1
|
Shamloo-Dashtpagerdi R, Lindlöf A, Aliakbari M. The CGA1-SNAT regulatory module potentially contributes to cytokinin-mediated melatonin biosynthesis and drought tolerance in wheat. BMC PLANT BIOLOGY 2025; 25:296. [PMID: 40050781 PMCID: PMC11887191 DOI: 10.1186/s12870-025-06313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Melatonin plays a pivotal role in alleviating abiotic stresses, yet its biosynthesis regulation in crops, particularly wheat, remains unclear. This study explores regulatory components of melatonin biosynthesis under drought stress using bioinformatic, physiochemical, and molecular approaches in contrasting wheat genotypes. RESULTS Bioinformatic analysis identified SNAT, a key melatonin biosynthesis gene, and 88 transcription factors (TFs) from 26 families as potential regulators. The regulatory network for SNAT highlighted CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1) as a significant TF. Under drought stress, contrasting wheat genotypes exhibited distinct CGA1-SNAT module expression, melatonin and cytokinin levels, photosynthetic activity, and oxidative damage. Cytokinin treatments regulated the CGA1-SNAT module, altering melatonin content, SPAD values, and chloroplast numbers, particularly in drought-susceptible genotypes. CONCLUSIONS This study uncovers the pivotal role of the CGA1-SNAT module and its interaction with the cytokinin pathway in regulating melatonin biosynthesis during drought stress. These findings enhance our understanding of the molecular mechanisms underpinning drought tolerance and offer promising targets for genetic and biochemical interventions to improve crop resilience.
Collapse
Affiliation(s)
| | | | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Tian Z, He J, Wang Z, Yang Q, Ma L, Qi Y, Li J, Meng Y, Quinet M. Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109487. [PMID: 39793329 DOI: 10.1016/j.plaphy.2025.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/07/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultural University, Baoding, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiadong He
- Laboratory of Mycology, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium
| | - Zhanyu Wang
- Hebei Agricultural University, Baoding, China
| | - Qian Yang
- Hebei Agricultural University, Baoding, China
| | - Luping Ma
- Hebei Agricultural University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultural University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Yu Meng
- Hebei Agricultural University, Baoding, China; Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Stefi AL, Kalampokis E, Ntroumpogianni GC, Katsiadrami I, Nikou T, Katsifas EA, Gkikas D, Christodoulakis NS, Halabalaki M. The Impact of Temperature on the Leaves of Ceratonia siliqua L.: Anatomical Aspect, Secondary Metabolite Analysis, and Antimicrobial Activity of the Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:557. [PMID: 40006816 PMCID: PMC11859210 DOI: 10.3390/plants14040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Ceratonia siliqua L. (Fabaceae) is an evergreen sclerophyllous species that successfully overcomes the challenges of the Mediterranean climate. Commonly, biosynthesis of secondary metabolites is a major reaction of the plants thriving in the Mediterranean formations against temperature stress. Due to concerns about the climate crisis, we studied the impact of 6-day low (5 °C) and high (40 °C) temperature stress on young carob seedlings. In stressed plants, mainly the heat-treated, the leaves appear xeromorphic. Parameters of the physiology of the plants such as chlorophyll-a and -b, total phenolic content, and oxidative stress were measured and presented via Principal Component Analysis. Chlorophyll-a and -b contents are inferior in cold-stressed leaves while heat-stressed leaves accumulate more phenolics and experience higher oxidative stress as compared to their cold-stressed counterparts. The phytochemical profile of different extracts obtained from stressed carob leaves was identified so as to gain insight into metabolites produced under stress. Moreover, LC-HRMS/MS metabolomic workflow was utilized for the discovery of biomarkers, over- or under-regulated in stressed conditions. The antimicrobial activity of carob leaf extract fractions was assessed against six human pathogen strains and three phytopathogen bacterial strains. MeOH-H2O and dichloromethane (DCM) extracts presented notable activity against Candida albicans and Saccharomyces cerevisiae, while DCM extracts inhibited the growth of Erwinia amylovora. We may conclude that carob tree exposure to temperature stress does not have a significant influence on secondary metabolic pathways.
Collapse
Affiliation(s)
- Aikaterina L. Stefi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Evangelos Kalampokis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (E.K.); (T.N.); (M.H.)
| | - Georgia C. Ntroumpogianni
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Iliana Katsiadrami
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (E.K.); (T.N.); (M.H.)
| | - Efstathios A. Katsifas
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Dimitrios Gkikas
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Nikolaos S. Christodoulakis
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (G.C.N.); (I.K.); (E.A.K.); (D.G.); (N.S.C.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (E.K.); (T.N.); (M.H.)
| |
Collapse
|
4
|
Yu P, Tang X, Chen B, Chen Z, Cui W, Xing Y, Li Y, Zhang F, Barroso JB, Rodriguez LG, Yao Y, Gao Y. The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria. Gene 2025; 937:149154. [PMID: 39647802 DOI: 10.1016/j.gene.2024.149154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.
Collapse
Affiliation(s)
- Peizhi Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ying Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Fangfang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| |
Collapse
|
5
|
Zhou L, Ullah F, Zou J, Zeng X. Molecular and Physiological Responses of Plants that Enhance Cold Tolerance. Int J Mol Sci 2025; 26:1157. [PMID: 39940925 PMCID: PMC11818088 DOI: 10.3390/ijms26031157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Low-temperature stress, including chilling and freezing injuries, significantly impacts plant growth in tropical and temperate regions. Plants respond to cold stress by activating mechanisms that enhance freezing tolerance, such as regulating photosynthesis, metabolism, and protein pathways and producing osmotic regulators and antioxidants. Membrane stability is crucial, with cold-resistant plants exhibiting higher lipid unsaturation to maintain fluidity and normal metabolism. Low temperatures disrupt reactive oxygen species (ROS) metabolism, leading to oxidative damage, which is mitigated by antioxidant defenses. Hormonal regulation, involving ABA, auxin, gibberellins, and others, further supports cold adaptation. Plants also manage osmotic balance by accumulating osmotic regulators like proline and sugars. Through complex regulatory pathways, including the ICE1-CBF-COR cascade, plants optimize gene expression to survive cold stress, ensuring adaptability to freezing conditions. This study reviews the recent advancements in genetic engineering technologies aimed at enhancing the cold resistance of agricultural crops. The goal is to provide insights for further improving plant cold tolerance and developing new cold-tolerant varieties.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Fazal Ullah
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China;
| | - Jixin Zou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
6
|
Ali Abaker Omer A, Zhang CH, Liu J, Shan ZG. Comprehensive review of mapping climate change impacts on tea cultivation: bibliometric and content analysis of trends, influences, adaptation strategies, and future directions. FRONTIERS IN PLANT SCIENCE 2025; 15:1542793. [PMID: 39925372 PMCID: PMC11802803 DOI: 10.3389/fpls.2024.1542793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025]
Abstract
Climate change has a profound impact on tea cultivation, posing significant challenges to yield, quality, and sustainability due to stressors such as drought, temperature fluctuations, and elevated CO₂ levels. This study aims to address these challenges by identifying and synthesizing key themes, influential contributions, and effective adaptation strategies for mitigating the impacts of climate change on tea production. A systematic bibliometric and content analysis was conducted on 328 peer-reviewed documents (2004-2023), following the PRISMA methodology. Performance analysis using Bibliometrix examined trends in publication output, leading contributors, and geographical distribution, while science mapping with VOSviewer revealed collaboration networks and thematic clusters. A detailed review of highly cited studies highlighted the primary climate variables affecting tea cultivation and identified innovative adaptation strategies, as well as critical knowledge gaps. The results show significant progress in understanding the physiological, biochemical, and molecular responses of tea plants to climate-induced stressors, including antioxidant mechanisms, secondary metabolite regulation, and genomic adaptations. Despite these advancements, challenges remain, particularly regarding the combined effects of multiple stressors, long-term adaptation strategies, and the socioeconomic implications of climate change. The findings underscore the need for interdisciplinary approaches that integrate molecular, ecological, and socioeconomic research to address these issues. This study provides a solid foundation for guiding future research, fostering innovative adaptation strategies, and informing policy interventions to ensure sustainable tea production in a changing climate.
