore aggregation, adhesion, and cell surface characterization of probiotic and Candida strains and to evaluate the effect of probiotics and their cell-free supernatants (CFSs) as postbiotics on Candida adhesion to human oral keratinocytes. Materials and methods Eight probiotic strains and five reference Candida strains were tested for autoaggregation, coaggregation, adhesin on human oral keratinocytes (H357), and cell surface properties. The anti-Candida adhesion activities of probiotic strains and CFSs were investigated. Results The results showed that most probiotics exhibited high adhesion to H357 cells, specifically oral probiotic Lacticaseibacillus rhamnosus SD4, Limosilactobacillus fermentum SD7, and L. rhamnosus SD11, and adhesion ability of probiotic strains was strongly related to their autoaggregation, cell surface charges, and hydrophobicity. Candida strains also revealed a high level of adhesion to H357 cells. Candida albicans and C andida glabrata showed significantly higher adhesion abilities than others. After a combination of Candida with probiotics or their CFSs, Candida adhesion was significantly reduced. The anti-Candida adhesion property of probiotics was strongly related to their autoaggregation, coaggregation, and adhesion abilities. Conclusion This study demonstrated that oral probiotic strains may be useful probiotics for preventing and treating oral candidiasis due to their high ability of aggregation, adhesion, and anti-Candida adhesion to H357 cells.
Collapse
Affiliation(s)
- Panita Chantanawilas
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rawee Teanpaisan
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
4
|
Souza LBFC, de Oliveira Bento A, Lourenço EMG, Ferreira MRA, Oliveira WN, Soares LAL, G. Barbosa E, Rocha HAO, Chaves GM. Mechanism of action and synergistic effect of Eugenia uniflora extract in Candida spp. PLoS One 2024; 19:e0303878. [PMID: 39137202 PMCID: PMC11321568 DOI: 10.1371/journal.pone.0303878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.
Collapse
Affiliation(s)
- Luanda B. F. C. Souza
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurélio de Oliveira Bento
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Estela M. G. Lourenço
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules, LP4, Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Magda R. A. Ferreira
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Wogenes N. Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Euzébio G. Barbosa
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Hugo A. O. Rocha
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
de Oliveira FMG, Lyrio MVV, Filgueiras PR, de Castro EVR, Kuster RM. ESI(-)FT-ICR MS for the determination of best conditions for producing extract abundant in phenolic compounds from leaves of E. uniflora and FTIR-PCA as a sample screening method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3701-3713. [PMID: 38805183 DOI: 10.1039/d3ay00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
E. uniflora leaves are a rich source of phenolic compounds with biological activities, including myricitrin. In this study, the chemical profile of nine extracts prepared with leaves collected in three regions (mountain, beach, and mangrove) and at three different times of the day (8 am, 1 pm, and 6 pm) was evaluated from spectra originating from ultra-high resolution mass spectrometry (Fourier transform ion cyclotron resonance, FT-ICR) coupled to electrospray ionisation (ESI). The best time of the day and location for collecting the leaves of E. uniflora used as raw materials for producing extracts and the best ethanol concentration for obtaining an extract more abundant in compounds of interest were verified. Several flavonoids and phenolic acids were detected in their deprotonated form in the regions from m/z 200 to 1200. Myricitrin ([C21H20O12-H]-, m/ztheo 463.08820), its chloride adduct ([C21H20O12+Cl]-, m/ztheo 499.06488), other myricitrin derivatives, and some tannins were the main compounds detected. Considering obtaining an extract rich in phenolic compounds, including myricitrin, the best place and time of the day to collect E. uniflora leaves is in the beach region at 1 pm. In contrast, the best ethanol concentration for extract production is 70 wt%. Therefore, extraction at 96 wt% ethanol is better for obtaining an extract more abundant in phenolic acids, although 70 wt% ethanol also extracted these compounds. FTIR-PCA models were used to check for possible similarities in the data according to collection time of the day and location. These models demonstrated an excellent solution for sample screening.
Collapse
Affiliation(s)
- Fernanda M G de Oliveira
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Marcos V V Lyrio
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Paulo R Filgueiras
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Eustáquio V R de Castro
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| | - Ricardo M Kuster
- LABPETRO (Laboratory of Research and Methodologies Development for Petroleum Analysis), Chemistry Department, Federal University of Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, P. O. Box: 29075-910, Vitória, ES, Brazil.
