1
|
Chao YW, Tung YT, Yang SC, Shirakawa H, Su LH, Loe PY, Chiu WC. The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose. Nutrients 2024; 16:2980. [PMID: 39275295 PMCID: PMC11397027 DOI: 10.3390/nu16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.
Collapse
Affiliation(s)
- Yu-Wen Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Li-Han Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Yu Loe
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
2
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Liu H, Xiang X, Tan CP, Zhou T, Shen G. Effects of Tea Seed Oil Extracted by Different Refining Temperatures on the Intestinal Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:2352. [PMID: 39123544 PMCID: PMC11312122 DOI: 10.3390/foods13152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its onset and progression are closely related to the intestinal microbiota, as disruption of the intestinal flora promotes the production of endotoxins and induces an inflammatory response. This study aimed to investigate the variations in the physicochemical properties of various refined tea seed oils and their impact on intestinal microbiota disorders induced by a high-fat diet (HFD) through dietary intervention. In the present study, C57BL/6J mice on a HFD were randomly divided into three groups: HFD, T-TSO, and N-TSO. T-TSO and N-TSO mice were given traditionally refined and optimized tea seed oil for 12 weeks. The data revealed that tea seed oil obtained through degumming at 70 °C, deacidification at 50 °C, decolorization at 90 °C, and deodorization at 180 °C (at 0.06 MPa for 1 h) effectively removed impurities while minimizing the loss of active ingredients. Additionally, the optimized tea seed oil mitigated fat accumulation and inflammatory responses resulting from HFD, and reduced liver tissue damage in comparison to traditional refining methods. More importantly, N-TSO can serve as a dietary supplement to enhance the diversity and abundance of intestinal microbiota, increasing the presence of beneficial bacteria (norank_f__Muribaculaceae, Lactobacillus, and Bacteroides) while reducing pathogenic bacteria (Alistipes and Mucispirillum). Therefore, in HFD-induced obese C57BL/6J mice, N-TSO can better ameliorate obesity compared with a T-TSO diet, which is promising in alleviating HFD-induced intestinal microbiota disorders.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Qihong Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hanxiao Liu
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Shaoxing 311800, China;
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Tianhuan Zhou
- Zhejiang Forest Resources Monitoring Center, Hangzhou 310020, China
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| |
Collapse
|
3
|
Zhang H, Han M, Nie X, Fu X, Hong K, He D. Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods 2024; 13:1430. [PMID: 38790730 PMCID: PMC11120317 DOI: 10.3390/foods13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Camellia seed oil (CSO), as a nutrient-rich edible oil, is widely used in foods, cosmetics, and other fields. In this work, the extraction, deacidification, decolorization, and deodorization processes of CSO were respectively optimized for meeting injectable oil standards. The results showed that the CSO extraction rate reached the highest level of 94% at optimized conditions (ultrasonic time, 31.2 min; reaction pH, 9.2; and reaction time, 3.5 h). The physicochemical indexes of CSO and 10 other vegetable oils were evaluated by the principal component analysis method, and the overall scores of vegetable oils were ranked as camellia seed oil > olive oil > rice oil > peanut oil > sesame oil > corn oil > soybean oil > sunflower oil > rapeseed oil > walnut oil > flaxseed oil. The physicochemical indicators of CSO were the most ideal among the 11 vegetable oils, which means that CSO is suitable as an injectable oil. Through the optimized processes of the deacidification, decolorization, and deodorization, the CSO acid value was reduced to 0.0515 mg KOH/g, the decolorization rate reached a maximum of 93.86%, and the OD430 was 0.015, meeting the requirement (≤0.045 of OD430) of injectable oil. After the deodorization process, these parameters of the refractive index, acid value, saponification value, iodine value, absorbance, unsaponifiable, moisture and volatiles, fatty acid composition, and heavy metal limits all met the pharmacopoeia standards of injectable oil in many countries and regions. The possibility of CSO as an injectable oil was first verified through refining-process optimization and nutritional index analysis, providing an important technical reference for the high-value utilization of vegetable oil.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Mei Han
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Xuejiao Nie
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Xiaomeng Fu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Kunqiang Hong
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| | - Dongping He
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China
| |
Collapse
|
4
|
Huang S, Sun H, Lin D, Huang X, Chen R, Li M, Huang J, Guo F. Camellia oil exhibits anti-fatigue property by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. J Food Sci 2024; 89:2465-2481. [PMID: 38380680 DOI: 10.1111/1750-3841.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.