Collapse
Affiliation(s)
- Altyeb Ali Abaker Omer
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Chun-Hua Zhang
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Jie Liu
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Zhi-guo Shan
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| |
Collapse
|
7
|
Zhu M, Guo T, Liu Y, Xiao R, Yu T, Huang J, Du W, Zhong X, Song B, Li F. Ascorbic acid is involved in melatonin-induced salinity tolerance of maize ( Zea mays L.) by regulating antioxidant and photosynthetic capacities. PHOTOSYNTHETICA 2024; 62:361-371. [PMID: 39811709 PMCID: PMC11726288 DOI: 10.32615/ps.2024.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025]
Abstract
Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress. Additionally, exogenous MT and AsA also improved antioxidant enzyme activities, promoted regeneration of AsA and GSH, decreased reactive oxygen species contents, suppressed Na+ accumulation, and improved the K+/Na+ ratio of maize seedlings. Additionally, the AsA inhibitor lycorine decreased the endogenous content of AsA and eliminated the positive effects of MT, while the MT inhibitor p-chlorophenyl alanine (CPA) reduced the endogenous content of MT, which could not eliminate the promoting effects of AsA. The results suggested that AsA may act as a downstream signal involved in the regulatory effects of MT on maize under salinity stress.
Collapse
Affiliation(s)
- M. Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Guo
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - Y.B. Liu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - R. Xiao
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Yu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - J.X. Huang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - W.L. Du
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.M. Zhong
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - B. Song
- Affiliated Experimental Field, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - F.H. Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Zhou W, Xiao RY, Yang YX, Wang X, Wang DH, Wang ZZ. Clock protein LHY targets SNAT1 and negatively regulates the biosynthesis of melatonin in Hypericum perforatum. SCIENCE ADVANCES 2024; 10:eadq6505. [PMID: 39292789 PMCID: PMC11409971 DOI: 10.1126/sciadv.adq6505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.
Collapse
Affiliation(s)
- Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Ru-Yi Xiao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Yi-Xiao Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Xue Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Dong-hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| | - Zhe-zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’ an 710062, China
| |
Collapse
|
9
|
Banerjee A, Samanta S, Roychoudhury A. Melatonin differentially refines the metabolome to improve seed formation during grain developmental stages and enhances yield in two contrasting rice cultivars, grown in arsenic-contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108849. [PMID: 38991592 DOI: 10.1016/j.plaphy.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
The manuscript revealed the ameliorative effects of exogenous melatonin in two distinct reproductive stages, i.e., developing grains (20 days after pollination) and matured grains (40 days after pollination) in two contrasting indica rice genotypes, viz., Khitish (arsenic-susceptible) and Muktashri (arsenic-tolerant), irrigated with arsenic-contaminated water throughout their life-cycle. Melatonin administration improved yield-related parameters like rachis length, primary and secondary branch length, number of grains per panicle, number of filled and empty grains per panicle, grain length and breadth and 1000-grain per weight. Expression of GW2, which negatively regulates grain development, was suppressed, along with concomitant induction of positive regulators like GIF1, DEP1 and SPL14 in both Khitish and Muktashri. Melatonin lowered arsenic bioaccumulation in grains and tissue biomass, more effectively in Khitish. Unregulated production of reactive oxygen species, leading to cellular necrosis caused by arsenic, was reversed in presence of melatonin. Endogenous melatonin level was stimulated due to up-regulation of the key biosynthetic genes, SNAT and ASMT. Melatonin enhanced the production of diverse antioxidants like anthocyanins, flavonoids, total phenolics and ascorbic acid and also heightened the production of thiol-metabolites (cysteine, reduced glutathione, non-protein thiols and phytochelatin), ensuring effective chelation and arsenic detoxification. Altogether, our observation, supported by principal component analysis, proved that melatonin re-programs the antioxidative metabolome to enhance plant resilience against arsenic stress to mitigate oxidative damages and reduce arsenic translocation from the soil to tissue biomass and edible grains.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
10
|
Liu X, Li T, Cui X, Tao R, Gao Z. Antifungal mechanism of nanosilver biosynthesized with Trichoderma longibrachiatum and its potential to control muskmelon Fusarium wilt. Sci Rep 2024; 14:20242. [PMID: 39215137 PMCID: PMC11364820 DOI: 10.1038/s41598-024-71282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.
Collapse
Affiliation(s)
- Xian Liu
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tong Li
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohui Cui
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Rezazadehfar P, Rezayian M, Niknam V, Mirmasoumi M. Elicitor-enhanced steroidal sapogenin accumulation in hairy root cultures of Trigonella foenum-graecum. Sci Rep 2024; 14:19106. [PMID: 39154043 PMCID: PMC11330440 DOI: 10.1038/s41598-024-69625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
In current work, we studied hairy root induction in Trigonella foenum graecum, which is an important medicinal plant, and examined the impact of different elicitors on some phytochemical characteristics and metabolites production in hairy root cultures. Accordingly, some factors such as five strain types of Agrobacterium rhizogenes (1724, 15834, A4, A13 and MSU) and three different explants, namely leaf, cotyledon and hypocotyl were studied. The results showed that different A. rhizogenes strains exhibited different infection efficiency. MSU and 15834 had highest efficiency of hairy root induction than other strains. Also, hairy root induction frequency in leaf explants was higher than in other explants. Salicylic acid (SA), nitric oxide (NO), CaCl2 and penconazole (PEN) were used in elicitation process. Hairy roots were treated with SA (0.1 and 0.5 mM), NO (10 and 50 µM), CaCl2 (5 and 10 mM) and PEN (5 and 10 mg/L). Applied elicitors enhanced antioxidant enzymes activities and reduced oxidative stress markers; this observation might be ascribed to regulation of the oxidative status of the elicited cells. Significant increase of antioxidant metabolites (total phenol, flavonoid and anthocyanin) in PEN-treated hairy roots was associated to phenylalanine ammonia lyase activity, indicating an up-regulation of phenylpropanoid/flavonoid metabolism. PEN and CaCl2 treatment enhanced steroidal sapogenin in hairy root cultures. These results suggested that use of elicitors can enhance the production of secondary metabolites in transformed hairy roots. Among the elicitors applied, CaCl2 and PEN were the most effective in increasing secondary metabolite production in transformed hairy roots of T. foenum graecum.