| |
Collapse
|
6
|
Liu J, Zhang H, Zhang L, Li T, Liu N, Liu Q. Effect of various concentrations of common organic solvents on the growth and proliferation ability of Candida glabrata and their permissible limits for addition in drug susceptibility testing. PeerJ 2023; 11:e16444. [PMID: 38025727 PMCID: PMC10668856 DOI: 10.7717/peerj.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Dimethyl sulfoxide (DMSO), acetone, ethanol, and methanol are organic solvents commonly used for dissolving drugs in antimicrobial susceptibility testing. However, these solvents have certain antimicrobial activity. Currently, standardized criteria for the selection and dosage of drug solvents in drug susceptibility testing research are lacking. The study aims to provide experimental evidence for the selection and addition limit of drug solvents for the in vitro antifungal susceptibility test of Candida glabrata (C. glabrata). Methods According to the recommendation of the Clinical and Laboratory Standards Institute (CLSI) M27-A3, a 0.5 McFarland C. glabrata suspension was prepared and then diluted 1:1,000. Next, a gradient dilution method was used to prepare 20%, 10%, 5%, and 2.5% DMSO/acetone/ethanol/methanol. The mixture was plated onto a 96-well plate and incubated at a constant temperature of 35 °C for 48 h. The inhibitory effects of DMSO, acetone, ethanol, and methanol on C. glabrata growth and proliferation were analyzed by measuring optical density values at 600 nm (OD600 values). Results After 48 h incubation, the OD600 values of C. glabrata decreased to different extents in the presence of the four common organic solvents. The decrease in the OD600 values was greater with increasing concentrations within the experimental concentration range. When DMSO and acetone concentrations were higher than 2.5% (containing 2.5%) and methanol and ethanol concentrations were higher than 5.0% (containing 5.0%), the differences were statistically significant compared with the growth control wells without any organic solvent (P < 0.05). Conclusion All four organic solvents could inhibit C. glabrata growth and proliferation. When used as solvents for drug sensitivity testing in C. glabrata, the concentrations of DMSO, acetone, ethanol, and methanol should be below 2.5%, 2.5%, 5%, and 5%, respectively.
Collapse
Affiliation(s)
- Juan Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxin Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lifang Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ting Li
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Ferreira MRA, Lima LB, Santos ECF, Machado JCB, Silva WAV, Paiva PMG, Napoleão TH, Soares LAL. Eugenia uniflora: a promising natural alternative against multidrug-resistant bacteria. BRAZ J BIOL 2023; 83:e274084. [PMID: 37585932 DOI: 10.1590/1519-6984.274084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/03/2023] [Indexed: 08/18/2023] Open
Abstract
This work aimed to evaluate the chemical composition, antioxidant and antimicrobial activities from crude extract and fractions from leaves of Eugenia uniflora Linn. The crude extract was obtained by turbo extraction and their fractions by partitioning. Chromatographic analysis were performed, and the antioxidant capacity was verified by two methods (DPPH• and ABTS•+). The Minimal Inhibitory/Bactericidal Concentration were conducted against twenty-two bacteria, selecting five strains susceptible to extract/fractions and resistant to the antibiotics tested. Ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with Ethyl Acetate Fraction (EAF) against multidrug-resistant strains in modulatory and checkerboard tests. The chromatographic data showed gallic acid, ellagic acid, and myricitrin in crude extract, with enrichment in the EAF. The electron transfer activity demonstrated in the antioxidant tests is related to the presence of flavonoids. The Gram-positive strains were more susceptible to EAF, and their action spectra were improved by association, comprising Gram-negative bacilli. Synergisms were observed to ciprofloxacin and gentamicin against Pseudomonas aeruginosa colistin-resistant. The results demonstrate that the extract and enriched fraction obtained from the leaves of E. uniflora act as a promising natural alternative against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- M R A Ferreira
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - L B Lima
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - E C F Santos
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
| | - J C B Machado
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - W A V Silva
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| | - P M G Paiva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - T H Napoleão
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Laboratório de Bioquímica de Proteínas, Recife, PE, Brasil
| | - L A L Soares
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Laboratório de Farmacognosia, Recife, PE, Brasil
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Ciências Farmacêuticas, Recife, PE, Brasil
| |
Collapse
|
8
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
9
|
Dalmagro M, Pinc MM, Donadel G, Tominc GC, Jacomassi E, Lourenço ELB, Gasparotto Junior A, Boscarato AG, Belettini ST, Alberton O, Prochnau IS, Bariccatti RA, de Almeida RM, Rossi de Aguiar KMF, Hoscheid J. Bioprospecting a Film-Forming System Loaded with Eugenia uniflora L. and Tropaeolum majus L. Leaf Extracts for Topical Application in Treating Skin Lesions. Pharmaceuticals (Basel) 2023; 16:1068. [PMID: 37630984 PMCID: PMC10459946 DOI: 10.3390/ph16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products can be used as complements or as alternatives to synthetic drugs. Eugenia uniflora and Tropaeolum majus are natives of Brazil and have antimicrobial, anti-inflammatory, and antioxidant activities. This study aimed to develop a film-forming system (FFS) loaded with plant extracts with the potential for treating microbial infections. E. uniflora and T. majus leaf extracts were prepared and characterized, and the individual and combined antioxidant and antimicrobial activities were evaluated. The FFS was developed with different concentrations of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and analyzed for physicochemical characteristics. The combination of extracts showed a superior antioxidant effect compared to the individual extracts, justifying the use of the blend. FFS prepared with 4.5% PVA, 4.5% PVP, 7.81% E. uniflora extract, and 3.90% T. majus extract was adhesive, lacked scale formation, presented good malleability, and had a suitable pH for topical application. In addition, the viscosity at rest was satisfactory for maintaining stability; water solubility was adequate; skin permeation was low; and the antimicrobial effect was superior to that of the individual extracts. Therefore, the developed FFS is promising for the differentiated treatment of skin lesions through topical application.
