1
|
Ma CF, Yang L, Degen AA, Ding LM. The water extract of Rheum palmatum has antioxidative properties and inhibits ROS production in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118602. [PMID: 39084270 DOI: 10.1016/j.jep.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum palmatum (RP) is a widely used traditional herb, which possesses antioxidant properties, inhibits ROS production and reduces fever. AIM OF THE STUDY The aim of this study was to examine the antioxidative properties of the water extract of RP on oxidative-stressed mice. MATERIALS & METHODS Forty mice were administered with DL-homocysteine (DL-Hcy) to induce oxidative stress and were divided into four groups: 1) CK: NaCl and water; 2) DL-Hcy: DL-Hcy and water; 3) DL-Hcy+50RP: DL-Hcy with 50 mg kg-1 body weight (BW) d-1 RP; and 4) DL-Hcy+150RP: DL-Hcy with 150 mg kg-1 BW d-1 RP. Rhein (0.3 mg g-1 dry matter) was the main active ingredient in RP. RESULTS When compared with Dl-Hcy mice, the mice with supplementary RP mitigated oxidative stress by reducing the liver concentrations of superoxide dismutase (SOD) by 27% and glutathione peroxidase (GSH-Px) by 32%, and the reactive oxygen species (ROS) in the kidney and spleen. These responses were more pronounced in DL-Hcy+150RP than DL-Hcy+50RP mice. RP also exhibited therapeutic effects on liver steatosis, chronic kidney nephritis and intestinal villus width shortening caused by oxidative stress, and concomitantly decreased the serum glucose concentration (RP vs. DL-HCY, 2.3 vs. 4.1 mmol L-1). CONCLUSION It was concluded that RP possesses antioxidant and therapeutic properties that can mitigate lesions on organs and prevent diabetes in oxidative-stressed mice. This study highlights the potential of RP as a medicinal supplement for animals in the future.
Collapse
Affiliation(s)
- Cheng-Fang Ma
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China; Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Yang
- Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lu-Ming Ding
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Ni Y, Wu X, Yao W, Zhang Y, Chen J, Ding X. Evidence of traditional Chinese medicine for treating type 2 diabetes mellitus: from molecular mechanisms to clinical efficacy. PHARMACEUTICAL BIOLOGY 2024; 62:592-606. [PMID: 39028269 PMCID: PMC11262228 DOI: 10.1080/13880209.2024.2374794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT The global prevalence of type 2 diabetes mellitus (T2DM) has increased significantly in recent decades. Despite numerous studies and systematic reviews, there is a gap in comprehensive and up-to-date evaluations in this rapidly evolving field. OBJECTIVE This review provides a comprehensive and current overview of the efficacy of Traditional Chinese Medicine (TCM) in treating T2DM. METHODS A systematic review was conducted using PubMed, Web of Science, Wanfang Data, CNKI, and Medline databases, with a search timeframe extending up to November 2023. The search strategy involved a combination of subject terms and free words in English, including 'Diabetes,' 'Traditional Chinese Medicine,' 'TCM,' 'Hypoglycemic Effect,' 'Clinical Trial,' and 'Randomized Controlled Trial.' The studies were rigorously screened by two investigators, with a third investigator reviewing and approving the final selection based on inclusion and exclusion criteria. RESULTS A total of 108 relevant papers were systematically reviewed. The findings suggest that TCMs not only demonstrate clinical efficacy comparable to existing Western medications in managing hypoglycemia but also offer fewer adverse effects and a multitarget therapeutic approach. Five main biological mechanisms through which TCM treats diabetes were identified: improving glucose transport and utilization, improving glycogen metabolism, promoting GLP-1 release, protecting pancreatic islets from damage, and improving intestinal flora. CONCLUSIONS TCM has demonstrated significant protective effects against diabetes and presents a viable option for the prevention and treatment of T2DM. These findings support the further exploration and integration of TCM into broader diabetes management strategies.