Collapse
Affiliation(s)
- Poorak Rezazadehfar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Maryam Rezayian
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran.
- Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Mirmasoumi
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| |
Collapse
|
12
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
13
|
Teng Z, Chen C, He Y, Pan S, Liu D, Zhu L, Liang K, Li Y, Huang L. Melatonin confers thermotolerance and antioxidant capacity in Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108736. [PMID: 38797006 DOI: 10.1016/j.plaphy.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Zhiyan Teng
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Shihui Pan
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Luyu Zhu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Kexin Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yufei Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
14
|
Shah SHA, Wang H, Xu H, Yu Z, Hou X, Li Y. Comparative Transcriptome Analysis Reveals the Protective Role of Melatonin during Salt Stress by Regulating the Photosynthesis and Ascorbic Acid Metabolism Pathways in Brassica campestris. Int J Mol Sci 2024; 25:5092. [PMID: 38791131 PMCID: PMC11121352 DOI: 10.3390/ijms25105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Salinity stress is a type of abiotic stress which negatively affects the signaling pathways and cellular compartments of plants. Melatonin (MT) has been found to be a bioactive compound that can mitigate these adverse effects, which makes it necessary to understand the function of MT and its role in salt stress. During this study, plants were treated exogenously with 100 µM of MT for 7 days and subjected to 200 mM of salt stress, and samples were collected after 1 and 7 days for different indicators and transcriptome analysis. The results showed that salt reduced chlorophyll contents and damaged the chloroplast structure, which was confirmed by the downregulation of key genes involved in the photosynthesis pathway after transcriptome analysis and qRT-PCR confirmation. Meanwhile, MT increased the chlorophyll contents, reduced the electrolyte leakage, and protected the chloroplast structure during salt stress by upregulating several photosynthesis pathway genes. MT also decreased the H2O2 level and increased the ascorbic acid contents and APX activity by upregulating genes involved in the ascorbic acid pathway during salt stress, as confirmed by the transcriptome and qRT-PCR analyses. Transcriptome profiling also showed that 321 and 441 DEGs were expressed after 1 and 7 days of treatment, respectively. The KEGG enrichment analysis showed that 76 DEGs were involved in the photosynthesis pathway, while 35 DEGs were involved in the ascorbic acid metabolism pathway, respectively. These results suggest that the exogenous application of MT in plants provides important insight into understanding MT-induced stress-responsive mechanisms and protecting Brassica campestris against salt stress by regulating the photosynthesis and ascorbic acid pathway genes.
Collapse
Affiliation(s)
- Sayyed Hamad Ahmad Shah
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanghong Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (S.H.A.S.); (H.W.); (H.X.); (Z.Y.); (X.H.)
- Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Zhang Q, Gao R, Wu D, Wang X, Liu Y, Gao Y, Guan L. Metabolome and Transcriptome Analysis Revealed the Pivotal Role of Exogenous Melatonin in Enhancing Salt Tolerance in Vitis vinifera L. Int J Mol Sci 2024; 25:3651. [PMID: 38612463 PMCID: PMC11011403 DOI: 10.3390/ijms25073651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024] Open
Abstract
Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.
Collapse
Affiliation(s)
- Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Muhammad I, Khan A, Mustafa AEZMA, Elshikh MS, Shen W. Elucidating the modulatory effect of melatonin on enzyme activity and oxidative stress in wheat: a global meta-analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14294. [PMID: 38634335 DOI: 10.1111/ppl.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Ahmad Khan
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
18
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
19
|
Huang J, Liu Y, Xiao R, Yu T, Guo T, Wang H, Lv X, Li X, Zhu M, Li F. Exogenous melatonin alleviates nicosulfuron toxicity by regulating the growth, photosynthetic capacity, and antioxidative defense of sweet corn seedlings. PHOTOSYNTHETICA 2024; 62:58-70. [PMID: 39650638 PMCID: PMC11609774 DOI: 10.32615/ps.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 12/11/2024]
Abstract
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
Collapse
Affiliation(s)
- J.X. Huang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - Y.B. Liu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - R. Xiao
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Yu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - T. Guo
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - H.W. Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.L. Lv
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - X.N. Li
- Liaoyuan Farmer Science and Technology Education Center, 136200 Liaoyuan, Jilin Province, China
| | - M. Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| | - F.H. Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China
| |
Collapse
|
20
|
Ju XY, Gan S, Yang KX, Xu QB, Dai WW, Yangchen YT, Zhang J, Wang YN, Li RP, Yuan B. Characterization of a Novel Polysaccharide Derived from Rhizospheric Paecilomyces vaniformisi and Its Mechanism for Enhancing Salinity Resistance in Rice Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20585-20601. [PMID: 38101321 DOI: 10.1021/acs.jafc.3c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Soil salinity is an important limiting factor in agricultural production. Rhizospheric fungi can potentially enhance crop salinity tolerance, but the precise role of signaling substances is still to be systematically elucidated. A rhizospheric fungus identified as Paecilomyces vaniformisi was found to enhance the salinity tolerance of rice seedlings. In this study, a novel polysaccharide (PPL2b) was isolated from P. vaniformisi and identified as consisting of Manp, Glcp, GalpA, and Galp. In a further study, PPL2b showed significant activity in alleviating salinity stress-induced growth inhibition in rice seedlings. The results indicated that under salinity stress, PPL2b enhances seed germination, plant growth (height and biomass), and biochemical parameters (soluble sugar and protein contents). Additionally, PPL2b regulates genes such as SOS1 and SKOR to decrease K+ efflux and increase Na+ efflux. PPL2b increased the expression and activity of genes related to antioxidant enzymes and nonenzyme substances in salinity-induced oxidative stress. Further study indicated that PPL2b plays a crucial role in regulating osmotic substances, such as proline and betaine, in maintaining the osmotic balance. It also modulates plant hormones to promote rice seedling growth and enhance their tolerance to soil salinity. The variables interacted and were divided into two groups (PC1 77.39% and PC2 18.77%) based on their relative values. Therefore, these findings indicate that PPL2b from P. vaniformisi can alleviate the inhibitory effects of salinity stress on root development, osmotic adjustment, ion balance, oxidative stress balance, and growth of rice seedlings. Furthermore, it suggests that polysaccharides produced by rhizospheric fungi could be utilized to enhance crop tolerance to salinity.