Collapse
Affiliation(s)
- Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Getulio Capello Tominc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil;
| | - André Giarola Boscarato
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Salviano Tramontin Belettini
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Inara Staub Prochnau
- School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Toledo 85902-532, Brazil;
| | | | - Rafael Menck de Almeida
- Synthetica Research and Technical Analysis Ltda., Capela do Alto, São Paulo 18195-000, Brazil;
| | | | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| |
Collapse
|
10
|
Loaiza-Oliva M, Arias-Durango L, Martínez-Pabón MC. The Cytotoxic and Inhibitory Effects of Plant Derivatives on Candida albicans Biofilms: A Scoping Review. Molecules 2022; 28:130. [PMID: 36615324 PMCID: PMC9822484 DOI: 10.3390/molecules28010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Candida albicans infections are related to biofilm formation. The increase in antifungal resistance and their adverse effects have led to the search for therapeutic options as plant derivatives. This scoping review aims to identify the current status of in vitro research on the cytotoxicity and inhibitory effects of plant derivatives on C. albicans biofilms. In this study, PRISMA items were followed. After recognition of the inclusion criteria, full texts were read and disagreements were resolved with a third party. A risk of bias assessment was performed, and information was summarized using Microsoft Office Excel. Thirty-nine papers fulfilling the selection criteria were included. The risk of bias analysis identified most of the studies as low risk. Studies evaluated plant derivatives such as extracts, essential oils, terpenes, alkaloids, flavonoids and polyphenols. Some studies evaluated the inhibition of C. albicans biofilm formation, inhibition on preformed biofilms or both. The derivatives at concentrations greater than or equal to those that have an inhibitory effect on C. albicans biofilms, without showing cytotoxicity, include magnoflorin, ellagic acid, myricetin and eucarobustol from Eucalyptus robusta and, as the works in which these derivatives were studied are of good quality, it is desirable to carry out study in other experimental phases, with methodologies that generate comparable information.
Collapse
|
11
|
Leite-Andrade MC, de Araújo Neto LN, Buonafina-Paz MDS, de Assis Graciano dos Santos F, da Silva Alves AI, de Castro MCAB, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Baj T, Neves RP. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against Candida parapsilosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248884. [PMID: 36558017 PMCID: PMC9788451 DOI: 10.3390/molecules27248884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Yeasts from the Candida parapsilosis complex are clinically relevant due to their high virulence and pathogenicity potential, such as adherence to epithelial cells and emission of filamentous structures, as well as their low susceptibility to antifungals. D-limonene, a natural compound, emerges as a promising alternative with previously described antibacterial, antiparasitic, and antifungal activity; however, its mechanisms of action and antivirulence activity against C. parapsilosis complex species have not been elucidated. Therefore, in the present study, we aimed to evaluate the antifungal and antivirulence action, as well as the mechanism of action of D-limonene against isolates from this complex. D-limonene exhibited relevant antifungal activity against C. parapsilosis complex yeasts, as well as excellent antivirulence activity by inhibiting yeast morphogenesis and adherence to the human epithelium. Furthermore, the apoptotic mechanism induced by this compound, which is not induced by oxidative stress, represents an important target for the development of new antifungal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratório de Parasitologia e Laboratório de Imunologia IAM, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Edna Mori
- Faculdade CECAPE College, São José, Juazeiro do Norte 63024-015, CE, Brazil
| | | | - Isaac Moura Araújo
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
- Correspondence: (H.D.M.C.); (T.B.)
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
- Correspondence: (H.D.M.C.); (T.B.)
| | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
12
|
de Melo Candeia GLO, Costa WK, de Oliveira AM, Napoleão TH, Guedes Paiva PM, Ferreira MRA, Lira Soares LA. Anti-inflammatory, antinociceptive effects and involvement of opioid receptors in the antinociceptive activity of Eugenia uniflora leaves obtained with water, ethanol, and propylene glycol mixture. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115508. [PMID: 35779820 DOI: 10.1016/j.jep.2022.115508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia uniflora (Myrtaceae) is a species native to Brazil and has a traditional use in the treatment of inflammation. AIM OF THE STUDY To evaluate the anti-inflammatory and antinociceptive effects, and the involvement of opioid receptors in the antinociceptive activity of extract and fractions from Eugenia uniflora leaves. MATERIALS AND METHODS TLC and HPLC were used to characterize the spray-dried extract (SDE) and fractions. In the in vivo assays, Swiss (Mus musculus) mice were used. Carrageenan-induced hind-paw edema and carrageenan-induced peritonitis models were used to determine the anti-inflammatory effect of the extract (50, 100, or 200 mg/kg). Acetic acid-induced writhing, tail-flick, and formalin tests were used to determine the antinociceptive effect of the extract (50, 100, or 200 mg/kg). The aqueous (AqF) and ethyl acetate (EAF) fractions (6.25, 12.5, and 25 mg/kg) were then combined with naloxone to evaluate the involvement of opioid receptors in the antinociceptive activity. RESULTS In this work, the TLC and HPLC analysis evidenced the enrichment of EAF, which higher concentration of gallic acid (5.29 ± 0.0004 %w/w), and ellagic acid (1.28 ± 0.0002 %w/w) and mainly myricitrin (8.64 ± 0.0002 %w/w). The extract decreased the number of total leukocytes and neutrophils in the peritoneal cavity (p < 0.05), at doses of 100 and 200 mg/kg and showed significant inhibition in the increase of paw edema volume (p < 0.05). The treatment per oral route (doses of 50, 100, and 200 mg/kg) significantly reduced the nociceptive response in acetic acid-induced abdominal writhing (p < 0.05). The effect of the extract on the tail-flick test showed a significant increase in latency time of animals treated at doses of 200 and 100 mg/kg (p < 0.05). The extract and ethyl acetate fraction reduced the nociceptive effect in both phases of formalin at all tested doses. The naloxone reversed the antinociceptive effect of EAF, suggesting that opioid receptors are involved in mediating the antinociceptive activity of EAF of E. uniflora in the formalin test. CONCLUSION The current study demonstrates the anti-inflammatory and analgesic activities of water: ethanol: propylene glycol spray-dried extract from E. uniflora leaves using in vivo pharmacological models in mice. Our findings suggest that spray-dried extract and ethyl acetate fraction exhibit peripheral and central antinociceptive activity with the involvement of opioid receptors that may be related to the presence of flavonoids, mainly myricitrin.
Collapse
Affiliation(s)
- Glenda Laíssa Oliveira de Melo Candeia
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Wêndeo Kennedy Costa
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Alisson Macário de Oliveira
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
13
|
Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J Fungi (Basel) 2022; 8:jof8080784. [PMID: 36012773 PMCID: PMC9409899 DOI: 10.3390/jof8080784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increased incidence of fungal infections and the emergence of antifungal resistance mainly by Candida species, the need for safe and effective novel therapies is imperative. Consequently, plants and herbs are a powerful source to combat infections. Here, we evaluated the anti-Candida potential of an ethanolic extract from Piper nigrum. The phytochemical analysis of P. nigrum revealed bioactive compounds such as alkaloids, terpenoids, and tannis. Our results showed that P. nigrum extract suppressed the virulence factors of C. albicans strains, including hyphae formation in both liquid and solid media, reduced secretion of phospholipases/proteinases, and affected biofilm formation. Furthermore, the P. nigrum extract showed no hemolytic effect in vitro and exhibited reduced cytotoxicity on Vero cells and G. mellonella larvae at concentrations that inhibited hyphae and biofilm in C. albicans. Moreover, the extract demonstrated antifungal activity against C. auris strains. In conclusion, the P. nigrum extract affected the growth and morphogenesis of Candida (even in resistant strains), demonstrating that this plant has an anti-candida activity and represents a promising resource for discovering novel antifungal compounds.
Collapse
|
14
|
Fidelis EM, Savall ASP, de Oliveira Pereira F, Quines CB, Ávila DS, Pinton S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
D’Angeli F, Guadagni F, Genovese C, Nicolosi D, Trovato Salinaro A, Spampinato M, Mannino G, Lo Furno D, Petronio Petronio G, Ronsisvalle S, Sipala F, Falzone L, Calabrese V. Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk. Antibiotics (Basel) 2021; 10:1373. [PMID: 34827311 PMCID: PMC8615231 DOI: 10.3390/antibiotics10111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Daria Nicolosi
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy;
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Federica Sipala
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Luca Falzone
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| |
Collapse
|
16
|
Engela MRGDS, Furlan CM, Esposito MP, Fernandes FF, Carrari E, Domingos M, Paoletti E, Hoshika Y. Metabolic and physiological alterations indicate that the tropical broadleaf tree Eugenia uniflora L. is sensitive to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145080. [PMID: 33736256 DOI: 10.1016/j.scitotenv.2021.145080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.
