1
|
Cortés-Avendaño P, Macavilca EA, Ponce-Rosas FC, Murillo-Baca SM, Quispe-Neyra J, Alvarado-Zambrano F, Condezo-Hoyos L. Microfluidic paper-based analytical device for measurement of pH using as sensor red cabbage anthocyanins and gum arabic. Food Chem 2025; 462:140964. [PMID: 39213972 DOI: 10.1016/j.foodchem.2024.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (μPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the μPADpH. To ensure the color stability of the RCAE for commercial use of the μPADpH, gum arabic was added. The geometric design of the μPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the μPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional Jose Faustino Sanchez Carrion, Departamento de Ingenieria en Industrias Alimentarias, Functional Food Research Laboratory, Huacho, Peru
| | - Fortunato C Ponce-Rosas
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Silvia M Murillo-Baca
- Universidad Nacional Daniel Alcides Carrión, Facultad de Ciencias Agropecuarias. Escuela de Formación Profesional de Industrias Alimentarias, La Merced, Chanchamayo, Peru
| | - Juan Quispe-Neyra
- Universidad Nacional de Piura, Escuela Profesional de Ingeniería Agroindustrial e Industrias Alimentarias, Piura, Peru
| | - Fredy Alvarado-Zambrano
- Universidad Nacional Santiago Antúnez de Mayolo, Facultad de Ingenieria de Industrias Alimentarias, Huaraz, Peru
| | - Luis Condezo-Hoyos
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Lima, Peru; Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular, Lima, Peru.
| |
Collapse
|
2
|
Ajayi DT, Teepoo S. A nanosilica-coated thread-based analytical device for nitrate and nitrite detection in food samples. Talanta 2024; 279:126582. [PMID: 39053357 DOI: 10.1016/j.talanta.2024.126582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
A new microfluidic thread-based analytical device (μTAD) for nitrate and nitrite determination in food samples was developed. The cotton thread substrate was coated with nanosilica to increase its hydrophilicity and stability, and polylactic acid was applied to one end of the nanosilica-coated thread to constrain the fluid flow along the thread in one direction. Quantification of nitrate and nitrite was based on the modified Griess reaction, using sulfanilamide and N-(1-naphthyl) ethylenediamine as chromogenic reagents, and utilizing a distance-based detection technique. Linear responses were observed in a range of 4-25 mg L-1 (R2 = 0.9991) for nitrite and a range of 8-50 mg L-1 (R2 = 0.9989) for nitrate. The limits of detection for nitrite and nitrate were 1.5 and 3.1 mg L-1, respectively. The detection time was 5 min for nitrite analysis, and 7 min for nitrate analysis. The new method demonstrated good precision, accuracy, selectivity, and stability. The performance of the proposed μTAD for nitrite and nitrate determination in real food samples was comparable to that of the conventional UV-Vis spectrophotometric method. The proposed μTAD could serve as a simple, low-cost, and portable method for nitrite and nitrate detection in food samples.
Collapse
Affiliation(s)
- David Taiwo Ajayi
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani, 12110, Thailand.
| |
Collapse
|
3
|
Sousa LR, Moreira NS, Guinati BGS, Coltro WKT, Cortón E, Figueredo F. Improved sensitivity in paper-based microfluidic analytical devices using a pH-responsive valve for nitrate analysis. Talanta 2024; 277:126361. [PMID: 38878509 DOI: 10.1016/j.talanta.2024.126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
This paper presents an innovative application of chitosan material to be used as pH-responsive valves for the precise control of lateral flow in microfluidic paper-based analytical devices (μPADs). The fabrication of μPADs involved wax printing, while pH-responsive valves were created using a solution of chitosan in acetic acid. The valve-forming solution was applied, and ready when dry; by exposure to acidic solutions, the valve opens. Remarkably, the valves exhibited excellent compatibility with alkaline, neutral, and acidic solutions with a pH higher than 4. The valve opening process had no impact on the flow rate and colorimetric analysis. The potential of chitosan valves used for flow control was demonstrated for μPADs employed for nitrate determination. Valves were used to increase the conversion time of nitrate to nitrite, which was further analyzed using the Griess reaction. The μPAD showed a linear response in the concentration range of 10-100 μmol L-1, with a detection limit of 5.4 μmol L-1. As a proof of concept, the assay was successfully applied to detect nitrate levels in water samples from artificial lakes of recreational parks. For analyses that require controlled kinetics and involve multiple sequential steps, the use of chitosan pH-responsive valves in μPADs is extremely valuable. This breakthrough holds great potential for the development of simple and high-impact microfluidic platforms that can cater to a wide range of analytical chemistry applications.