Collapse
Affiliation(s)
- Shiying Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
- The Affiliated Quanzhou Center for Disease Control and Prevention of Fujian Medical University, Quanzhou, China
| | - Huiyu Sun
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinjue Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Ruiran Chen
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Minli Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jialing Huang
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuchuan Guo
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Jiang L, Liu S, Hu X, Li D, Chen L, Weng X, Zheng Z, Chen X, Zhuang J, Li X, Chen Z, Yuan M. The Impact of Photosynthetic Characteristics and Metabolomics on the Fatty Acid Biosynthesis in Tea Seeds. Foods 2023; 12:3821. [PMID: 37893714 PMCID: PMC10606020 DOI: 10.3390/foods12203821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The synthesis of tea fatty acids plays a crucial role in determining the oil content of tea seeds and selecting tea tree varieties suitable for harvesting both leaves and fruits. However, there is limited research on fatty acid synthesis in tea trees, and the precise mechanisms influencing tea seed oil content remain elusive. To reveal the fatty acid biosynthesis mechanism, we conducted a photosynthetic characteristic and targeted metabolomics analysis in comparison between Jincha 2 and Wuniuzao cultivars. Our findings revealed that Jincha 2 exhibited significantly higher net photosynthetic rates (Pn), stomatal conductance (Gs), and transpiration rate (Tr) compared with Wuniuzao, indicating the superior photosynthetic capabilities of Jincha 2. Totally, we identified 94 metabolites with significant changes, including key hormone regulators such as gibberellin A1 (GA1) and indole 3-acetic acid (IAA). Additionally, linolenic acid, methyl dihydrojasmonate, and methylthiobutyric acid, precursors required for fatty acid synthesis, were significantly more abundant in Jincha 2 compared with Wuniuzao. In summary, our research suggests that photosynthetic rates and metabolites contribute to the increased yield, fatty acid synthesis, and oil content observed in Jincha 2 when compared with Wuniuzao.
Collapse
Affiliation(s)
- Li Jiang
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Shujing Liu
- International Institute of Tea Industry Innovation for the Belt and Road, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (J.Z.); (X.L.)
| | - Xinrong Hu
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Duojiao Li
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Le Chen
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Xiaoxing Weng
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| | - Xuan Chen
- International Institute of Tea Industry Innovation for the Belt and Road, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (J.Z.); (X.L.)
| | - Jing Zhuang
- International Institute of Tea Industry Innovation for the Belt and Road, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (J.Z.); (X.L.)
| | - Xinghui Li
- International Institute of Tea Industry Innovation for the Belt and Road, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (J.Z.); (X.L.)
| | - Zhengdao Chen
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China;
| | - Mingan Yuan
- Jinhua Academy of Agricultural Sciences, Jinhua 321017, China; (L.J.); (X.H.); (D.L.); (L.C.); (X.W.); (Z.Z.)