Collapse
Affiliation(s)
- Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Yang X, Dai L, Yan F, Ma Y, Guo X, Jenis J, Wang Y, Zhang J, Miao X, Shang X. The phytochemistry and pharmacology of three Rheum species: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155772. [PMID: 38852474 DOI: 10.1016/j.phymed.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Fengyuan Yan
- The First People`s Hospital of Lanzhou City, Lanzhou 730050, PR China
| | - Yudong Ma
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiao Guo
- College of Tibetan Medicine, Qinghai University, Xining 810016, PR China
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Zhang M, Li H, Ma J, Yang C, Yang Y, Zhao B, Tie Y, Wang S. Effects of Zinc Combined with Metformin on Zinc Homeostasis, Blood-Epididymal Barrier, and Epididymal Absorption in Male Diabetic Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04171-y. [PMID: 38589680 DOI: 10.1007/s12011-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Diabetes increases the likelihood of germ cell damage, hypogonadism, and male infertility. Diabetes leads to lower zinc (Zn) levels, an important micronutrient for maintaining male fertility, and zinc deficiency can lead to decreased male fertility through multiple mechanisms. The aim of this study was to investigate the effect of combined metformin and zinc administration on epididymis in diabetic mice; 10 of 50 male mice were randomly selected as the control group (group C), and the remaining 40 mice were randomly divided into untreated diabetes group (group D), diabetes + zinc group (group Z), diabetes + metformin group (group M), and diabetes + metformin + zinc group (group ZM) with 10 mice each. Diabetic mice in group Z received oral zinc (10 mg/kg) once daily for 4 weeks; diabetic mice in group M received oral metformin (200 mg/kg) once daily for 4 weeks; diabetic mice in group ZM received oral metformin and zinc once daily for 4 weeks; and groups C and D received the same amount of sterile water by gavage. Overnight fasted mice were sacrificed, and blood samples, mouse epididymides, and sperm were collected for further experiments. In group D, fasting blood glucose and insulin resistance index increased significantly, semen quality, serum insulin, and testosterone decreased, and epididymal structure was disordered. In group D, epididymal tissue zinc, free zinc ions in the caput, and cauda of epididymis and zinc transporter (ZnT2) decreased significantly, while ZIP12, metallothionein (MT), and metal transcription factor (MTF1) increased significantly. In addition, the expressions of blood-epididymal barrier (BEB)-related molecules (including ZO-1 β-catenin and N-cadherin) and aquaporins (AQPs, including AQP3, AQP9, and AQP11) in the epididymis of mice in group D were significantly decreased. In addition, compared with groups D, Z, and M, in the ZM group, the expression of BEB-related molecules (including ZO-1, β-catenin, and N-cadherin) and aquaporins (AQP3, AQP9, and AQP11) in epididymis tissue were significantly increased, and sperm motility and serum testosterone were significantly increased. It was concluded that male diabetic mice have a disturbed epididymal structure and decreased semen quality by causing an imbalance in epididymal zinc homeostasis, BEB, and impaired absorptive function. The combination of zinc and metformin is an effective and safe alternative treatment and provides additional benefits over metformin alone.
Collapse
Affiliation(s)
- Menghui Zhang
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Chaoju Yang
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China
| | - Yang Yang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Bangrong Zhao
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yanqing Tie
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
5
|
Lai HC, Cheng JC, Yip HT, Jeng LB, Huang ST. Chinese herbal medicine decreases incidence of hepatocellular carcinoma in diabetes mellitus patients with regular insulin management. World J Gastrointest Oncol 2024; 16:716-731. [PMID: 38577471 PMCID: PMC10989382 DOI: 10.4251/wjgo.v16.i3.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is an independent risk factor for hepatocellular carcinoma (HCC), while insulin is a potent mitogen. Identifying a new therapeutic modality for preventing insulin users from developing HCC is a critical goal for researchers. AIM To investigate whether regular herbal medicine use can decrease HCC risk in DM patients with regular insulin control. METHODS We used data acquired from the Taiwanese National Health Insurance research database between 2000 and 2017. We identified patients with DM who were prescribed insulin for > 3 months. The herb user group was further defined as patients prescribed herbal medication for DM for > 3 months per annum during follow-up. We matched the herb users to nonusers at a 1:3 ratio according to age, sex, comorbidities and index year by propensity score matching. We analyzed HCC incidence, HCC survival rates, and the herbal prescriptions involved. RESULTS We initially enrolled 657144 DM patients with regular insulin use from 2000 to 2017. Among these, 46849 patients had used a herbal treatment for DM, and 140547 patients were included as the matched control group. The baseline variables were similar between the herb users and nonusers. DM patients with regular herb use had a 12% decreased risk of HCC compared with the control group [adjusted hazard ratio (aHR) = 0.88, 95%CI = 0.80-0.97]. The cumulative incidence of HCC in the herb users was significantly lower than that of the nonusers. Patients with a herb use of > 5 years cumulatively exhibited a protective effect against development of HCC (aHR = 0.82, P < 0.05). Of patients who developed HCC, herb users exhibited a longer survival time than nonusers (aHR = 0.78, P = 0.0001). Additionally, we report the top 10 herbs and formulas in prescriptions and summarize the potential pharmacological effects of the constituents. Our analysis indicated that Astragalus propinquus (Huang Qi) plus Salvia miltiorrhiza Bunge (Dan Shen), and Astragalus propinquus (Huang Qi) plus Trichosanthes kirilowii Maxim. (Tian Hua Fen) were the most frequent combination of single herbs. Meanwhile, Ji Sheng Shen Qi Wan plus Dan Shen was the most frequent combination of herbs and formulas. CONCLUSION This large-scale retrospective cohort study reveals that herbal medicine may decrease HCC risk by 12% in DM patients with regular insulin use.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung 404327, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital; School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
6
|
Wu P, Wang X. Natural Drugs: A New Direction for the Prevention and Treatment of Diabetes. Molecules 2023; 28:5525. [PMID: 37513397 PMCID: PMC10385698 DOI: 10.3390/molecules28145525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance, as a common pathological process of many metabolic diseases, including diabetes and obesity, has attracted much attention due to its relevant influencing factors. To date, studies have mainly focused on the shared mechanisms between mitochondrial stress and insulin resistance, and they are now being pursued as a very attractive therapeutic target due to their extensive involvement in many human clinical settings. In view of the complex pathogenesis of diabetes, natural drugs have become new players in diabetes prevention and treatment because of their wide targets and few side effects. In particular, plant phenolics have received attention because of their close relationship with oxidative stress. In this review, we briefly review the mechanisms by which mitochondrial stress leads to insulin resistance. Moreover, we list some cytokines and genes that have recently been found to play roles in mitochondrial stress and insulin resistance. Furthermore, we describe several natural drugs that are currently widely used and give a brief overview of their therapeutic mechanisms. Finally, we suggest possible ideas for future research related to the unique role that natural drugs play in the treatment of insulin resistance through the above targets.