Collapse
Affiliation(s)
- Lucas R Sousa
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina; Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Bárbara G S Guinati
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Eduardo Cortón
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina
| | - Federico Figueredo
- Departamento de Química Biológica e IQUIBICEN -CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), CABA, Argentina.
| |
Collapse
|
4
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
6
|
Atabakhsh S, Haji Abbasali H, Jafarabadi Ashtiani S. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics. Talanta 2024; 271:125695. [PMID: 38295445 DOI: 10.1016/j.talanta.2024.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Paper-based microfluidic devices offer advantages such as low cost and disposability for point-of-care diagnostic applications. However, actuation of fluids on paper can be a challenge in multi-step and complex assays. In this work, a thermally programmable time-delay switch (TPTDS) is presented which operates by causing delays in the fluid path of a microfluidics paper-based analytical device (μPAD) by utilizing screen-printed wax micro-bridges. The time-delay is achieved through an electrical power feedback loop which indirectly adjusts the temperature of each individual micro-bridge, melting the wax into the paper. The melted wax manipulates the fluid flow depending on its penetration depth into the paper channel, which is a function of the applied temperature. To demonstrate functionality of the proposed method, the TPTDS is employed to automate and perform the nitrate assay which requires sequential delivery of reagents. Colorimetric detection is used to quantify the results by utilizing an electronic color sensor.
Collapse
Affiliation(s)
- Saeed Atabakhsh
- Department of Electrical Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hossein Haji Abbasali
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran
| | - Shahin Jafarabadi Ashtiani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran.
| |
Collapse
|
7
|
Zhang L, Reddy DO, Salomons TT, Oleschuk RD. Micro "Hyper-Channels" on Laser-Refined Cellulose Structures. SMALL METHODS 2024; 8:e2301164. [PMID: 38009774 DOI: 10.1002/smtd.202301164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Controlled liquid transportation is widely applied in both academia and industry. However, liquid transport applications are limited by parameters such as driving forces, precision, and velocity. Herein, a simple laser-refining technology is presented to produce micro "hyper-channels". A cellulose substrate is rendered hydrophobic through silanization and refined with a laser to produce both hierarchical nanostructures and a wettability contrast simultaneously. Such a method enables faster ("hyper"-channel) aqueous liquid transportation (≈25X, 50 mm s-1 ) compared to conventional methods. Complex patterns can be readily produced at different scales with spatial resolution as low as 50 µm. This technique also controls the refining depth on the thin paper substrate. Shallow channels can be fabricated on thin paper substrates that enable fluidic channel-crossover without liquid mixing. With certain parameters, the technique creates "portals" through the substrate, allowing trans-dimensional liquid transportation between two layers of a single sheet of substrate. The fluid throughput can be increased, while also permitting fluidic channel crossover without liquid mixing. By introducing multiple portals, the controlled fluid can transfer trans-dimensionally several times, enabling further fluidic complexity. The real-life utility of the method is demonstrated by creating a trans-dimensional microfluidic device for colorimetric detection.