Collapse
Affiliation(s)
- Xiu-Yun Ju
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shu Gan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ke-Xin Yang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Quan-Bin Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | - Jie Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yue-Nan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Rong-Peng Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
21
|
Wang M, Fan X, Ding F. Jasmonate: A Hormone of Primary Importance for Temperature Stress Response in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:4080. [PMID: 38140409 PMCID: PMC10748343 DOI: 10.3390/plants12244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Temperature is a critical environmental factor that plays a vital role in plant growth and development. Temperatures below or above the optimum ranges lead to cold or heat stress, respectively. Temperature stress retards plant growth and development, and it reduces crop yields. Jasmonates (JAs) are a class of oxylipin phytohormones that play various roles in growth, development, and stress response. In recent years, studies have demonstrated that cold and heat stress affect JA biosynthesis and signaling, and JA plays an important role in the response to temperature stress. Recent studies have provided a large body of information elucidating the mechanisms underlying JA-mediated temperature stress response. In the present review, we present recent advances in understanding the role of JA in the response to cold and heat stress, and how JA interacts with other phytohormones during this process.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| |
Collapse
|
22
|
Fu Y, Xin L, Mounkaila Hamani AK, Sun W, Wang H, Amin AS, Wang X, Qin A, Gao Y. Foliar Application of Melatonin Positively Affects the Physio-Biochemical Characteristics of Cotton ( Gossypium hirsutum L.) under the Combined Effects of Low Temperature and Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3730. [PMID: 37960086 PMCID: PMC10649641 DOI: 10.3390/plants12213730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Low temperature and soil salinization during cotton sowing and seedling adversely affect cotton productivity. Exogenous melatonin (MT) can alleviate the damage caused to plants under non-biological stress; thus, applying MT is a means to improve the growth condition of crops under stress. However, achieving this goal requires a thorough understanding of the physiological regulatory mechanisms of MT on cotton seedlings under low temperature and salinity stress. This study could bring new knowledge on physio-biochemical mechanisms that improve the tolerance of cotton seedlings to combined effects of low temperature and salt stress using an exogenous foliar application of MT. The phytotron experiment comprised two temperature levels of cold stress and control and five MT treatments of 0, 50, 100, 150, and 200 μM and two salinity levels of 0 and 150 mM NaCl. Compared with the control treatments (non-salinity stress under cold stress and control), the combined stress of salt and low temperature reduced cotton seedlings' biomass and net photosynthetic rate (Pn), aggravated the membrane damage, reduced the potassium (K+) content, and increased the sodium (Na+) accumulation in the leaves and roots. Under NaCl stress, exogenously sprayed 50-150 μM MT increased the biomass and gas exchange parameters of cotton seedlings under salt and low temperature combined with salt stress, reduced the degree of membrane damage, and regulated the antioxidant enzyme, ion homeostasis, transport, and absorption of cotton seedlings. The pairwise correlation analysis of each parameter using MT shows that the parameters with higher correlation with MT at cold stress are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT). The highest correlation coefficient at 25 °C is observed between the K+ and Na+ content in cotton seedlings. The conclusion indicates that under salt and low-temperature stress conditions, exogenous application of MT primarily regulates the levels of Pn, superoxide dismutase (SOD), andPOD in cotton seedlings, reduces Na+ and MDA content, alleviates damage to cotton seedlings. Moreover, the most significant effect was observed when an exogenous application of 50-150 μM of MT was administered under these conditions. The current study's findings could serve as a scientific foundation for salinity and low-temperature stress alleviation during the seedling stage of cotton growth.
Collapse
Affiliation(s)
- Yuanyuan Fu
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | | | - Weihao Sun
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Abubakar Sunusi Amin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Xingpeng Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Anzhen Qin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
23
|
Wang S, Gu H, Chen S, Li Y, Shen J, Wang Y, Ding Z. Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars. J Proteomics 2023; 289:105010. [PMID: 37797878 DOI: 10.1016/j.jprot.2023.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Drought is an important abiotic stress that constrains the quality and quantity of tea plants. The green leaf volatiles Z-3-hexenyl acetate (Z-3-HAC) have been reported to play an essential role in stress responses. However, the underlying mechanisms of drought tolerance in tea plants remain elusive. This study investigated the physiological, proteomic, and phosphoproteomic profiling of two tea plant varieties of Longjingchangye (LJCY) and Zhongcha 108 (ZC108) with contrasting drought tolerance characteristics under drought stress. Physiological data showed that spraying Z-3-HAC exhibited higher activities of superoxide dismutase (SOD) and catalase (CAT) in both LJCY and ZC108 but lower content of malondialdehyde (MDA) in LJCY under drought stress. The proteomic and phosphoproteomic analysis suggested that the drought tolerance mechanism of Z-3-HAC in LJCY and ZC108 was different. Proteomic analyses revealed that Z-3-HAC enhanced the drought tolerance of LJCY by fructose metabolism while enhancing the drought tolerance of ZC108 by promoting glucan biosynthesis and galactose metabolism. Furthermore, the differential abundance phosphoproteins (DAPPs) related to intracellular protein transmembrane transport and protein transmembrane transport were enriched in LJCY, and the regulation of response to osmotic stress and regulation of mRNA processing were enriched in ZC108. In addition, protein-phosphoprotein interactions (PPI) analyses suggested that energy metabolism and starch and sucrose metabolic processes might play critical roles in LJCY and ZC108, respectively. These results will help to understand the mechanisms by which Z-3-HAC enhances the drought resistance of tea plants at the protein level. SIGNIFICANT: Green leaf volatiles (GLVs) are important volatile organic compounds that play essential roles in plant defense against biotic and abiotic stresses. To understand the mechanisms of Z-3-HAC in improving the drought tolerance of tea plants, two contrasting drought tolerance varieties (LJCY and ZC108) were comparatively evaluated by proteomics and phosphoproteomics. This analysis evidenced changes in the abundance of proteins involved in energy metabolism and starch and sucrose metabolic processes in LJCY and ZC108, respectively. These proteins may elucidate new molecular aspects of the drought resistance mechanism of Z-3-HAC, providing a theoretical basis for drought resistance breeding of tea plants.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Honglian Gu
- Tea Research Institute, Qingdao Agriculture University, Qingdao, China
| | - Sizhou Chen
- Tea Research Institute, Qingdao Agriculture University, Qingdao, China
| | - Yuchen Li
- Tea Research Institute, Qingdao Agriculture University, Qingdao, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agriculture University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
24
|
Li Y, Chen Y, Chen J, Shen C. Flavonoid metabolites in tea plant (Camellia sinensis) stress response: Insights from bibliometric analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107934. [PMID: 37572493 DOI: 10.1016/j.plaphy.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In the context of global climate change, tea plants are at risk from elevating environmental stress factors. Coping with this problem relies upon the understanding of tea plant stress response and its underlying mechanisms. Over the past two decades, research in this field has prospered with the contributions of scientists worldwide. Aiming in providing a comprehensive perspective of the research field related to tea plant stress response, we present a bibliometric analysis of the this area. Our results demonstrate the most studied stresses, global contribution, authorship and collaboration, and trending research topics. We highlight the importance of flavonoid metabolites in tea plant stress response, particularly their role in maintaining redox homeostasis, yield, and adjusting tea quality under stress conditions. Further research on the flavonoid response under various stress conditions can promote the development of cultivation measures, thereby improving stress resistance and tea quality.