Collapse
Affiliation(s)
- Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250001, China
| |
Collapse
|
7
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Deng T, Du J, Yin Y, Cao B, Wang Z, Zhang Z, Yang M, Han J. Rhein for treating diabetes mellitus: A pharmacological and mechanistic overview. Front Pharmacol 2023; 13:1106260. [PMID: 36699072 PMCID: PMC9868719 DOI: 10.3389/fphar.2022.1106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
With the extension of life expectancy and changes in lifestyle, the prevalence of diabetes mellitus is increasing worldwide. Rheum palmatum L. a natural botanical medicine, has been used for thousands of years to prevent and treat diabetes mellitus in Eastern countries. Rhein, the main active component of rhubarb, is a 1, 8-dihydroxy anthraquinone derivative. Previous studies have extensively explored the clinical application of rhein. However, a comprehensive review of the antidiabetic effects of rhein has not been conducted. This review summarizes studies published over the past decade on the antidiabetic effects of rhein, covering the biological characteristics of Rheum palmatum L. and the pharmacological effects and pharmacokinetic characteristics of rhein. The review demonstrates that rhein can prevent and treat diabetes mellitus by ameliorating insulin resistance, possess anti-inflammatory and anti-oxidative stress properties, and protect islet cells, thus providing a theoretical basis for the application of rhein as an antidiabetic agent.
Collapse
Affiliation(s)
- Tingting Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Meina Yang, ; Jinxiang Han,
| |
Collapse
|
9
|
Hypoglycemic Effect of the N-Butanol Fraction of Torreya grandis Leaves on Type 2 Diabetes Mellitus in Rats through the Amelioration of Oxidative Stress and Enhancement of β-Cell Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5648896. [PMID: 36619301 PMCID: PMC9812625 DOI: 10.1155/2022/5648896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Materials and Methods Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin, high-dose BFTL (800 mg/kg), middle-dose BFTL (400 mg/kg), and low-dose BFTL (200 mg/kg). After 4 weeks of BFTL treatment, the correlations of serum indicators with protein expression in tissue were determined, and pathological changes in the liver, kidneys, and pancreas were analyzed. Results Compared with the results in the T2DM group, serum fasting blood glucose, triglyceride, total cholesterol, malondialdehyde, alanine aminotransferase, and aspartate aminotransferase levels were significantly decreased (p < 0.05), whereas superoxide dismutase and glutathione peroxidase levels were significantly increased (p < 0.05) in the high-, middle-, and low-dose BFTL groups. The treatment also improved oral glucose tolerance. In addition, the pathological changes of the liver, kidney, and pancreas were improved by BFTL treatment. Cytochrome and caspase-3 expression in pancreatic was significantly decreased (p < 0.05) by BFTL treatment, whereas the Bcl-2/Bax ratio was significantly increased (p < 0.05). Discussion and Conclusion. BFTL exerted significant hypoglycemic effect on T2DM model rats, and its mechanism involved the suppression of blood glucose levels and oxidative stress by improving the metabolism of blood lipids and antioxidant capacity, boosting β-cell function, and inhibiting β-cell apoptosis.