Collapse
Affiliation(s)
- Lishen Zhang
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Daniel O Reddy
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Timothy T Salomons
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
8
|
Kumar A, Hatayama J, Soucy A, Carpio E, Rahmani N, Anagnostopoulos C, Faghri M. Fluid Flow Dynamics in Partially Saturated Paper. MICROMACHINES 2024; 15:212. [PMID: 38398941 PMCID: PMC10892355 DOI: 10.3390/mi15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
This study presents an integrated approach to understanding fluid dynamics in Microfluidic Paper-Based Analytical Devices (µPADs), combining empirical investigations with advanced numerical modeling. Paper-based devices are recognized for their low cost, portability, and simplicity and are increasingly applied in health, environmental monitoring, and food quality analysis. However, challenges such as lack of flow control and the need for advanced detection methods have limited their widespread adoption. To address these challenges, our study introduces a novel numerical model that incorporates factors such as pore size, fiber orientation, and porosity, thus providing a comprehensive understanding of fluid dynamics across various saturation levels of paper. Empirical results focused on observing the wetted length in saturated paper substrates. The numerical model, integrating the Highly Simplified Marker and Cell (HSMAC) method and the High Order accuracy scheme Reducing Numerical Error Terms (HORNET) scheme, successfully predicts fluid flow in scenarios challenging for empirical observation, especially at high saturation levels. The model effectively mimicked the Lucas-Washburn relation for dry paper and demonstrated the increasing time requirement for fluid movement with rising saturation levels. It also accurately predicted faster fluid flow in Whatman Grade 4 filter paper compared with Grade 41 due to its larger pore size and forecasted an increased flow rate in the machine direction fiber orientation of Whatman Grade 4. These findings have significant implications for the design and application of µPADs, emphasizing the need for precise control of fluid flow and the consideration of substrate microstructural properties. The study's combination of empirical data and advanced numerical modeling marks a considerable advancement in paper-based microfluidics, offering robust frameworks for future development and optimization of paper-based assays.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | | | | | | | | | | | - Mohammad Faghri
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| |
Collapse
|
9
|
Vloemans D, Van Hileghem L, Ordutowski H, Dal Dosso F, Spasic D, Lammertyn J. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids. Methods Mol Biol 2024; 2804:3-50. [PMID: 38753138 DOI: 10.1007/978-1-0716-3850-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Self-powered microfluidics presents a revolutionary approach to address the challenges of healthcare in decentralized and point-of-care settings where limited access to resources and infrastructure prevails or rapid clinical decision-making is critical. These microfluidic systems exploit physical and chemical phenomena, such as capillary forces and surface tension, to manipulate tiny volumes of fluids without the need for external power sources, making them cost-effective and highly portable. Recent technological advancements have demonstrated the ability to preprogram complex multistep liquid operations within the microfluidic circuit of these standalone systems, which enabled the integration of sensitive detection and readout principles. This chapter first addresses how the accessibility to in vitro diagnostics can be improved by shifting toward decentralized approaches like remote microsampling and point-of-care testing. Next, the crucial role of self-powered microfluidic technologies to enable this patient-centric healthcare transition is emphasized using various state-of-the-art examples, with a primary focus on applications related to biofluid collection and the detection of either proteins or nucleic acids. This chapter concludes with a summary of the main findings and our vision of the future perspectives in the field of self-powered microfluidic technologies and their use for in vitro diagnostics applications.
Collapse
Affiliation(s)
- Dries Vloemans
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Henry Ordutowski
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Jamil SR, Abbasi MS, Jafry AT, Shahzad T, Sarwar S, Qureshi MH. Flow control by circular cavities in lateral flow porous membranes. Sci Prog 2024; 107:368504241235508. [PMID: 38426804 PMCID: PMC10908241 DOI: 10.1177/00368504241235508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This research explores the flow penetration in porous media by virtue of capillary action and geometric control of the liquid imbibition rate in microfluidic paper-based analytical devices (μPADs) having applications in food quality management, medical diagnostics, and environmental monitoring. We examine changes in flow resistance and membrane geometry, aiming to understand factors influencing capillary penetration rates for various practical applications. We conducted experiments and simulations using lateral porous membranes and altered the flow resistance by changing the liquids or the paper channel geometry by adding cavities. From experiments, it was revealed that by creating a circular cavity in the paper channel, the penetration rate was sufficiently altered. Moreover, increasing the cavity size and type of liquid (w.r.t. viscosity) also caused a decrease in the flow rate. Imbibition rates were also influenced by the position of the cavities in the paper channel. The maximum delay for water was almost 2 times with a 16 mm circular cavity located at 3 cm from strip bottom edge. Overall, we attained a maximum delay in the case of castor oil which was almost 85 times slower than water and 3.7 times slower than olive oil. A good agreement was observed with CFD analysis. We believe that this research would help in developing advance techniques to enhance the flow control strategies in μPADs and indicators.