Collapse
Affiliation(s)
- YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - JiaHao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
25
|
Wang C, Bian C, Li J, Han L, Guo D, Wang T, Sun Z, Ma C, Liu X, Tian Y, Zheng X. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis. PLANT PHYSIOLOGY 2023; 193:821-839. [PMID: 37311207 DOI: 10.1093/plphys/kiad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
Soil acidification in apple (Malus domestica) orchards results in the release of rhizotoxic aluminum ions (Al3+) into soil. Melatonin (MT) participates in plant responses to abiotic stress; however, its role in AlCl3 stress in apple remains unknown. In this study, root application of MT (1 μM) substantially alleviated AlCl3 stress (300 μM) in Pingyi Tiancha (Malus hupehensis), which was reflected by higher fresh and dry weight, increased photosynthetic capacity, and longer and more roots compared with plants that did not receive MT treatment. MT functioned mainly by regulating vacuolar H+/Al3+ exchange and maintaining H+ homeostasis in the cytoplasm under AlCl3 stress. Transcriptome deep sequencing analysis identified the transcription factor gene SENSITIVE TO PROTON RHIZOTOXICITY 1 (MdSTOP1) was induced by both AlCl3 and MT treatments. Overexpressing MdSTOP1 in apple increased AlCl3 tolerance by enhancing vacuolar H+/Al3+ exchange and H+ efflux to the apoplast. We identified 2 transporter genes, ALUMINUM SENSITIVE 3 (MdALS3) and SODIUM HYDROGEN EXCHANGER 2 (MdNHX2), as downstream targets of MdSTOP1. MdSTOP1 interacted with the transcription factor NAM ATAF and CUC 2 (MdNAC2) to induce MdALS3 expression, which reduced Al toxicity by transferring Al3+ from the cytoplasm to the vacuole. Furthermore, MdSTOP1 and MdNAC2 coregulated MdNHX2 expression to increase H+ efflux from the vacuole to the cytoplasm to promote Al3+ compartmentalization and maintain cation balance in the vacuole. Taken together, our findings reveal an MT-STOP1 + NAC2-NHX2/ALS3-vacuolar H+/Al3+ exchange model for the alleviation of AlCl3 stress in apple, laying a foundation for practical applications of MT in agriculture.
Collapse
Affiliation(s)
- Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianchao Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhijuan Sun
- Laboratory for Agricultural Molecular Biology, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
26
|
Muthusamy R, Ramkumar G, Kumarasamy S, Kumar TC, Albeshr MF, Alrefaei AF, Nhung TC, B B, Karuppusamy I. Effect of melatonin and luzindole antagonist on fipronil toxicity, detoxification and antioxidant enzyme system in different tissues of Helicoverpa armigera (Lepidoptera: Noctuidae). ENVIRONMENTAL RESEARCH 2023; 231:116130. [PMID: 37201702 DOI: 10.1016/j.envres.2023.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Studies have investigating the detoxification and antioxidant enzymes with melatonin under pesticide stress in many vertebrates, whereas no reports produced in invertebrates. In this study possible role of melatonin and luzindole effect on fipronil toxicity and the detoxification, antioxidant enzymes in H. armigera has been reported. Result showed high toxicity of fipronil treatment (LC50 4.24 ppm), followed by increased LC50 value with melatonin pretreatment (6.44 ppm). Whereas decreased toxicity was observed with melatonin and luzindole combination (3.72 ppm). The detoxification enzymes AChE, esterase and P450 were increased in larval head and whole body with exogenous melatonin level compared to control 1-1.5 μmol/mg of protein. The antioxidant levels of CAT, SOD and GST in whole body and head tissue had been increased by melatonin and fipronil combination 1.1-1.4 unit/mg of protein followed by GPx and GR in larval head (1-1.2 μmol/mg of protein). Mean while the luzindole antagonist inhibits CAT, SOD, GST and GR oxidative enzyme level (1-1.5 fold) in most of the tissue compared to melatonin and fipronil treatment (p < 0.01). Hence this study concludes that the melatonin pretreatment can reduce the fipronil toxicity by enhanced detoxification and antioxidant enzyme system in H. armigera.
Collapse
Affiliation(s)
- Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, 30223, GA, USA
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Thimmappa Chethan Kumar
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institution, Hosur, 635 130, Tamil Nadu, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Tran Cam Nhung
- Faculty of Safety Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Barani B
- Department of Biomedical Engineering, SSN College of Engineering, Chennai, Tamil Nadu, India
| | - Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam; Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
Zhang Q, Ye Z, Wang Y, Zhang X, Kong W. Haplotype-Resolution Transcriptome Analysis Reveals Important Responsive Gene Modules and Allele-Specific Expression Contributions under Continuous Salt and Drought in Camellia sinensis. Genes (Basel) 2023; 14:1417. [PMID: 37510320 PMCID: PMC10379978 DOI: 10.3390/genes14071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is one of the most important beverage crops with significant economic and cultural value. Global climate change and population growth have led to increased salt and drought stress, negatively affecting tea yield and quality. The response mechanism of tea plants to these stresses remains poorly understood due to the lack of reference genome-based transcriptional descriptions. This study presents a high-quality genome-based transcriptome dynamic analysis of C. sinensis' response to salt and drought stress. A total of 2244 upregulated and 2164 downregulated genes were identified under salt and drought stress compared to the control sample. Most of the differentially expression genes (DEGs) were found to involve divergent regulation processes at different time points under stress. Some shared up- and downregulated DEGs related to secondary metabolic and photosynthetic processes, respectively. Weighted gene co-expression network analysis (WGCNA) revealed six co-expression modules significantly positively correlated with C. sinensis' response to salt or drought stress. The MEpurple module indicated crosstalk between the two stresses related to ubiquitination and the phenylpropanoid metabolic regulation process. We identified 1969 salt-responsive and 1887 drought-responsive allele-specific expression (ASE) genes in C. sinensis. Further comparison between these ASE genes and tea plant heterosis-related genes suggests that heterosis likely contributes to the adversity and stress resistance of C. sinensis. This work offers new insight into the underlying mechanisms of C. sinensis' response to salt and drought stress and supports the improved breeding of tea plants with enhanced salt and drought tolerance.
Collapse
Affiliation(s)
- Qing Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ziqi Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yinghao Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
28
|
Imran M, Mpovo CL, Aaqil Khan M, Shaffique S, Ninson D, Bilal S, Khan M, Kwon EH, Kang SM, Yun BW, Lee IJ. Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. Int J Mol Sci 2023; 24:8489. [PMID: 37239837 PMCID: PMC10218646 DOI: 10.3390/ijms24108489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.