Collapse
|
10
|
20(S)-ginsenoside Rh1 alleviates T2DM induced liver injury via the Akt/FOXO1 pathway. Chin J Nat Med 2022; 20:669-678. [DOI: 10.1016/s1875-5364(22)60201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/18/2022]
|
11
|
Wang Y, Zhang J, Xu Z, Zhang G, Lv H, Wang X, Xu G, Li X, Yang Z, Wang H, Wang Y, Li H, Shi Y. Identification and action mechanism of lipid regulating components from Rhei Radix et rhizoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115179. [PMID: 35278606 DOI: 10.1016/j.jep.2022.115179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhei Radix et Rhizoma is widely used in Traditional Chinese Medicine to attack stagnation, clear damp heat, relieve fire, cool blood, remove blood stasis and detoxify recorded in Chinese Pharmacopoeia. Modern pharmacological research has showed the extract of Rhei Radix et Rhizoma has the effect of lowering blood lipids, but the main active components and their mechanisms are still not clear. AIM OF THE STUDY To reveal the lipid regulating components from Rhei Radix et Rhizoma and preliminarily explore their related action mechanisms. MATERIALS AND METHODS A rat model of dyslipidemia was established by administration of a high-fat emulsion via gavage, and the intervention effect of different polar fractions of Rhei Radix et Rhizoma on rat blood lipids as well as their related action mechanisms were preliminarily investigated. The effective components were inferred based on the above tests and identified by high performance liquid chromatography in comparison with reference substances, their UV absorption and high resolution mass spectra characteristics. RESULTS The extract with dichloromethane fraction (DF) containing rhubarb free anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion) significantly regulated the disordered blood lipids, lowered TC and LDLC, reversed TG and increased HDLC level in dyslipidemic rats and also showed lipid-lowering effect on lipid abnormalities in HepG2 cells. DF could alter the signaling pathways such as PPARα and AMPK implicated in lipid metabolism, and it down-regulated the mRNA expression of liver APOA2, SCD-1, HMGCR, SREBP-2 and PCSK9, but up-regulated the expressions of liver APOE, LPL and intestinal ABCG8. Besides, it could change the composition of Firmicutes, Bacteroidetes and Proteobacteria in dyslipidemic rat feces samples. CONCLUSIONS Rhubarb free anthraquinones have a significant regulating effect on the levels of serum TC, LDLC and HDLC, and probably possess a bidirectional regulatory effect on TG level in dyslipidemic rats. These effects may be achieved by regulating the expressions of the liver PPARα and SREBP target genes, PCSK9 and the intestinal ABCG8 genes, which are involved in blood cholesterol transport, liver lipid metabolism and intestinal cholesterol excretion. Rhubarb free anthraquinones may also affect energy metabolism by changing the composition of gut microflora related to lipid metabolism in dyslipidemic rats.
Collapse
Affiliation(s)
- Yudong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Jianing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zheng Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Guifang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Huijuan Lv
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xinben Wang
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Guijing Xu
- Gansu Qingdai Chinese Herbal Medicine Beauty Research Co. Ltd., Lanzhou, 730050, China.
| | - Xuefeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Haoliang Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Yongfu Wang
- Gansu Digital Materia Medica Testing Center Co., Ltd., Longxi, 748100, China.
| | - Hongfang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Liudvytska O, Kolodziejczyk-Czepas J. A Review on Rhubarb-Derived Substances as Modulators of Cardiovascular Risk Factors—A Special Emphasis on Anti-Obesity Action. Nutrients 2022; 14:nu14102053. [PMID: 35631194 PMCID: PMC9144273 DOI: 10.3390/nu14102053] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The currently available anti-obesity therapies encounter many associated risks and side effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances have been extensively studied as a promising support or even an alternative for existing anti-obesity therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb species and emerging possible role of the rhubarb-derived extracts or individual compounds in the prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is highlighted, including the context of cardiovascular disease prevention. The available reports present multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre or its use as purgative medicines, through various actions of rhubarb-derived extracts and their individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to overall in vivo and clinical anti-obesity effects.
Collapse
|
13
|
Shang X, Dai L, He J, Yang X, Wang Y, Li B, Zhang J, Pan H, Gulnaz I. A high-value-added application of the stems of Rheum palmatum L. as a healthy food: the nutritional value, chemical composition, and anti-inflammatory and antioxidant activities. Food Funct 2022; 13:4901-4913. [PMID: 35388820 DOI: 10.1039/d1fo04214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rhubarb has edible stems or stalks. In this paper, we investigated the nutritional value, chemical composition, and bioactivities of Rheum palmatum stems (SRP) and analyzed the mode of action. SRP exhibited biosafety and had nutritional value, with abundant essential amino acids and minerals. Based on network pharmacology and western blot tests, we found that it showed anti-inflammatory activity via the PI3K-Akt-mediated NF-κB pathway. Out of 20 compounds identified using UPLC-ESI-Q-TOF/MS analysis, cirsiliol and hydrangenol were active compounds and they inhibited NO production in RAW264.7 cells induced by LPS. The alleviation of an inflammatory response is combined with a decrease in oxidative stress, and SRP showed antioxidant activity via attenuating antioxidant enzymes, scavenging free radicals, improving the mitochondrial membrane potential, and decreasing the reactive oxygen species level. These results indicated that SRP, with abundant flavonoids and a good nutritional composition, could be used as a dietary supplement for food applications.