Collapse
Affiliation(s)
| | - Claudia Maria Furlan
- Institute of Bioscience, University of São Paulo, Matão St. 257, 05508-090, SP, Brazil
| | | | - Francine Faia Fernandes
- Institute of Botany, Ecology Research Center, Avenue Miguel Estéfano, 3687, 04301-012, SP, Brazil
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Marisa Domingos
- Institute of Botany, Ecology Research Center, Avenue Miguel Estéfano, 3687, 04301-012, SP, Brazil
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Dantas-Medeiros R, Zanatta AC, de Souza LBFC, Fernandes JM, Amorim-Carmo B, Torres-Rêgo M, Fernandes-Pedrosa MDF, Vilegas W, Araújo TADS, Michel S, Grougnet R, Chaves GM, Zucolotto SM. Antifungal and Antibiofilm Activities of B-Type Oligomeric Procyanidins From Commiphora leptophloeos Used Alone or in Combination With Fluconazole Against Candida spp. Front Microbiol 2021; 12:613155. [PMID: 33692765 PMCID: PMC7937886 DOI: 10.3389/fmicb.2021.613155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Commiphora leptophloeos (Burseraceae) is a medicinal plant native to Brazil which is popularly used for treating oral and vaginal infections. There has been no scientific evidence pointing to its efficacy in the treatment of these infections. Thus, this study sought to investigate the cytotoxic, antifungal, and antibiofilm activity of C. leptophloeos against Candida spp. and to isolate, identify, and quantify the content of B-type oligomeric procyanidins (BDP) in the extract of C. leptophloeos stem bark. The extract and the n-butanol fraction were obtained by maceration and liquid-liquid partition, respectively. Phytochemical analysis performed by HPLC-PDA/ELSD and FIA-ESI-IT-MS/MS allowed the identification and quantification of BDP in the samples. The application of centrifugal partition chromatography helped isolate BDP, which was identified by 1H NMR and MS analyses. Candida spp. reference strains and clinical isolates (including fluconazole-resistant strains) derived from the blood cultures of candidemic patients and the vaginal secretion of patients with vulvovaginal candidiasis were used for evaluating the antifungal and antibiofilm effects. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were determined by the microdilution technique, and biofilm inhibition was evaluated through crystal violet and XTT assays. The combined action of BDP with fluconazole was determined by the checkerboard method. The extract, the n-butanol fraction, and the BDP exhibited antifungal activity with MIC values ranging from 312.5 to 2500 μg/mL and were found to significantly reduce the biofilm formed in all the Candida strains investigated. BDP showed a fungicidal potential against strains of Candida spp. (especially against fluconazole-resistant strains), with MIC and MFC values ranging from 156.2 to 2500 μg/mL. In addition, the combined application of BDP and fluconazole produced synergistic antifungal effects against resistant Candida spp. (FICI = 0.31-1.5). The cytotoxic properties of the samples evaluated in human erythrocytes through hemolytic test did not show hemolytic activity under active concentrations. The findings of the study show that C. leptophloeos has antifungal and antibiofilm potential but does not cause toxicity in human erythrocytes. Finally, BDP, which was isolated for the first time in C. leptophloeos, was found to exhibit antifungal effect against Candida spp. either when applied alone or in combination with fluconazole.
Collapse
Affiliation(s)
- Renato Dantas-Medeiros
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Caroline Zanatta
- Laboratory of Bioprospecting of Natural Products, São Paulo State University (UNESP), São Paulo, Brazil.,Laboratory of Phytochemistry, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Júlia Morais Fernandes
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Amorim-Carmo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Wagner Vilegas
- Laboratory of Phytochemistry, Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Sylvie Michel
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University Paris Descartes, Paris, France
| | - Raphaël Grougnet
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University Paris Descartes, Paris, France
| | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Silvana Maria Zucolotto
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
18
|
Danchik C, Casadevall A. Role of Cell Surface Hydrophobicity in the Pathogenesis of Medically-Significant Fungi. Front Cell Infect Microbiol 2021; 10:594973. [PMID: 33569354 PMCID: PMC7868426 DOI: 10.3389/fcimb.2020.594973] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Cell surface hydrophobicity (CSH) is an important cellular biophysical parameter which affects both cell-cell and cell-surface interactions. In dimorphic fungi, multiple factors including the temperature-induced shift between mold and yeast forms have strong effects on CSH with higher hydrophobicity more common at the lower temperatures conducive to filamentous cell growth. Some strains of Cryptococcus neoformans exhibit high CSH despite the presence of the hydrophilic capsule. Among individual yeast colonies from the same isolate, distinct morphologies can correspond to differences in CSH. These differences in CSH are frequently associated with altered virulence in medically-significant fungi and can impact the efficacy of antifungal therapies. The mechanisms for the maintenance of CSH in pathogenic fungi remain poorly understood, but an appreciation of this fundamental cellular parameter is important for understanding its contributions to such phenomena as biofilm formation and virulence.