Collapse
Affiliation(s)
- Syed Rehman Jamil
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Salman Abbasi
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Ali Turab Jafry
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Tanveer Shahzad
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Shahid Sarwar
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Hammad Qureshi
- Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
11
|
Du Z, Chen L, Yang S. Advancements in the research of finger-actuated POCT chips. Mikrochim Acta 2023; 191:65. [PMID: 38158397 DOI: 10.1007/s00604-023-06140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Microfluidic point-of-care testing (POCT) chips are used to enable the mixing and reaction of small sample volumes, facilitating target molecule detection. Traditional methods for actuating POCT chips rely on external pumps or power supplies, which are complex and non-portable. The development of finger-actuated chips has reduced operational difficulty and improved portability, promoting the development of POCT chips. This paper reviews the significance, developments, and potential applications of finger-actuated POCT chips. Three methods for controlling the flow accuracy of finger-actuated chips are summarized: direct push, indirect control, and sample injection control method, along with their respective advantages and disadvantages. Meanwhile, a comprehensive analysis of multi-fluid driving modes is provided, categorizing them into single-push multi-driving and multi-push multi-driving modes. Furthermore, recent research breakthroughs in finger-actuated chips are thoroughly summarized, and their structures, driving, and detection methods are discussed. Finally, this paper discusses the driving performance of finger-actuated chips, the suitability of detection scenarios, and the compatibility with existing detection technologies. It also provides prospects for the future development and application of finger-actuated POCT chips.
Collapse
Affiliation(s)
- Zhichang Du
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China
| | - Ling Chen
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China.
| | - Shaohui Yang
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen, 361021, China
- Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen, 361021, China
- Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen, 361021, China
| |
Collapse
|
12
|
Zhang Z, Lang S, Pearson K, Farhan Y, Tao Y, Xiao G. Printed Capillary Microfluidic Devices and Their Application in Biosensing. MICROMACHINES 2023; 14:2059. [PMID: 38004916 PMCID: PMC10673002 DOI: 10.3390/mi14112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Microfluidic devices with a free-standing structure were printed directly on polymer films using the functional materials that form interconnected pores. The printed devices can transport fluids by capillary action in the same fashion as paper-based microfluidic devices, and they can handle much smaller sample volumes than typical paper-based devices. Detection of glucose was performed using both colorimetric and electrochemical methods, and the observed limits of detection (LOD) were similar to those obtained with paper-based microfluidic devices under comparable testing conditions. It is demonstrated that printed microfluidic devices can be fabricated using printing processes that are suitable for high-volume and low-cost production and that the integration of microfluidic channels with electrodes is straightforward with printing. Several materials that are printable and form interconnected pores are presented.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Advanced Electronic and Photonic Research Center, National Research Council Canada, Ottawa, ON K1A 0R6, Canada (K.P.); (Y.T.)
| | | | | | | | | | | |
Collapse
|
13
|
Choi J, Lee EH, Kang SM, Jeong HH. A Facile Method to Fabricate an Enclosed Paper-Based Analytical Device via Double-Sided Patterning for Ionic Contaminant Detection. BIOSENSORS 2023; 13:915. [PMID: 37887108 PMCID: PMC10605057 DOI: 10.3390/bios13100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have been developed for use in a variety of diagnosis and analysis fields. However, conventional μPADs with an open-channel system have limitations for application as analytical platforms mainly because of the evaporation and contamination of the sample solution. This study demonstrates the design and fabrication of an enclosed three-dimensional(3D)-μPAD and its application as a primary early analysis platform for ionic contaminants. To generate the hydrophobic PDMS barrier, double-sided patterning is carried out using a PDMS blade-coated stamp mold that is fabricated using 3D printing. The selective PDMS patterning can be achieved with controlled PDMS permeation of the cellulose substrate using 3D-designed stamp molds. We find the optimal conditions enabling the formation of enclosed channels, including round shape pattern and inter-pattern distance of 10 mm of stamp design, contact time of 0.5 min, and spacer height of 300 µm of double-sided patterning procedure. As a proof of concept, this enclosed 3D-μPAD is used for the simultaneous colorimetric detection of heavy metal ions in a concentration range of 0.1-2000 ppm, including nickel (Ni2+), copper (Cu2+), mercury (Hg2+), and radioactive isotope cesium-137 ions (Cs+). We confirm that qualitative analysis and image-based quantitative analysis with high reliability are possible through rapid color changes within 3 min. The limits of detection (LOD) for 0.55 ppm of Ni2+, 5.05 ppm of Cu2+, 0.188 ppm of Hg2+, and 0.016 ppm of Cs+ are observed, respectively. In addition, we confirm that the analysis is highly reliable in a wide range of ion concentrations with CV values below 3% for Ni2+ (0.56%), Cu2+ (0.45%), Hg2+ (1.35%), and Cs+ (2.18%). This method could be a promising technique to develop a 3D-μPAD with various applications as a primary early analysis device in the environmental and biological industries.