| |
Collapse
|
6
|
Aldamarany W, Taocui H, Liling D, Wanfu Y, Zhong G. Oral Supplementation with Three Vegetable Oils Differing in Fatty Acid Composition Alleviates High-Fat Diet-Induced Obesity in Mice by Regulating Inflammation and Lipid Metabolism. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/160186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
7
|
Yang L, Yang C, Chu C, Wan M, Xu D, Pan D, Xia H, Wang SK, Shu G, Chen S, Sun G. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7172-7185. [PMID: 35727941 DOI: 10.1002/jsfa.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The effects of dietary fat on health are influenced by its fatty acid profile. We aimed to determine the effects of monounsaturated fatty acid (MUFA)-rich blended oils (BO) containing a balance of polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) and with a low n-6/n-3 PUFA ratio on the health of rats fed normal or high-fat diets. The BO was obtained by mixing red palm oil, rice bran oil (RO), tea seed oil and flaxseed oil in appropriate proportions. RESULTS BO consumption reduced the serum low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA), insulin (INS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 (IL-1), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), lipid peroxide (LPO) and oxidized LDL (ox-LDL) concentrations and the homeostasis model assessment of insulin resistance (HOMA-IR); it increased the high-density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) concentrations, and the bone mineral density (BMD) versus control oil-containing normal and high-fat diets. BO also reduced the triglyceride (TG), hs-CRP, MDA, ox-LDL and reactive oxygen species (ROS) concentrations; and increased the serum HDL-C and SOD, and BMD versus RO-containing high-fat diets. Finally, BO reduced the glucose (GLU) and INS, and HOMA-IR; it increased HDL-C, SOD, femoral weight and BMD versus RO-containing normal diets. CONCLUSION BOs with an appropriate fatty acid profile have beneficial effects on the glucolipid metabolism, inflammation, oxidative stress and bone quality of rats when included in both normal and high-fat diets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chu Chu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Min Wan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shao Kang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guofang Shu
- Department of Clinical Laboratory Medicine, Zhongda Hospital of Southeast University, Nanjing, China
| | - Shiqing Chen
- Palm Oil Research and Technical Service Institute of Malaysian Palm Oil Board, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Tsai SH, Tseng YH, Chiou WF, Chen SM, Chung Y, Wei WC, Huang WC. The Effects of Whole-Body Vibration Exercise Combined With an Isocaloric High-Fructose Diet on Osteoporosis and Immunomodulation in Ovariectomized Mice. Front Nutr 2022; 9:915483. [PMID: 35795589 PMCID: PMC9251498 DOI: 10.3389/fnut.2022.915483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOsteoporosis and immune-associated disorders are highly prevalent among menopausal women, and diet control and exercise exert beneficial effects on physiological modulation in this population. A controlled diet with a low fat content and a balanced caloric intake improves menopausal health, but the health effects of excessive fructose consumption on menopausal women are yet to be confirmed. In addition, whole-body vibration (WBV), a safe passive-training method, has been shown to have multiple beneficial effects on metabolism regulation, obesity, and bone health.MethodsThe ovariectomized (OVX) C57BL/6J model was used to verify the effects of WBV combined with a high-fructose diet (HFrD) for 16 weeks on physiological modulation and immune responses. The mice were randomly allocated to sham, OVX, OVX+HFrD, and OVX+HFrD+WBV groups, which were administered with the indicated ovariectomy, dietary and WBV training treatments. We conducted growth, dietary intake, glucose homeostasis, body composition, immunity, inflammation, histopathology, and osteoporotic assessments (primary outcomes).ResultsOur results showed that the isocaloric HFrD in OVX mice negated estrogen-deficiency–associated obesity, but that risk factors such as total cholesterol, glucose intolerance, osteoporosis, and liver steatosis still contributed to the development of metabolic diseases. Immune homeostasis in the OVX mice was also negatively affected by the HFrD diet, via the comprehensive stimulation of T cell activation, causing inflammation. The WBV intervention combined with the HFrD model significantly ameliorated weight gain, glucose intolerance, total cholesterol, and inflammatory cytokines (interferon gamma [IFN-γ], interleukin [IL]-17, and IL-4) in the OVX mice, although osteoporosis and liver steatosis were not affected compared to the negative control group. These findings indicate that an isocaloric high-fructose diet alone may not result in menopausal obesity, but that some deleterious physiological impacts still exist.ConclusionThe WBV method may modulate the physiological impacts of menopause and the HFrD diet, and should be considered as an alternative exercise prescription for people with poor compliance or who are unable or unwilling to use traditional methods to improve their health. In future studies, using the WBV method as a preventive or therapeutic strategy, combined with nutritional interventions, medication, and other exercise prescriptions, may prove beneficial for maintaining health in menopausal women.