Collapse
Affiliation(s)
- Carina Danchik
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
19
|
Yang X, Pei Z, Hu R, Zhang Z, Lou Z, Sun X. Study on the Inhibitory Activity and Possible Mechanism of Myriocin on Clinically Relevant Drug-Resistant Candida albicans and Its Biofilms. Biol Pharm Bull 2021; 44:305-315. [PMID: 33441497 DOI: 10.1248/bpb.b20-00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to prevent and control the infection of Candida albicans, the antifungal activity, possible mechanism of myriocin against C. albicans and its biofilm were studied. The antifungal activity of myriocin was investigated by microdilution method. The effect of myriocin on fungal cell wall or membrane was evaluated by adding sorbitol, ergosterol or phytosphingosine (PHS). The damage to the cell membrane was investigated with propidium iodide (PI) staining and visualized by scanning electron microscope (SEM). The effects on biofilms and extracellular polysaccharides (EPS) were observed by crystal violet staining method and phenol-sulfuric acid method respectively. The adhesion of C. albicans cells to hydrocarbons was tested to evaluate cell surface hydrophobic (CSH). The combined effects of myriocin and antifungal drugs commonly used in clinical practice were investigated by using the checkerboard microdilution method. Minimal inhibitory concentrations (MICs) were found to be 0.125-4 µg/mL. Myriocin was found to affect both cell wall and cell membrane. After exposure to myriocin, biofilm and EPS were found to be inhibited and removed, and the CSH was decreased. The combined fungistasis of myriocin and voriconazole (VCZ) or amphotericin B (AMB) were additive. Myriocin had significant antifungal activity against C. albicans, and the antifungal mechanisms might be cell wall and membrane damage. Myriocin effectively inhibited and eliminated biofilms, and its mechanism may be related to the inhibition of EPS and CSH.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zejun Pei
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Renjing Hu
- Clinical Laboratory, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zhehao Zhang
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University
| | - Xin Sun
- Department of Pharmacy, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University
| |
Collapse
|
20
|
Boriollo MFG, Moreira BS, Oliveira MC, Santos TO, Rufino LRA, Oliveira NMS. Incidence of Shiga toxin-producing Escherichia coli in diarrheic calves and its susceptibility profile to antimicrobials and Eugenia uniflora L. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:18-26. [PMID: 33390649 PMCID: PMC7747658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/27/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the occurrence of Shiga toxin (stx)-producing Escherichia coli (STEC) in diarrheic newborn calves, as well as the resistance profile of this microorganism against antimicrobials routinely used in veterinary therapy. The antimicrobial profile of Eugenia uniflora against E. coli clinical isolates was also analyzed. Specimens from the recto-anal junction mucosa were investigated by using chromogenic medium and identification of E. coli was done using microbiological methods (Gram staining, indole test, methyl red test, Voges-Proskauer test, citrate test, urease test, and hydrogen sulfide test). The stx1 and stx2 genes corresponding to the STEC pathotype were evaluated by using polymerase chain reaction and electrophoresis. The susceptibility profile to antimicrobial agents commonly used in veterinary therapeutic practice and the antimicrobial effect of lyophilized hydroalcoholic extract of E. uniflora L. leaves against E. coli clinical isolates were evaluated by disk diffusion and microdilution methods. Shiga toxin-positive E. coli was identified in 45% of diarrheic newborn calves (stx1 = 23.2%, stx2 = 4.0%, stx1 + stx2 = 18.2%). The frequency of stx-positive E. coli in the bacterial population was equal to 17.0% (168/990 clinical isolates): 97 (9.8%) stx1-positive E. coli, 12 (1.2%) stx2-positive E. coli, and 59 (6.0%) stx1 + stx2-positive E. coli isolates. All stx-positive E. coli analyzed showed resistance to multiple drugs, that is, from 4 to 10 antimicrobials per clinical isolate (streptomycin, tetracycline, cephalothin, ampicillin, sulfamethoxazole + trimethoprim, nitrofurantoin and nalidixic acid, ciprofloxacin, gentamicin, and chloramphenicol). Effective management measures should be implemented, including clinical and laboratory monitoring, in order to promote animal and worker health and welfare, prevent and control the spread of diseases, and ensure effective treatment of infectious diseases. The E. uniflora L. leaves showed inhibition of microbial growth based on the diameter of halos, ranging from 7.9 to 8.0 mm and 9.9 to 10.1 mm for concentrations of 50 and 150 mg/mL, respectively. This plant displayed bacteriostatic action and a minimum inhibitory concentration of 12.5 mg/mL for all clinical isolates. Its clinical or synergistic effects with antimicrobial agents must be determined from clinical and preclinical trials.
Collapse
Affiliation(s)
- Marcelo F G Boriollo
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| | - Bianca S Moreira
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| | - Mateus C Oliveira
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| | - Taiane O Santos
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| | - Luciana R A Rufino
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| | - Nelma M S Oliveira
- Laboratory of Microbiology and Immunology, Department of Oral Diagnosis, Dental School of Piracicaba, State University of Campinas (FOP/UNICAMP), Piracicaba, São Paulo 13414-903, Brazil (Boriollo, M. Oliveira, Santos); Center for Research and Postgraduate Studies in Animal Science, Pathology and Animal Pharmacology Area, Universidade José do Rosário Vellano, Alfenas, Minas Gerais 37132-440, Brazil (Boriollo, Moreira, Rufino, N. Oliveira)
| |
Collapse
|
21
|
Phytol-Loaded Solid Lipid Nanoparticles as a Novel Anticandidal Nanobiotechnological Approach. Pharmaceutics 2020; 12:pharmaceutics12090871. [PMID: 32933144 PMCID: PMC7558427 DOI: 10.3390/pharmaceutics12090871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Phytol is a diterpene alcohol and can be found as a product of the metabolism of chlorophyll in plants. This compound has been explored as a potential antimicrobial agent, but it is insoluble in water. In this study, we describe a novel approach for an interesting anticandidal drug delivery system containing phytol. Different formulations of phytol-loaded solid lipid nanoparticles (SLN) were designed and tested using a natural lipid, 1,3-distearyl-2-oleyl-glycerol (TG1). Different compositions were considered to obtain three formulations with 1:10, 1:5, and 1:3 w/w phytol/TG1 ratios. All the formulations were prepared by emulsification solvent evaporation method and had their physicochemical properties assessed. The biocompatibility assay was performed in the HEK-293 cell line and the antifungal efficacy was demonstrated in different strains of Candida ssp., including different clinical isolates. Spherical and uniform SLN (<300 nm, PdI < 0.2) with phytol-loading efficiency >65% were achieved. Phytol-loaded SLN showed a dose-dependent cytotoxic effect in the HEK-293 cell line. The three tested formulations of phytol-loaded SLN considerably enhanced the minimal inhibitory concentration of phytol against 15 strains of Candida spp. Considering the clinical isolates, the formulations containing the highest phytol/TG1 ratios showed MICs at 100%. Thus, the feasibility and potential of phytol-loaded SLN was demonstrated in vitro, being a promising nanocarrier for phytol delivery from an anticandidal approach.