Collapse
Affiliation(s)
- Jinsol Choi
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeollanam-do, Republic of Korea;
| | - Eun-Ho Lee
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Republic of Korea;
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Republic of Korea;
- Future Environment and Energy Research Institute, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Republic of Korea
| | - Heon-Ho Jeong
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeollanam-do, Republic of Korea;
| |
Collapse
|
14
|
Economou A, Kokkinos C, Bousiakou L, Hianik T. Paper-Based Aptasensors: Working Principles, Detection Modes, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7786. [PMID: 37765843 PMCID: PMC10536119 DOI: 10.3390/s23187786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Aptamers are short oligonucleotides designed to possess high binding affinity towards specific target compounds (ions, molecules, or cells). Due to their function and unique advantages, aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site and point-of-care applications. The present work aims to provide a comprehensive overview of paper-based aptasensors. The review describes the fabrication methods and working principles of paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection used in conjunction with aptasensing PADs, and representative applications for the detection of ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are also discussed.
Collapse
Affiliation(s)
- Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Leda Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, P.O. Box 60037, 15130 Athens, Greece;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia;
| |
Collapse
|
15
|
Hemmateenejad B, Rafatmah E, Shojaeifard Z. Microfluidic paper and thread-based separations: Chromatography and electrophoresis. J Chromatogr A 2023; 1704:464117. [PMID: 37300912 DOI: 10.1016/j.chroma.2023.464117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.
Collapse
|
16
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Woolf MS, Dignan LM, Karas SM, Lewis HM, Kim SN, Geise GM, DeMers HL, Hau D, Gates-Hollingsworth MA, AuCoin DP, Landers JP. Digital image analysis for biothreat detection via rapid centrifugal microfluidic orthogonal flow immunocapture. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1870-1880. [PMID: 36975002 DOI: 10.1039/d3ay00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report clear proof-of-principle for centrifugally-driven, multiplexed, paper-based orthogonal flow sandwich-style immunocapture (cOFI) and colorimetric detection of Zaire Ebola virus-like particles. Capture antibodies are immobilized onto nanoporous nitrocellulose membranes that are then laminated into polymeric microfluidic discs to yield ready-to-use analytical devices. Fluid flow is controlled solely by rotational speed, obviating the need for complex pneumatic pumping systems, and providing more precise flow control than with the capillary-driven flow used in traditional lateral flow immunoassays (LFIs). Samples containing the antigen of interest and gold nanoparticle-labeled detection antibodies are pumped centrifugally through the embedded, prefunctionalized membrane where they are subsequently captured to generate a positive, colorimetric signal. When compared to the equivalent LFI counterparts, this cOFI approach generated immunochromatographic colorimetric responses that are objectively darker (saturation), more intense (grayscale), and less variable regarding total area of the color response. We also describe an image analysis approach that enables access to rich color data and area statistics without the need for a commercial 'strip reader' or custom-written image analysis algorithms. Instead, our analytical method exploits inexpensive equipment (e.g., smart phone, flatbed scanner, etc.) and freely available software (Fiji distribution of ImageJ) to permit characterization of immunochromatographic responses that includes multiple color metrics, offering insights beyond typical grayscale analysis. The findings reported here stand as clear proof-of-principle for the feasibility of disc-based, centrifugally driven orthogonal flow through a membrane with immunocapture (cOFI) and colorimetric readout of a sandwich-type immunoassay in less than 15 minutes. Once fully developed, this cOFI platform could render a faster, more accurate diagnosis, while processing multiple samples simul-taneously.