Collapse
Affiliation(s)
- Muhammad Imran
- Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 54874, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Clems Luzolo Mpovo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar 24830, Pakistan
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daniel Ninson
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
29
|
Hu D, Zhang X, Xue P, Nie Y, Liu J, Li Y, Wang C, Wan X. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107698. [PMID: 37060867 DOI: 10.1016/j.plaphy.2023.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is a floral crop that is highly valuable commercially. However, high temperatures adversely affect its growth and the quality of its cut flowers. Melatonin (MT) is a indole substance that can mitigate plant damage under heat stress. In this study, the leaves of carnation seedlings were sprayed with different concentrations of MT before exposure to high temperature. The indices of growth, physiological and chlorophyll fluorescence were measured and analyzed by the membership function method. The results showed that treatment with 100 μM MT was the most effective at ameliorating damage on carnation. We then analyzed the effects of 100 μM MT pretreatment on carnation at different time points of heat stress and found that this concentration of MT ameliorated the damage caused by heat stress, increased the content of photosynthetic pigments, enhanced the performance of photosystem II and improved photosynthesis. In addition, MT also reduced cell damage and lipid peroxidation, increased the activities of antioxidant enzymes and regulated the accumulation of osmotic substances in carnation. Moreover, MT increased the fresh/dry weight of stems and roots, promoted the opening of stomata, and protected the integrity of chloroplast structure of carnation. Compared with heat stress, pre-spraying with MT significantly down-regulated the transcription of a chlorophyll degradation gene and up-regulated the transcription of stress-related genes. Overall, this study provides a theoretical foundation for the mitigation of the adverse effects of exogenous MT under heat stress and proposes beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuanyuan Nie
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Jinyu Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yan Li
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Can Wang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Vafadar F, Ehsanzadeh P. Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13912. [PMID: 37041729 DOI: 10.1111/ppl.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Since regulatory roles of calcium (Ca) and melatonin (MT) in physiological responses of plants to salinity stress are lacking, various Dracocephalum kotschyi genotypes (Bojnord, Urmia, Fereydunshahr, and Semirom) were pretreated with exogenous Ca (5 mM), MT (100 μM), and Ca + MT in the presence of salt (75 mM NaCl). In addition measuring the concentration of phenolic compounds by high performance liquid chromatography (HPLC), histochemical evaluations of essential oils and phenolic compounds in glandular trichomes of leaf samples were performed by light microscope. Salt stress reduced shoot fresh (SFW) and dry weight (SDW), leaf area (LA), relative water content (RWC), and maximum efficiency of photosystem II (Fv /Fm ), but enhanced total phenolic content (TPC) and total flavonoids content (TFC), phenolic compounds concentrations, DPPH radical scavenging capacity, electrolyte leakage (EL), proline and hydrogen peroxide (H2 O2 ) concentrations, and Na+ /K+ and essential oils and TPC of the glandular trichomes of leaves in all D. kotschyi genotypes. Foliar spraying of Ca, MT, and particularly Ca + MT on D. kotschyi seedlings improved SFW, SDW, RWC, TPC, TFC, proline and phenolic compounds concentrations, Fv /Fm , and DPPH radical scavenging capacity, but reduced H2 O2 , EL, and Na+ /K+ in the leaves and essential oils and TPC in the glandular trichomes of all genotypes under both non-stress and salt stress conditions. These findings indicate that the crosstalk between MT and Ca synergistically improves salt tolerance, TPC and TFC, phenolic compounds concentration, and essential oils accumulation in glandular trichomes of different D. kotschyi genotypes.
Collapse
Affiliation(s)
- Farinaz Vafadar
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Parviz Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
31
|
Zhao J, Hu J. Melatonin: Current status and future perspectives in horticultural plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1140803. [PMID: 37035081 PMCID: PMC10076644 DOI: 10.3389/fpls.2023.1140803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses, restricting plant growth and productivity and posing a severe threat to global food production and security. Different phytohormones are produced by plants to mitigate the adverse effects of these stresses. One such phytohormone is melatonin (MEL), which, being a potential bio-stimulator, helps to govern a wide array of functions in horticultural crops. Recent advancements have determined the role of MEL in plants' responses to abiotic stresses. MEL enhances physiological functions such as seed germination, growth and development, seedling growth, root system architecture, and photosynthetic efficiency. The potential function of MEL in stressful environments is to regulate the enzymatic and non-enzymatic antioxidant activity, thus playing a role in the substantial scavenging of reactive oxygen species (ROS). Additionally, MEL, as a plant growth regulator and bio-stimulator, aids in promoting plant tolerance to abiotic stress, mainly through improvements in nutrient uptake, osmolyte production, and cellular membrane stability. This review, therefore, focuses on the possible functions of MEL in the induction of different abiotic stresses in horticultural crops. Therefore, this review would help readers learn more about MEL in altered environments and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
|
32
|
Khanna K, Bhardwaj R, Alam P, Reiter RJ, Ahmad P. Phytomelatonin: A master regulator for plant oxidative stress management. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:260-269. [PMID: 36731287 DOI: 10.1016/j.plaphy.2023.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is the multifunctional molecule that governs a range of developmental processes in plants subjected to a plethora of environmental cues. It acts as an antioxidant molecule to regulate the oxidative burst through reactive oxygen species (ROS) scavenging. Moreover, it also activates stress-responsive genes followed by alleviating oxidation. Phytomelatonin also stimulates antioxidant enzymes that further regulate redox homeostasis in plants under adverse conditions. This multifunctional molecule also regulates different physiological processes of plants in terms of leaf senescence, seed germination, lateral root growth, photosynthesis, etc. Due to its versatile nature, it is regarded as a master regulator of plant cell physiology and it holds a crucial position in molecular signaling as well. Phytomelatonin mediated oxidative stress management occurs through a series of antioxidative defense systems, both enzymatic as well as non-enzymatic, along with the formation of an array of secondary defensive metabolites that counteract the stresses. These phytomelatonin-derived antioxidants reduce the lipid peroxidation and improve membrane integrity of the cells subjected to stress. Here in, the data from transcriptomic and omics approaches are summarized which help to identify the gene regulatory mechanisms involved in the regulation of redox homeostasis and oxidative stress management. Further, we also recap the signaling cascade underlying phytomelatonin interactions with both ROS and reactive nitrogen species (RNS)and their crosstalk. The discoveries related to phytomelatonin have shown that this regulatory master molecule is critical for plant cell physiology. The current review is focussed the role of phytomelatonin as a multifunctional molecule in plant stress management.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Department of Microbiology, DAV University, Sarmastpur, Jalandhar, 144001, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
33
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
34
|
Wu C, Hao W, Yan L, Zhang H, Zhang J, Liu C, Zheng L. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chem 2023; 419:136088. [PMID: 37023675 DOI: 10.1016/j.foodchem.2023.136088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The effects of postharvest melatonin treatment on antioxidant activity and γ-aminobutyric acid (GABA) biosynthesis in yellow-flesh peach fruit stored at 4 °C and 90% RH for 28 d were explored. Results showed that melatonin treatment was effective in maintaining firmness, total soluble solids content and color in peach fruit. Melatonin treatment significantly reduced H2O2 and MDA contents, enhanced high level of non-enzymatic antioxidant system (ABTS∙+ scavenging capacity), and increased the activity or content of antioxidant enzymes including CAT, POD, SOD and APX. Melatonin treatment increased the contents of total soluble protein and glutamate, while reducing total free amino acid content. Moreover, melatonin treatment up-regulated the expression of GABA biosynthesis genes (PpGAD1 and PpGAD4) and suppressed the expression of GABA degradation gene (PpGABA-T), resulting in the accumulation of endogenous GABA. These findings indicated that melatonin treatment exerted positive effects on improving antioxidant activity and promoting GABA biosynthesis in yellow-flesh peach fruit.