Collapse
Affiliation(s)
- Syun-Hui Tsai
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | | | - Yi Chung
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Wen-Chi Wei
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- *Correspondence: Wen-Ching Huang
| |
Collapse
|
9
|
Quan W, Wang A, Gao C, Li C. Applications of Chinese Camellia oleifera and its By-Products: A Review. Front Chem 2022; 10:921246. [PMID: 35685348 PMCID: PMC9171030 DOI: 10.3389/fchem.2022.921246] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Camellia oleifera is a woody oil tree species unique to China that has been cultivated and used in China for more than 2,300 years. Most biological research on C. oleifera in recent years has focused on the development of new varieties and breeding. Novel genomic information has been generated for C. oleifera, including a high-quality reference genome at the chromosome level. Camellia seeds are used to process high-quality edible oil; they are also often used in medicine, health foods, and daily chemical products and have shown promise for the treatment and prevention of diseases. C. oleifera by-products, such as camellia seed cake, saponin, and fruit shell are widely used in the daily chemical, dyeing, papermaking, chemical fibre, textile, and pesticide industries. C. oleifera shell can also be used to prepare activated carbon electrodes, which have high electrochemical performance when used as the negative electrode of lithium-ion batteries. C. oleifera is an economically valuable plant with diverse uses, and accelerating the utilization of its by-products will greatly enhance its industrial value.
Collapse
Affiliation(s)
- Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China.,Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
| | - Anping Wang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chao Gao
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
| | - Chaochan Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| |
Collapse
|
10
|
Xu Y, Zhu W, Ge Q, Zhou X. Effect of different types of oil intake on the blood index and the intestinal flora of rats. AMB Express 2022; 12:49. [PMID: 35511307 PMCID: PMC9072605 DOI: 10.1186/s13568-022-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Dietary fat is an important part of human diet and has a close relationship with human health. However, it is still unclear how gut microbiota in adolescent responds to dietary fats at a normal dose. In this study, fat-free group (BC) was used as blank control group, we explored blood index and gut microbiota structure in growing rat(aged 1 months) after feeding a normal dose of 16.9% stewed lard(SL), refined lard(RL), fish oil(FO) and soybean oil(SO) for 6 weeks, respectively. The results showed that compared with RL group, SL group showed reduced fasting blood sugar and blood lipid levels and improved nutrient absorption capacity of the intestine. The blood indexes of glucose (Glu), total cholesterol (TC) and total triglyceride (TG) in FO treatment group were relatively low. The abundance of Bacteroidetes in the BC group decreased, and the abundance of Firmicutes increased. The Firmicutes/Bacteroidetes ratio of the FO group was relatively low, and the Firmicutes/Bacteroidetes ratio of the SL group and the SO group was lower than that of the RL group. The abundance of Bacteroidaceae in the SL group was increased. Research results showed that fat-free diets will increase the risk of obesity to a certain extent; compared with refined lard, stewed lard, soybean oil and fish oil can reduce the risk of obesity to a certain extent. The present study could find that the addition and types of dietary fat will affect the abundance and diversity of rat intestinal flora, and provide some information for nutritional evaluation about these dietary lipids.
Collapse
|
11
|
Shen J, Li J, Hua Y, Ding B, Zhou C, Yu H, Xiao R, Ma W. Association between the Erythrocyte Membrane Fatty Acid Profile and Cognitive Function in the Overweight and Obese Population Aged from 45 to 75 Years Old. Nutrients 2022; 14:nu14040914. [PMID: 35215564 PMCID: PMC8878599 DOI: 10.3390/nu14040914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/21/2022] Open
Abstract
Dietary fatty acid intake is closely related to the cognitive function of the overweight and obese population. However, few studies have specified the correlation between exact fatty acids and cognitive functions in different body mass index (BMI) groups. We aimed to explain these relationships and reference guiding principles for the fatty acid intake of the overweight and obese population. Normal weight, overweight, and obese participants were recruited to receive a cognitive function assessment and dietary survey, dietary fatty acids intake was calculated, and the erythrocyte membrane fatty acid profile was tested by performing a gas chromatography analysis. The percentages of saturated fatty acids (SFAs) in the obese group were higher, while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were lower than in the normal weight and overweight groups. In the erythrocyte membrane, the increase of n-3 PUFAs was accompanied by cognitive decline in the overweight group, which could be a protective factor for cognitive function in the obese group. High n-6 PUFAs intake could exacerbate the cognitive decline in the obese population. Dietary fatty acid intake had different effects on the cognitive function of overweight and obese people, especially the protective effect of n-3 PUFAs; more precise dietary advice is needed to prevent cognitive impairment.