Collapse
Affiliation(s)
- M Shane Woolf
- Department of Chemistry, University of Virginia, USA
| | - Leah M Dignan
- Department of Chemistry, University of Virginia, USA
| | - Scott M Karas
- Department of Chemistry, University of Virginia, USA
| | | | - Sabrina N Kim
- Department of Chemistry, University of Virginia, USA
| | | | - Haley L DeMers
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | | | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, USA
- Department of Mechanical Engineering, University of Virginia, USA
- Department of Pathology, University of Virginia, USA
| |
Collapse
|
18
|
Assi N, Rypar T, Macka M, Adam V, Vaculovicova M. Microfluidic paper-based fluorescence sensor for L-homocysteine using a molecularly imprinted polymer and in situ-formed fluorescent quantum dots. Talanta 2023; 255:124185. [PMID: 36634429 DOI: 10.1016/j.talanta.2022.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Microfluidic paper-based analytical devices modified with molecularly imprinted polymers (μPADs@MIPs) were developed for fluorescent detection of targeted thiols via in situ UV-induced formation of quantum dots (μPADs@MIPs@QDs). The selectivity enhancement by the MIP layer formed on the filter paper surface was demonstrated for the isolation of L-homocysteine from wine. Followed by the addition of metal precursors solution (Zn/Cd/Cu) and UV irradiation, fluorescent quantum dots were formed thus enabling quantitative detection of the thiol (serving as a QD capping agent). The effect of different semiconductors was investigated to achieve a lower band gap and higher fluorescence intensity. Increasing fluorescence intensity in the presence of thiol groups was obtained for the following precursors mixture composition: ZnCdCu/S > ZnCd/S > ZnCu/S > ZnS. The proposed method has a good relationship between the fluorescence intensity of ZnCdCu/S QDs and L-homocysteine in a linear range from 0.74 to 7.40 μM with a limit of detection (LOD) and quantification (LOQ) of 0.51 and 1.71 μM respectively. This method was applied for the determination of L-homocysteine in white wine with RSD under 6.37%.
Collapse
Affiliation(s)
- Navid Assi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Mirek Macka
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic.
| |
Collapse
|
19
|
Feng J, Jiang H, Jin Y, Rong S, Wang S, Wang H, Wang L, Xu W, Sun B. A device-independent method for the colorimetric quantification on microfluidic sensors using a color adaptation algorithm. Mikrochim Acta 2023; 190:148. [PMID: 36952027 DOI: 10.1007/s00604-023-05731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
A general and adaptable method is proposed to reliably extract quantitative information from smartphone images of microfluidic sensors. By analyzing and processing the color information of selected standard substances, the influence of light conditions, device differences, and human factors could be significantly reduced. Machine learning and multivariate fitting methods were proved to be effective for chroma correction, and a key element was the training of sample size and the fitting form, respectively. A custom APP was developed and validated using a high-sensitivity chromium ion quantification paper chip. The average chroma deviations under different conditions were reduced by more than 75% in RGB color space, and the concentration test error was reduced by more than half compared with the commonly used method. The proposed approach could be a beneficial supplement to existing and potential colorimetry-based detection methods.
Collapse
Affiliation(s)
- Junjie Feng
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China.
| | - Huiyun Jiang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Yan Jin
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Shenghui Rong
- Ocean University of China, School of Electronic Engineering, 238 Songling Road, Qingdao, 266100, China
| | - Shiqiang Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Haozhi Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Lin Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Wei Xu
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Bing Sun
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China.
| |
Collapse
|
20
|
Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. BIOSENSORS 2023; 13:387. [PMID: 36979600 PMCID: PMC10046104 DOI: 10.3390/bios13030387] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (μPADs) have been developed to be used in point-of-care (POC) technologies. μPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. μPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.