Collapse
|
35
|
Wang Y, Samarina L, Mallano AI, Tong W, Xia E. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145609. [PMID: 36866358 PMCID: PMC9971632 DOI: 10.3389/fpls.2023.1145609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is one of the most consumed and widely planted beverage plant worldwide, which contains many important economic, healthy, and cultural values. Low temperature inflicts serious damage to tea yields and quality. To cope with cold stress, tea plants have evolved a cascade of physiological and molecular mechanisms to rescue the metabolic disorders in plant cells caused by the cold stress; this includes physiological, biochemical changes and molecular regulation of genes and associated pathways. Understanding the physiological and molecular mechanisms underlying how tea plants perceive and respond to cold stress is of great significance to breed new varieties with improved quality and stress resistance. In this review, we summarized the putative cold signal sensors and molecular regulation of the CBF cascade pathway in cold acclimation. We also broadly reviewed the functions and potential regulation networks of 128 cold-responsive gene families of tea plants reported in the literature, including those particularly regulated by light, phytohormone, and glycometabolism. We discussed exogenous treatments, including ABA, MeJA, melatonin, GABA, spermidine and airborne nerolidol that have been reported as effective ways to improve cold resistance in tea plants. We also present perspectives and possible challenges for functional genomic studies on cold tolerance of tea plants in the future.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Lidia Samarina
- Federal Research Centre the Subtropical Scientific Centre, The Russian Academy of Sciences, Sochi, Russia
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
36
|
Yang X, Liu C, Li M, Li Y, Yan Z, Feng G, Liu D. Integrated transcriptomics and metabolomics analysis reveals key regulatory network that response to cold stress in common Bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2023; 23:85. [PMID: 36759761 PMCID: PMC9909927 DOI: 10.1186/s12870-023-04094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Chang Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Mengdi Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Yanmei Li
- Horticulture Department, College of Life Sciences, Heilongjiang University, Harbin, 150000, China
| | - Zhishan Yan
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Guojun Feng
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China.
| |
Collapse
|
37
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Zhang X, Cao X, Xia Y, Ban Q, Cao L, Li S, Li Y. CsCBF5 depletion impairs cold tolerance in tea plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111463. [PMID: 36126878 DOI: 10.1016/j.plantsci.2022.111463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
CBFs play important roles in tea plant cold tolerance. In our study, 16 tea varieties were used to investigate the relationship between the expression level of CsCBFs and cold tolerance in field experiments. A strong and positive correlation was found between cold stress-regulated CsCBF1, CsCBF3 and CsCBF5 expression levels (R2 > 0.8) in tea mesophyll cells and cold tolerance in 16 tea varieties. A previous study reported that CsCBF1 and CsCBF3 were important components associated with cold tolerance in tea plants; thus, the function of CsCBF5 in the CsCBF family was targeted. Our previous study reported that CsCBF5 was localized in the nucleus and exhibited transcriptional activity. In the current study, MDA content in leaves was significantly increased in CsCBF5-silenced leaves, which exhibited poor cold tolerance, compared with WT plants under cold stress. In contrast, increased germination rates and antioxidant enzyme activities under cold conditions compared with WT plants. Furthermore, CsCBF5 overexpression in Arabidopsis promoted the expression levels of the cold-regulated genes AtCOR15a, AtCOR78, AtERD4 and AtRD29B; however, the expression levels of downstream genes, including CsCOR47, CsCOR413, CsERD4 and CsRD29B, were significantly reduced in CsCBF5-silenced tea leaves. Taken together, our results indicated that CsCBF5 could function as a positive regulator in the cold stress response.
Collapse
Affiliation(s)
- Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yuhui Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lu Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Siya Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
39
|
Khan S, Sehar Z, Fatma M, Mir IR, Iqbal N, Tarighat MA, Abdi G, Khan NA. Involvement of ethylene in melatonin-modified photosynthetic-N use efficiency and antioxidant activity to improve photosynthesis of salt grown wheat. PHYSIOLOGIA PLANTARUM 2022; 174:e13832. [PMID: 36437590 DOI: 10.1111/ppl.13832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 05/25/2023]
Abstract
The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt-tolerant among the investigated cultivars, GOAL, HD-2967, PBW-17, PBW-343, PBW-550, and WH-1105 when screened for tolerance to 100 mM NaCl. The application of 100 μM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress-induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic-N use efficiency and photosynthesis in plants. The application of 50 μM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2 O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin-mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | - Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
40
|
Khalid M, Rehman HM, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana IA, Atif RM, Zaman QU, Lam HM. Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops. Int J Mol Sci 2022; 23:12913. [PMID: 36361700 PMCID: PMC9657122 DOI: 10.3390/ijms232112913] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/06/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.
Collapse
Affiliation(s)
- Memoona Khalid
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nisar Ahmed
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sehar Nawaz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Iqrar Ahmad Rana
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Qamar U. Zaman
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad Pakistan, Punjab 38000, Pakistan
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
41
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
42
|
Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. Phytomelatonin as a central molecule in plant disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5874-5885. [PMID: 35298631 DOI: 10.1093/jxb/erac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant-pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant-pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| |
Collapse
|
43
|
Li J, Xie J, Yu J, Lyv J, Zhang J, Ding D, Li N, Zhang J, Bakpa EP, Yang Y, Niu T, Gao F. Melatonin enhanced low-temperature combined with low-light tolerance of pepper ( Capsicum annuum L.) seedlings by regulating root growth, antioxidant defense system, and osmotic adjustment. FRONTIERS IN PLANT SCIENCE 2022; 13:998293. [PMID: 36247609 PMCID: PMC9554354 DOI: 10.3389/fpls.2022.998293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT) is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. In this study, pepper seedlings were subjected to low-temperature combined with low-light stress (LL) (15/5°C, 100 μmol m-2s-1) prior to a foliar spray of 200mM MT for 168h to investigate the protective role of MT in pepper seedlings. Our results demonstrated that LL stress negatively affected root growth, and accelerated the accumulation of reactive oxygen species (ROS), including H2O2 and O 2 - , changed the osmolytes contents, and antioxidative system. However, these were reversed by exogenous MT application. MT effectively promoted the root growth as indicated by significant increase in root length, surface area, root volume, tips, forks, and crossings. In addition, MT reduced the burst of ROS and MDA contents induced by LL, enhanced the activities of SOD, CAT, POD, APX, DHAR, and MDHAR resulted by upregulated expressions of CaSOD, CaPOD, CaCAT, CaAPX, CaDHAR, and CaMDHAR, and elevated the contents of AsA and GSH, declined DHA and GSSH contents, which prevented membrane lipid peroxidation and protected plants from oxidative damages under LL stress. Furthermore, seedlings treated with MT released high contents of soluble sugar and soluble protein in leave, which might enhance LL tolerance by maintaining substance biosynthesis and maintaining cellular homeostasis resulted by high levels of osmolytes and carbohydrate in the cytosol. Our current findings confirmed the mitigating potential of MT application for LL stress by promoting pepper root growth, improving antioxidative defense system, ascorbate-glutathione cycle, and osmotic adjustment.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Junfeng Zhang
- Institution of Vegetable, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
44
|
Liu T, Xing G, Chen Z, Zhai X, Wei X, Wang C, Li T, Zheng S. Effect of exogenous melatonin on salt stress in cucumber: alleviating effect and molecular basis. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2128875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tingting Liu
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Guoming Xing
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Zhifeng Chen
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, P.R. China
| | - Xijiao Zhai
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Xuyang Wei
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Chen Wang
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Tianmeng Li
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| | - Shaowen Zheng
- Department of Basic Science, College of Horticulture, Shanxi Agricultural University, Taigu, P.R. China
| |
Collapse
|
45
|
Zhang P, Hu Y, Zhou R, Zhang X, Hu H, Lang D. The antioxidant system response to drought-stressed Diospyros lotus treated with exogenous melatonin. PeerJ 2022; 10:e13936. [PMID: 36157056 PMCID: PMC9496507 DOI: 10.7717/peerj.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/02/2022] [Indexed: 01/19/2023] Open
Abstract
Drought is one of the major abiotic stresses adversely impacting the growth of persimmon, which is a widely cultivated traditional fruit tree in North China. Melatonin is a bio-stimulator involved in mediating plant responses to drought. The role of exogenous melatonin application in the drought tolerance of Diospyros lotus was examined under drought stress with different doses of melatonin (0, 10, 50, and 100 µM). Exogenous melatonin application significantly mitigated the adverse effects of drought stress on chlorophyll fluorescence, lipid peroxidation, reactive oxygen species (ROS) accumulation and nitric oxide (NO) content. The 100-µM melatonin application produced the most beneficial impacts against drought stress. The melatonin-enhanced tolerance could be attributed to improved antioxidant enzymes, reduced drought-induced ROS accumulation, and lipid peroxidation. Melatonin application activated major antioxidant enzymes such as superoxide dismutase, catalase, peroxidase, glutathione reductase, and ascorbate peroxidase. Interestingly, NO concentration was significantly higher in 10 and 50 µM melatonin treatments and lower in 100 µM melatonin treatment compared to the control. Moreover, exogenous melatonin application affected the mRNA transcript levels of several genes involved in ROS metabolism, including DlRBOHA, DlSOD, DlCAT, and DlPOD. Hence, the responses of Diospyros lotus to drought varied with different doses of melatonin. Our results provide a concrete insight into the effects of melatonin with varying doses in alleviating drought as well as a platform for its potential application in the related fields.