Collapse
Affiliation(s)
- Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jian He
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Bing Li
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Hu Pan
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Ilgekbayeva Gulnaz
- Department of Biological Safety, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| |
Collapse
|
14
|
Zhang Q, Guo Y, Zhang D. Network Pharmacology Integrated with Molecular Docking Elucidates the Mechanism of Wuwei Yuganzi San for the Treatment of Coronary Heart Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221093907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: The aim of this study was to investigate the pharmacological mechanism of Wuwei Yuganzi San (WYS) in treating coronary heart disease (CHD) using network pharmacology and molecular docking. Methods: The main active components, related targets, and the target genes related to WYS were investigated by the databases Traditional Chinese Medicine Systems Pharmacology and related articles. Information on the target genes of CHD was acquired through the OMIM database and GeneCards database, and the NCBI Gene Expression Omnibus DataSets (GSE71226) were used to acquire target genes of CHD. A Venn diagram was used to show the common targets of WYS and CHD. The compound-target-disease network was built up by Cytoscape 3.7.2, and the protein–protein interaction (PPI) network was acquired through the STRING database. ClusterProfiler and Pathview packages in RStudio software were used to conduct gene ontology enrichment analysis and KEGG pathway enrichment analysis to reveal the underlying mechanism. Finally, AutoDock Vina software was used to assess the binding affinity of significant ingredients and hub genes. Results: Thirty-four key ingredients of WYS in CHD were screened, which related to 59 targets in CHD. According to the results of enrichment analysis, 59 items in the biological process, 15 items in the molecular function, 10 items in the cellular component, and 52 signaling pathways were associated with efficacy. These processes and pathways were essential for cell survival and were related to several crucial factors of CHD, including a disintegrin and metalloprotease 17 (ADAM17), aldo-keto reductase family 1 member C2 (AKR1C2), albumin (ALB), protein kinase B (AKT1), and alcohol dehydrogenase 1C (ADH1C). Based on the outcomes of the PPI network, we selected ADAM17, AKR1C2, ALB, AKT1, ADH1C, and putative ingredients (sennoside D_qt, quercetin, and procyanidin B-5,3'- O-gallate) to perform molecular docking validation. From the molecular docking outcomes, some vital targets of CHD (including ADAM17, AKR1C2, ALB, AKT1, and ADH1C) could be related to form a stable combination with the putative ingredients of WYS. Conclusions: The network pharmacology and molecular docking study elucidated basically the mechanism of WYS in the treatment of CHD.
Collapse
Affiliation(s)
- Qunhui Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yang Guo
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
15
|
Wang G, Zhao Z, Ren B, Yu W, Zhang X, Liu J, Wang L, Si D, Yang M. Exenatide exerts a neuroprotective effect against diabetic cognitive impairment in rats by inhibiting apoptosis: Role of the JNK/c‑JUN signaling pathway. Mol Med Rep 2022; 25:111. [PMID: 35119079 PMCID: PMC8845025 DOI: 10.3892/mmr.2022.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Exenatide could reduce blood glucose and alleviate cognitive dysfunction induced by diabetes mellitus (DM). In the present study, a diabetic model was established in Sprague‑Dawley rats to further explore the mechanism of exenatide on diabetes‑induced cognitive impairment. Notably, the model rats performed poorly in the Morris water maze test and had more apoptotic neurons compared with the control rats. By contrast, exenatide attenuated cognitive impairment and inhibited neuronal apoptosis in the DM rat model. To explore the neuroprotective mechanisms of exenatide, western blotting was performed to detect the expression levels of markers of endoplasmic reticulum stress, including cytochrome c (Cyt‑c), Caspase‑3, JNK and c‑JUN, in hippocampal tissue. Reverse transcription‑quantitative PCR was also performed to measure the mRNA expression levels of Cyt‑c and Caspase‑3. After 16 weeks of treatment, exenatide treatment downregulated Cyt‑c, Caspase‑3, phosphorylated (p)‑JNK and p‑c‑JUN expression in the hippocampal tissue of diabetic rats. Moreover, Cyt‑c, Caspase‑3, JNK and JUN expression levels were detected following treatment with a specific inhibitor of JNK (SP600125). The results revealed that SP600125 had similar inhibitory effects on the JNK pathway and ERS‑related protein expression (Cyt‑t, Caspase‑3, p‑JNK and p‑c‑JUN). These results suggested that exenatide improved cognitive dysfunction in DM rats and that the underlying mechanism may be associated with inhibiting apoptosis by suppressing the activation of JNK/c‑JUN.