Collapse
Affiliation(s)
- Bilge Asci Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Aysenur Yardim
- Department of Bioengineering, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
- Central Research Test and Analysis Laboratory Application, Research Center, Ege University, Izmir 35100, Turkey
| |
Collapse
|
21
|
Silverio V, Canane PAG, Martins TA, Afonso R, Cardoso S, Batista E. Development of a microfluidic electroosmosis pump on a chip for steady and continuous fluid delivery. BIOMED ENG-BIOMED TE 2023; 68:79-90. [PMID: 36525637 DOI: 10.1515/bmt-2022-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Infusion therapy is the most common form of therapy used in health care. However, the existing infusion devices show higher flow discrepancies as flow rates decrease to a few nL min-1. As a result, dosing errors can contribute to the morbidity and mortality of patients. In the scope of project 18HLT08 MeDD II - Metrology for drug delivery, this investigation aims at the development of a silicon microchip flow pump capable of steadily and continuously dispense very low flow rates of a few nL min-1. The fabrication methodologies explored here use a combination of typical cleanroom micro/nanofabrication techniques and off-the-shelf equipment. Preliminary tests show flow rates as low as 45 nL min-1 can be obtained in this microfluidic electroosmotic pump. The experimental flow rates are in good agreement with results predicted by multiphysics simulation, with less than 8% deviation ratio. This cost effective electroosmotic micropump has the potential to act as a steady and continuous drug delivery system to neonatal patients as well as to organs on chip (OoC), determining the stability of the shear stress imposed on the cells or the right cell culture medium conditions.
Collapse
Affiliation(s)
- Vania Silverio
- INESC MN Microsistemas e Nanotecnologias and Department of Physics, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Ruben Afonso
- INESC MN Microsistemas e Nanotecnologias, Lisbon, Portugal
| | - Susana Cardoso
- INESC MN Microsistemas e Nanotecnologias and Department of Physics, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
22
|
Wu K, He X, Wang J, Pan T, He R, Kong F, Cao Z, Ju F, Huang Z, Nie L. Recent progress of microfluidic chips in immunoassay. Front Bioeng Biotechnol 2022; 10:1112327. [PMID: 36619380 PMCID: PMC9816574 DOI: 10.3389/fbioe.2022.1112327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microfluidic chip technology is a technology platform that integrates basic operation units such as processing, separation, reaction and detection into microchannel chip to realize low consumption, fast and efficient analysis of samples. It has the characteristics of small volume need of samples and reagents, fast analysis, low cost, automation, portability, high throughout, and good compatibility with other techniques. In this review, the concept, preparation materials and fabrication technology of microfluidic chip are described. The applications of microfluidic chip in immunoassay, including fluorescent, chemiluminescent, surface-enhanced Raman spectroscopy (SERS), and electrochemical immunoassay are reviewed. Look into the future, the development of microfluidic chips lies in point-of-care testing and high throughput equipment, and there are still some challenges in the design and the integration of microfluidic chips, as well as the analysis of actual sample by microfluidic chips.
Collapse
Affiliation(s)
- Kaimin Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Xuliang He
- Zhuzhou People's Hospital, Zhuzhou, China
| | - Jinglei Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ran He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feizhi Kong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feiye Ju
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
23
|
Sinha A, Stavrakis AK, Simić M, Kojić S, Stojanović GM. Gold Leaf-Based Microfluidic Platform for Detection of Essential Oils Using Impedance Spectroscopy. BIOSENSORS 2022; 12:1169. [PMID: 36551136 PMCID: PMC9776385 DOI: 10.3390/bios12121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Drug delivery systems are engineered platforms for the controlled release of various therapeutic agents. This paper presents a conductive gold leaf-based microfluidic platform fabricated using xurography technique for its potential implication in controlled drug delivery operations. To demonstrate this, peppermint and eucalyptus essential oils (EOs) were selected as target fluids, which are best known for their medicinal properties in the field of dentistry. The work takes advantage of the high conductivity of the gold leaf, and thus, the response characteristics of the microfluidic chip are studied using electrochemical impedance spectroscopy (EIS) upon injecting EOs into its micro-channels. The effect of the exposure time of the chip to different concentrations (1% and 5%) of EOs was analyzed, and change in electrical resistance was measured at different time intervals of 0 h (the time of injection), 22 h, and 46 h. It was observed that our fabricated device demonstrated higher values of electrical resistance when exposed to EOs for longer times. Moreover, eucalyptus oil had stronger degradable effects on the chip, which resulted in higher electrical resistance than that of peppermint. 1% and 5% of Eucalyptus oil showed an electrical resistance of 1.79 kΩ and 1.45 kΩ at 10 kHz, while 1% and 5% of peppermint oil showed 1.26 kΩ and 1.07 kΩ of electrical resistance at 10 kHz respectively. The findings obtained in this paper are beneficial for designing suitable microfluidic devices to expand their applications for various biomedical purposes.