Collapse
Affiliation(s)
- Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Yinan Hua
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Cui Zhou
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; (J.S.); (J.L.); (Y.H.); (C.Z.); (H.Y.); (R.X.)
- Correspondence:
| |
Collapse
|
12
|
Fasting and refeeding cycles alter subcutaneous white depot growth dynamics and the morphology of brown adipose tissue in female rats. Br J Nutr 2020; 126:460-469. [DOI: 10.1017/s0007114520004055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIntermittent food restriction (IFR) is used mainly for weight loss; however, its effects on adipose tissue are not known when alternating with an obesogenic diet. To demonstrate its effects on morphological dynamics of fat deposits, female Wistar rats were distributed into groups: standard control (ST-C), with commercial diet; DIO control (DIO-C), with a diet that induces obesity (DIO) during the first and last 15 d, replaced by a standard diet for thirty intermediate days; standard restricted (ST-R), with standard diet during the first and last 15 d, with six cycles of IFR at 50 % of ST-C; and DIO restricted (DIO-R), in DIO during the first and last 15 d, with six cycles of IFR at 50 % of DIO-C. At 105 d of life, white adipose tissue (WAT) and brown adipose tissue (BAT) deposits were collected, weighed and histology performed. The DIO-R group showed higher total food intake (DIO-R 10 768·0 (SEM 357·52) kJ/g v. DIO-C 8868·6 (SEM 249·25) kJ/g, P < 0·0001), energy efficiency during RAI (DIO-R 2·26 (SEM 0·05) g/kJ v. DIO-C 0·70 (SEM 0·03) g/kJ, P < 0·0001) and WAT (DIO-R 5·65 (SEM 0·30) g/100 g v. DIO-C 4·56 (SEM 0·30) g/100 g) than their respective control. Furthermore, IFR groups presented hypertrophy of WAT and BAT, as well as fibrosis in BAT. Thus, IFR can establish prospective resistance to weight loss by favouring changes in adipose tissue morphology, increased energy intake and efficiency. Finally, the DIO diet before and after IFR aggravates the damages caused by the restriction.
Collapse
|
13
|
Mancianti F, Ebani VV. Biological Activity of Essential Oils. Molecules 2020; 25:molecules25030678. [PMID: 32033336 PMCID: PMC7037813 DOI: 10.3390/molecules25030678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Francesca Mancianti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2 I 56124 Pisa, Italy;
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, Via del Borghetto, 80 I 56124 Pisa, Italy
- Correspondence:
| | - Valentina Virginia Ebani
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2 I 56124 Pisa, Italy;
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, Via del Borghetto, 80 I 56124 Pisa, Italy
| |
Collapse
|
14
|
Bastías-Pérez M, Zagmutt S, Soler-Vázquez MC, Serra D, Mera P, Herrero L. Impact of Adaptive Thermogenesis in Mice on the Treatment of Obesity. Cells 2020; 9:E316. [PMID: 32012991 PMCID: PMC7072509 DOI: 10.3390/cells9020316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated metabolic diseases have become a priority area of study due to the exponential increase in their prevalence and the corresponding health and economic impact. In the last decade, brown adipose tissue has become an attractive target to treat obesity. However, environmental variables such as temperature and the dynamics of energy expenditure could influence brown adipose tissue activity. Currently, most metabolic studies are carried out at a room temperature of 21 °C, which is considered a thermoneutral zone for adult humans. However, in mice this chronic cold temperature triggers an increase in their adaptive thermogenesis. In this review, we aim to cover important aspects related to the adaptation of animals to room temperature, the influence of housing and temperature on the development of metabolic phenotypes in experimental mice and their translation to human physiology. Mice studies performed in chronic cold or thermoneutral conditions allow us to better understand underlying physiological mechanisms for successful, reproducible translation into humans in the fight against obesity and metabolic diseases.
Collapse
Affiliation(s)
- Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|