Collapse
Affiliation(s)
- Gengyin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Zongquan Zhao
- General Practice, Pingjiang Xincheng Community Health Service Center, Suzhou, Jiangsu 215101, P.R. China
| | - Bo Ren
- Medical Experimental Center, Jitang College of North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wu Yu
- School Hospital, Hengshui University, Hengshui, Hebei 053010, P.R. China
| | - Xudong Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jiang Liu
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Liping Wang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Daowen Si
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Meiliu Yang
- Department of Life Sciences, Hengshui University, Hengshui, Hebei 053010, P.R. China
| |
Collapse
|
16
|
Ma C, Wang Z, Xia R, Wei L, Zhang C, Zhang J, Zhao L, Wu H, Kang L, Yang S. Danthron ameliorates obesity and MAFLD through activating the interplay between PPARα/RXRα heterodimer and adiponectin receptor 2. Biomed Pharmacother 2021; 137:111344. [PMID: 33581653 DOI: 10.1016/j.biopha.2021.111344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated metabolic associated fatty liver diseases (MAFLD) are strongly associated with dysfunction of glucose and lipid metabolism. AMPKα and PPARα are key regulators in the lipid and glucose homeostasis, indicating that novel agents to activate them are promising therapeutic approaches for metabolic syndrome. Noticeably, as a natural anthraquinone derivative extracted from rhubarb, danthron can activate AMPKα in vitro. However, the protective effect of danthron on obesity and associated MAFLD in vivo, as well as the underlying mechanism remains unknown. In this study, obesity and associated MAFLD was induced in C57BL/6J mice by high fat diet (HFD), which were subjected to evaluations on the parameters of systematic metabolism. Simultaneously, the molecular mechanism of danthron on lipid metabolism was investigated in 3T3-L1-derived adipocytes and HepG2 cells in vitro. In vivo, danthron significantly attenuated the obesity and MAFLD by enhancing hepatic fatty acid oxidation, decreasing lipid synthesis, and promoting mitochondrial homeostasis. Mechanistically, danthron significantly promoted combination of RXRα and PPARα, enhanced the binding of RXRα/PPARα heterodimer to the promoter of adiponectin receptor 2 (AdipoR2), by which activating the AMPKα and PPARα pathway. Moreover, PPARα and AdipoR2 can interplay in a loop style. Collectively, this study demonstrates that danthron can substantially ameliorate obesity and associated hepatic steatosis via AdipoR2-mediated dual PPARα/AMPKα activation, which suggests that danthron might be a novel therapeutic approach for inhibition of obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ronglin Xia
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Hospital, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
Hepatoprotective Potency of Chrysophanol 8- O-Glucoside from Rheum palmatum L. against Hepatic Fibrosis via Regulation of the STAT3 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21239044. [PMID: 33261209 PMCID: PMC7730872 DOI: 10.3390/ijms21239044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Rhubarb is a well-known herb worldwide and includes approximately 60 species of the Rheum genus. One of the representative plants is Rheum palmatum, which is prescribed as official rhubarb due to its pharmacological potential in the Korean and Chinese pharmacopoeia. In our bioactive screening, we found out that the EtOH extract of R. palmatum inhibited hepatic stellate cell (HSC) activation by transforming growth factor β1 (TGF-β1). Chemical investigation of the EtOH extract led to the isolation of chrysophanol 8-O-glucoside, which was determined by structural analysis using NMR spectroscopic techniques and electrospray ionization mass spectrometry (ESIMS). To elucidate the effects of chrysophanol 8-O-glucoside on HSC activation, activated LX-2 cells were treated for 48 h with chrysophanol 8-O-glucoside, and α-SMA and collagen, HSC activation markers, were measured by comparative quantitative real-time PCR (qPCR) and western blotting analysis. Chrysophanol 8-O-glucoside significantly inhibited the protein and mRNA expression of α-SMA and collagen compared with that in TGF-β1-treated LX-2 cells. Next, the expression of phosphorylated SMAD2 (p-SMAD2) and p-STAT3 was measured and the translocation of p-STAT3 to the nucleus was analyzed by western blotting analysis. The expression of p-SMAD2 and p-STAT3 showed that chrysophanol 8-O-glucoside strongly downregulated STAT3 phosphorylation by inhibiting the nuclear translocation of p-STAT3, which is an important mechanism in HSC activation. Moreover, chrysophanol 8-O-glucoside suppressed the expression of p-p38, not that of p-JNK or p-Erk, which can activate STAT3 phosphorylation and inhibit MMP2 expression, the downstream target of STAT3 signaling. These findings provided experimental evidence concerning the hepatoprotective effects of chrysophanol 8-O-glucoside against liver damage and revealed the molecular basis underlying its anti-fibrotic effects through the blocking of HSC activation.