Collapse
|
22
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
23
|
Priya A, Pandian SK. Piperine Impedes Biofilm Formation and Hyphal Morphogenesis of Candida albicans. Front Microbiol 2020; 11:756. [PMID: 32477284 PMCID: PMC7237707 DOI: 10.3389/fmicb.2020.00756] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is the primary etiological agent associated with the pathogenesis of candidiasis. Unrestricted growth of C. albicans in the oral cavity may lead to oral candidiasis, which can progress to systemic infections in worst scenarios. Biofilm of C. albicans encompasses yeast and hyphal forms, where hyphal formation and yeast to hyphal morphological transitions are contemplated as the key virulence elements. Current clinical repercussions necessitate the identification of therapeutic agent that can limit the biofilm formation and escalating the susceptibility of C. albicans to immune system and conventional antifungals. In the present study, a plant-derived alkaloid molecule, piperine, was investigated for the antibiofilm and antihyphal activities against C. albicans. Piperine demonstrated a concentration-dependent antibiofilm activity without exerting negative impact on growth and metabolic activity. Inhibition in the hyphal development was witnessed through confocal laser-scanning microscopy and scanning electron microscopy. Interestingly, piperine displayed a tremendous potential to inhibit the virulence-associated colony morphologies, such as filamentation and wrinkling. Furthermore, piperine regulated morphological transitions between yeast and hyphal forms by inhibiting hyphal extension and swapping hyphal phase to yeast forms yet under filamentation-inducing circumstances. Remarkably, piperine-challenged C. albicans exhibited low potential for spontaneous antibiofilm resistance development. In addition, piperine effectively reduced in vivo colonization and prolonged survival of C. albicans-infected Caenorhabditis elegans, thereby expounding the distinct antivirulent potential. Transcriptomic analysis revealed piperine significantly downregulating the expression of several biofilm related and hyphal-specific genes (ALS3, HWP1, EFG1, CPH1, etc.). Furthermore, no acute toxicity was observed in the HBECs and nematodes exposed to piperine. Altogether, results from this study reveals the potential of piperine to inhibit biofilm and hyphal morphogenesis, and its in vivo efficacy and innocuous nature to HBECs suggests that piperine may be considered as a potential candidate for the treatment of biofilm-associated C. albicans infection, especially for oral candidiasis.
Collapse
|
24
|
Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine 2020; 55:102775. [PMID: 32403086 PMCID: PMC7218270 DOI: 10.1016/j.ebiom.2020.102775] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background The antibiotic resistance and biofilm formation of pathogenic microbes exacerbate the difficulties of anti-infection therapy in the clinic. The structural modification of antimicrobial peptides (AMP) is an effective strategy to develop novel anti-infective agents. Method Seventeen amino acids (AA) in the longer chain of EeCentrocin 1 (from the edible sea-urchin Echinus esculentus) were truncated and underwent further modification. To produce lead peptides with low toxicity and high efficacy, the antimicrobial activity or cytotoxicity of peptides was evaluated against various multidrug-resistant bacteria/fungi or mammalian cells in vivo/ in vitro. In addition, the stability and modes of action of the lead peptide were investigated. Findings EC1-17KV displayed potent activity and an expanded antimicrobial spectrum, especially against drug-resistant gram-negative bacteria and fungi, attributable to its enhanced amphiphilicity and net charge. In addition, it exhibits bactericidal/fungicidal activity and effectively increased the animal survival rate and mitigated the histopathological damage induced by multidrug-resistant P. aeruginosa or C. albicans in infected mice or G. mellonella. Moreover, EC1-17KV had a poor ability to induce resistance in bacteria and fungi and exhibited desirable high-salt/high-temperature tolerance properties. In bacteria, EC1-17KV promoted divalent cation release to damage bacterial membrane integrity. In fungi, it changed C. albicans membrane fluidity to increase membrane permeabilization or reduced hyphal formation to suppress biofilm formation. Interpretation EC1-17KV is a promising lead peptide for the development of antimicrobial agents against antibiotic resistant bacteria and fungi. Funding This work was funded by the National Natural Science Foundation of China (No. 81673483, 81803591); National Science and Technology Major Project Foundation of China (2019ZX09721001-004-005); National Key Research and Development Program of China (2018YFA0902000); "Double First-Class" University project (CPU2018GF/GY16); Natural Science Foundation of Jiangsu Province of China (No. BK20180563); and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
|
25
|