Collapse
Affiliation(s)
- Peng Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yi Hu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruijin Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xiaona Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huiling Hu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Dongmei Lang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
46
|
Mehari TG, Hou Y, Xu Y, Umer MJ, Shiraku ML, Wang Y, Wang H, Peng R, Wei Y, Cai X, Zhou Z, Liu F. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis. BMC Genomics 2022; 23:648. [PMID: 36096725 PMCID: PMC9469605 DOI: 10.1186/s12864-022-08876-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crops face several environmental stresses (biotic and abiotic), thus resulting in severe yield losses. Around the globe abiotic stresses are the main contributors of plant damages, primarily drought and salinity. Many genes and transcription factors are involved in abiotic and biotic stress responses. NAC TF (Transcription Factors) improves tolerance to stresses by controlling the physiological and enzyme activities of crops. RESULTS In current research, GhNAC072 a highly upregulated TF in RNA-Seq was identified as a hub gene in the co-expression network analysis (WGCNA). This gene was transformed to Arabidopsis thaliana to confirm its potential role in drought and salt stress tolerance. Significant variations were observed in the morpho-physiological traits with high relative leaf water contents, chlorophyll contents, higher germination and longer root lengths of the overexpressed lines and low excised leaf loss and ion leakage as compared to the wildtype plants. Besides, overexpressed lines have higher amounts of antioxidants and low oxidant enzyme activities than the wildtype during the period of stress exposure. CONCLUSIONS In summary, the above analysis showed that GhNAC072 might be the true candidate involved in boosting tolerance mechanisms under drought and salinity stress.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.,School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China. .,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
47
|
Zhang Y, Dai T, Liu Y, Wang J, Wang Q, Zhu W. Effect of Exogenous Glycine Betaine on the Germination of Tomato Seeds under Cold Stress. Int J Mol Sci 2022; 23:ijms231810474. [PMID: 36142386 PMCID: PMC9502054 DOI: 10.3390/ijms231810474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Yahui Liu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Wang
- Innovation Center of Jiangsu, Academy of Agricultural Sciences, Nanjing 210014, China
| | - Quanhua Wang
- College of Life Science, Shanghai Normal University, Shanghai 201400, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence:
| |
Collapse
|
48
|
Wang K, He J, Zhao N, Zhao Y, Qi F, Fan F, Wang Y. Effects of melatonin on growth and antioxidant capacity of naked oat ( Avena nuda L) seedlings under lead stress. PeerJ 2022. [DOI: 10.7717/peerj.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melatonin (MT) plays an important role in plant response to abiotic stress. In recent years, lead (Pb) pollution has seriously affected the living environment of plants. In this study, we applied two different concentrations of MT to naked oat seedlings under Pb stress to explore the effect of MT on naked oat seedlings under Pb pollution. The results showed that Pb stress seriously inhibited the growth and development of naked oat seedlings, which was alleviated by MT. MT could increase the soluble protein content and decrease the proline content of naked oat seedlings to maintain the osmotic balance of naked oat seedlings. The application of MT could accelerate the removal of reactive oxygen species (ROS) and improve the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), so as to maintain the redox balance in naked oat seedlings. Exogenous melatonin could significantly increase the chlorophyll content of naked oat seedlings under Pb treatment, so as to improve the photosynthesis efficiency of naked oat seedlings. MT could also remarkably up regulate the expression of the genes of LOX, POX and Asmap1, and affect the expression of transcription factors NAC and WRKY1. It might regulate the expression of downstream genes through MAPKs pathways and TFs to improve the Pb tolerance of naked oat seedlings. These results proved that MT could significantly promote the growth and development of naked oats seedlings under Pb stress, which is expected to be applied in agricultural production practice.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Jinjin He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Ningbo Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Yajing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Fangbing Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Fenggui Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| |
Collapse
|
49
|
Ding Z, Jiang C. Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis). Front Genet 2022; 13:907026. [PMID: 36035143 PMCID: PMC9399340 DOI: 10.3389/fgene.2022.907026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.
Collapse
Affiliation(s)
- Zhou Ding
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Changjun Jiang
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Changjun Jiang,
| |
Collapse
|
50
|
Li Y, Sun Y, Cui H, Li M, Yang G, Wang Z, Zhang K. Carex rigescens caffeic acid O-methyltransferase gene CrCOMT confer melatonin-mediated drought tolerance in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:971431. [PMID: 36035693 PMCID: PMC9399801 DOI: 10.3389/fpls.2022.971431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 05/27/2023]
Abstract
Melatonin is an important, multifunctional protective agent against a variety of abiotic and biotic stressors in plants. Caffeic acid O-methyltransferase (COMT) catalyzes the last step of melatonin synthesis in plants and reportedly participates in the regulation of stress response and tolerance. However, few studies have reported its function in melatonin-mediated drought resistance. In this study, CrCOMT was identified and was strongly induced by drought stress in Carex rigescens. CrCOMT overexpression in transgenic tobacco increased tolerance to drought stress with high levels of seed germination, relative water content, and survival rates. CrCOMT overexpression in tobacco improved membrane stability, and plants exhibited lower relative electrolytic leakage and malondialdehyde content, as well as higher photochemical efficiency than the wildtype (WT) under drought stress. The transgenic plants also had higher levels of proline accumulation and antioxidant enzyme activity, which decreased oxidative stress damage due to reactive oxygen species (ROS) hyperaccumulation under drought stress. The transcription of drought stress response and ROS scavenging genes was significantly higher in the CrCOMT overexpression plants than in the WT plants. In addition, CrCOMT transgenic tobacco plants exhibited higher melatonin content under drought stress conditions. Exogenous melatonin was applied to C. rigescens under drought stress to confirm the function of melatonin in mediating drought tolerance; the relative water content and proline content were higher, and the relative electrolytic leakage was lower in melatonin-treated C. rigescens than in the untreated plants. In summary, these results show that CrCOMT plays a positive role in plant drought stress tolerance by regulating endogenous melatonin content.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|