Collapse
|
18
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020; 11:5875. [PMID: 33208749 PMCID: PMC7674472 DOI: 10.1038/s41467-020-19681-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
19
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020. [PMID: 33208749 DOI: 10.1101/2020.04.27.063495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
20
|
Capasso R, Mannelli LDC. Special Issue "Plant Extracts: Biological and Pharmacological Activity". Molecules 2020; 25:E5131. [PMID: 33158220 PMCID: PMC7662983 DOI: 10.3390/molecules25215131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/28/2023] Open
Abstract
The use of plant extracts for therapeutic purposes knows a wide diffusion [...].
Collapse
Affiliation(s)
- Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
21
|
Xu X, Li L, Zhang Y, Lu X, Lin W, Wu S, Qin X, Xu R, Lin W. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLoS One 2020; 15:e0240616. [PMID: 33035272 PMCID: PMC7546448 DOI: 10.1371/journal.pone.0240616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is a traditional herb that is often used to treat disease including edema and hyperlipidemia. However, the molecular mechanism by which Alisma orientale (Sam.) Juzep exerts its hypolipidemic effects remains unclear. In this study, a diabetic rat model was established by feeding a high-fat and high-sugar diet combined with a low-dose streptozotocin injection (HFS). Then the rats were treated with an A. orientale water extract (AOW), an A. orientale ethanolic extract (AOE) or metform (MET). The gut microflora and liver transcriptome were analyzed by high-throughput next-generation sequencing. Ultra-performance liquid chromatography-triple quadrupole-mass spectrometry was employed to analyze the major compounds in the AOE. The results showed that the serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in rats of the AOE group (2.10 g/kg/day, 14 days) were significantly lower than those in the HFS group (p<0.01). Moreover, AOE treatment altered the gut microecology, particularly modulating the relative abundance of gut microflora involved in lipid metabolism compared with the HFS group. Furthermore, compared with the HFS group, the mRNA expression levels of Fam13a, Mapk7, Mpp7, Chac1, Insig1, Mcpt10, Noct, Greb1l, Fabp12 and Hba-a3 were upregulated after the administration of AOE. In contrast, the mRNA expression levels of Lox, Mybl1, Arrdc3, Cyp4a2, Krt20, Vxn, Ggt1, Nr1d1 and S100a9 were downregulated. Moreover, AOE treatment for two weeks markedly promoted the relative abundance of Lachnospiraceae (p = 0.0013). The triterpenoids contents in AOE were alisol A, alisol A 24-acetate, alisol B, alisol B 23-acetate, alisol C 23-acetate, alisol F, alisol F 24-acetate, and alisol G. Our findings above illustrated that the hypolipidemic effect of the triterpenoids of A. orientale is mediated mainly through alteration of the gut microecology and the regulation of genes involved in cholesterol metabolism, especially Insig1.
Collapse
Affiliation(s)
- Xiaomei Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Lisha Li
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Yamin Zhang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xuehua Lu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shuangshuang Wu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Xia Qin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Rongqing Xu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou, China
- * E-mail:
| |
Collapse
|
22
|
Pan Y, Wan X, Zeng F, Zhong R, Guo W, Lv XC, Zhao C, Liu B. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. Int J Biol Macromol 2020; 155:1030-1039. [DOI: 10.1016/j.ijbiomac.2019.11.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
|
23
|
Xu M, Li Z, Yang L, Zhai W, Wei N, Zhang Q, Chao B, Huang S, Cui H. Elucidation of the Mechanisms and Molecular Targets of Sanhuang Xiexin Decoction for Type 2 Diabetes Mellitus Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5848497. [PMID: 32851081 PMCID: PMC7436345 DOI: 10.1155/2020/5848497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Sanhuang Xiexin Decoction (SXD) is commonly used to treat type 2 diabetes mellitus (T2DM) in clinical practice of traditional Chinese medicine (TCM). In order to elucidate the specific analysis mechanisms of SXD for T2DM, the method of network pharmacology was applied to this article. First, the effective ingredients of SXD were obtained and their targets were identified based on the TCMSP database. The T2DM-related targets screened from the GEO database were also collected by comparing the differential expressed genes between T2DM patients and healthy individuals. Then, the common targets in SXD-treated T2DM were obtained by intersecting the putative targets of SXD and the differential expressed genes of T2DM. And the protein-protein interaction (PPI) network was established using the above common targets to screen key genes through protein interactions. Meanwhile, these common targets were used for GO and KEGG analyses to further elucidate how they exert antidiabetic effects. Finally, a gene pathway network was established to capture the core one in common targets enriched in the major pathways to further illustrate the role of specific genes. Based on the data obtained, a total of 67 active compounds and 906 targets of SXD were identified. Four thousand one hundred and seventy-six differentially expressed genes with a P value < 0.005 and ∣log2(fold change) | >0.5 were determined between T2DM patients and control groups. After further screening, thirty-seven common targets related to T2DM in SXD were finally identified. Through protein interactions, the top 5 genes (YWHAZ, HNRNPA1, HSPA8, HSP90AA1, and HSPA5) were identified. It was found that the functional annotations of target genes were associated with oxygen levels, protein kinase regulator, mitochondria, and so on. The top 20 pathways including the PI3K-Akt signaling pathway, cancers, HIF-1 signaling pathway, and JAK-STAT signaling pathway were significantly enriched. CDKN1A was shown to be the core gene in the gene-pathway network, and other several genes such as CCND1, ERBB2, RAF1, EGF, and VEGFA were the key genes for SXD against T2DM. Based on the network pharmacology approach, we identified key genes and pathways related to the prognosis and pathogenesis of T2DM and also provided a feasible method for further studying the chemical basis and pharmacology of SXD.