Evaluation of aqueous-extracts from four aromatic plants for their activity against Candida albicans adhesion to human HEp-2 epithelial cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Ferraz Bezerra IC, de Moraes Ramos RT, Assunção Ferreira MR, Lira Soares LA. Optimization Strategy for Extraction of Active Polyphenols from Leaves of Eugenia uniflora Linn. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01691-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Molecular Mechanisms of Leonurus Cardiaca L. Extract Activity in Prevention of Staphylococcal Endocarditis-Study on in Vitro and ex Vivo Models. Molecules 2019; 24:molecules24183318. [PMID: 31547303 PMCID: PMC6767068 DOI: 10.3390/molecules24183318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Better understanding the mechanisms of Leonurus cardiaca L. extract (LCE) activity is necessary to prepare recommendations for the use of LCE-based herbal products for preventive/supportive purposes in case of infective endocarditis (IE) and other staphylococcal invasive infections. The aim of the study was to analyze molecular mechanisms of LCE effect on Staphylococcus aureus and blood platelets in the context of their interactions playing a pivotal role in such disorders. Using atomic force microscopy, we demonstrated that adhesion forces of S. aureus were markedly reduced after exposure to LCE at subinhibitory concentrations. The effect resulted from the impact of LCE on S. aureus cell morphology and the composition of phospholipids and fatty acids in bacterial membranes (assessed by HPLC), which modulated their stabilization, hydrophobicity, and charge. Moreover, using FACS we showed also that LCE significantly reduced GP IIb/IIIa expression on blood platelets, thus the disruption of platelet-fibrinogen interactions seems to explain antiplatelet effect of LCE. The obtained results prove the usefulness of LCE in the prevention of S. aureus adhesion, platelet activation, and vegetations development, however, also pointed out the necessity of excluding the cationic antibiotics from the treatment of S. aureus-associated IE and other invasive diseases, when motherwort herb is used simultaneously as an addition to the daily diet.
Collapse
|
28
|
Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109830. [PMID: 31349502 DOI: 10.1016/j.msec.2019.109830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Among several bioactive peptides identified from the venom glands of the Tityus stigmurus scorpion, one peptide with hypotensive action (TistH, Tityus stigmurus Hypotensin) showed multifunctional and biotechnological applications. The maximum efficacy of this class of compounds can be achieved by immobilizing it in specific and suitable biomaterials or suitable carriers. In this study, distinct entrapment methods of TistH in chitosan nanoparticles was tested using its incorporation (CN-TistH-Inc) or adsorption (CN-TistH-Ads) methods by ionotropic gelification. Physico-chemical properties as well as biocompatibility and antifungal efficacy were assessed for different samples. Atomic force microscopy and field emission gun scanning electronic microscopy images associated with particle size measurements demonstrated that the two methods induced cationic spherical, small (< 160 nm), and narrow-sized (PdI about 0.3) nanoparticles, even after peptide loading greater than 96.5%, which was confirmed using Fourier transform infrared spectroscopy. The colloidal suspensions showed to be stable for 8 weeks and were able to induce the desired slow in vitro peptide release. Cytotoxicity assays performed in normal cells originated from murine macrophages (RAW 264.7) and kidneys of African green monkeys (Vero E6) suggested biocompatibility of samples. The CN-TistH-Inc and CN-TistH-Ads showed a minimal inhibitory concentration of 89.2 μg.mL-1 against Candida albicans, 11.1 μg.mL-1 for C. parapsilosis and C. tropicalis, confirmed by minimum fungicidal concentrations assay. Moreover, the TistH-loaded cross-linked chitosan nanoparticles significantly reduced the biofilm formation of clinical yeast sepsis of C. tropicalis and C. krusei, as well as clinical yeasts of vulvovaginal candidiasis of C. albicans. In this approach, biodegradable nanocarriers prepared using simple and reproducible methods demonstrated the ability to deliver the TistH peptide from T. stigmurus and improve its antifungal efficacy.
Collapse
|
29
|
Vargas FC, Gómez B, Mousavi Khaneghah A, Strozzi I, Gavahian M, Barba FJ, Sobral PJDA, Lorenzo JM. Assessment of the Suitability of Pitanga Leaf Extract as a Natural Antioxidant for Enhancing Canola Oil Stability: Monitoring Lipid Oxidation Parameters. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Flávia C. Vargas
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Belen Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science, University of Campinas (UNICAMP)Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083‐862 CampinasSão PauloBrazil
| | - Isabella Strozzi
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development InstituteNo. 331 Shih‐Pin Rd., Hsinchu30062 TaiwanRepublic of China
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine DepartmentNutrition and Food Science Area, Avda.Vicent Andrés Estellés, s/n, 46100 BurjassotValènciaSpain
| | - Paulo José do Amaral Sobral
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| |
Collapse
|