Collapse
Affiliation(s)
- Manman Xu
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhonghao Li
- 2Department of Neurology, Dongfang Hosipital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Lu Yang
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Wujianwen Zhai
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Nina Wei
- 3Shaanxi University of Chinese Medicine, Department of Traditional Chinese Medicine, First Clinical Medical College, 712000 Shaanxi, China
| | - Qiuyan Zhang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bin Chao
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hanming Cui
- 1Research and Development Center of Traditional Chinese Medicine, Guangan'men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
24
|
Wang Y, Qin S, Jia J, Huang L, Li F, Jin F, Ren Z, Wang Y. Intestinal Microbiota-Associated Metabolites: Crucial Factors in the Effectiveness of Herbal Medicines and Diet Therapies. Front Physiol 2019; 10:1343. [PMID: 31736775 PMCID: PMC6828839 DOI: 10.3389/fphys.2019.01343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Although the efficacy of herbal medicines (HMs) and traditional Chinese medicines (TCMs) in human diseases has long been recognized, their development has been hindered in part by a lack of a comprehensive understanding of their mechanisms of action. Indeed, most of the compounds extracted from HMs can be metabolized into specific molecules by host microbiota and affect pharmacokinetics and toxicity. Moreover, HMs modulate the constitution of host intestinal microbiota to maintain a healthy gut ecology. Dietary interventions also show great efficacy in treating some refractory diseases, and the commensal microbiota potentially has significant implications for the high inter-individual differences observed in such responses. Herein, we mainly discuss the contribution of the intestinal microbiota to high inter-individual differences in response to HMs and TCMs, and especially the already known metabolites of the HMs produced by the intestinal microbiota. The contribution of commensal microbiota to the inter-individual differences in response to dietary therapy is also briefly discussed. This review highlights the significance of intestinal microbiota-associated metabolites to the efficiency of HMs and dietary interventions. Our review may help further identify the mechanisms leading to the inter-individual differences in the effectiveness of HM and dietary intervention from the perspective of their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Lianzhou Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Xiaolan X, Wujie G, Xiaoyan T, Wenlai C. A combination of ultrasonic debridement and Shenghong wet dressing in patients with chronic ulcers of the lower limbs. J Int Med Res 2019; 47:4656-4663. [PMID: 31469017 PMCID: PMC6833434 DOI: 10.1177/0300060519858033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to examine the effects of ultrasonic debridement plus a wet dressing of Shenghong (SH) on chronic ulcer healing of the lower extremities in patients with diabetes. Methods Sixty cases of diabetes combined with chronic lower limb ulcers were randomly divided into control (n = 30) and experimental (n = 30) groups. The control group was treated with ultrasonic debridement plus recombinant human fibroblast growth factor (FGF) gel. The experimental group was treated with ultrasonic debridement plus SH wet dressing. Results The mean clinical efficacy in the experimental group was significantly higher than that in the control group (93.33% ± 6.32% versus 60.0% ± 5.87%). The mean ulcer area was significantly smaller and the mean ulcer healing rate was significantly shorter in the first 3 months, and the mean overall pain intensity score was significantly lower in the experimental group than in the control group. Moreover, the positive rates of bacterial culture on the 7th and 15th days were significantly lower in the experimental group than in the control group. Conclusion The use of ultrasonic debridement plus SH wet dressing for treating ulcers can significantly improve clinical efficacy and promote healing.
Collapse
Affiliation(s)
- Xie Xiaolan
- Nursing Department, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Nanhai, Guangdong, China
| | - Guan Wujie
- Endocrine Department, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Nanhai, Guangdong, China
| | - Tang Xiaoyan
- Endocrine Department, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Nanhai, Guangdong, China
| | - Chang Wenlai
- Department of Pharmacy, Shandong Provincial Third Hospital, Jinan, Shandong, China
| |
Collapse
|