Collapse
Affiliation(s)
- Ankita Sinha
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | | | | | | | | |
Collapse
|
24
|
Microfluidics in smart packaging of foods. Food Res Int 2022; 161:111873. [DOI: 10.1016/j.foodres.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
25
|
Electrochemical microfluidic paper-based analytical devices for tumor marker detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Khosravi H, Mehrdel P, Martínez JAL, Casals-Terré J. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. MEMBRANES 2022; 12:1074. [PMID: 36363629 PMCID: PMC9699251 DOI: 10.3390/membranes12111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.
Collapse
Affiliation(s)
- Hamid Khosravi
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Pouya Mehrdel
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Joan Antoni López Martínez
- Department of Mining, Industrial and ICT Engineering (EMIT), Universitat Politècnica de Catalunya (UPC), AV. Bases de Manresa 61-73, 08240 Manresa, Barcelona, Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
27
|
Saviñon-Flores AI, Saviñon-Flores F, Trejo G, Méndez E, Ţălu Ş, González-Fuentes MA, Méndez-Albores A. A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: Under the spotlight of point-of-care testing. Front Chem 2022; 10:1017305. [PMID: 36311415 PMCID: PMC9608872 DOI: 10.3389/fchem.2022.1017305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac troponin I (cTnI) is a biomarker widely related to acute myocardial infarction (AMI), one of the leading causes of death around the world. Point-of-care testing (POCT) of cTnI not only demands a short turnaround time for its detection but the highest accuracy levels to set expeditious and adequate clinical decisions. The analytical technique Surface-enhanced Raman spectroscopy (SERS) possesses several properties that tailor to the POCT format, such as its flexibility to couple with rapid assay platforms like microfluidics and paper-based immunoassays. Here, we analyze the strategies used for the detection of cTnI by SERS considering POCT requirements. From the detection ranges reported in the reviewed literature, we suggest the diseases other than AMI that could be diagnosed with this technique. For this, a section with information about cardiac and non-cardiac diseases with cTnI release, including their release kinetics or cut-off values are presented. Likewise, POCT features, the use of SERS as a POCT technique, and the biochemistry of cTnI are discussed. The information provided in this review allowed the identification of strengths and lacks of the available SERS-based point-of-care tests for cTnI and the disclosing of requirements for future assays design.
Collapse
Affiliation(s)
- Anel I. Saviñon-Flores
- Centro de Química-ICUAP- Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - G. Trejo
- Laboratory of Composite Materials and Functional Coatings, Center for Research and Technological Development in Electrochemistry (CIDETEQ), Querétaro, Mexico
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, Romania
| | - Miguel A. González-Fuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. González-Fuentes, ; Alia Méndez-Albores,
| | - Alia Méndez-Albores
- Centro de Química-ICUAP- Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. González-Fuentes, ; Alia Méndez-Albores,
| |
Collapse
|
28
|
Teepoo S, Sannok T, Arsawiset S. A portable device as a paper test strip platform with smartphone applicationfor detection of branched-chain amino acids in edible insects. Food Chem 2022; 405:134560. [DOI: 10.1016/j.foodchem.2022.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
|
29
|
Heidari-Bafroui H, Kumar A, Charbaji A, Smith W, Rahmani N, Anagnostopoulos C, Faghri M. A Parametric Study on a Paper-Based Bi-Material Cantilever Valve. MICROMACHINES 2022; 13:mi13091502. [PMID: 36144125 PMCID: PMC9506191 DOI: 10.3390/mi13091502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/01/2023]
Abstract
The novel paper-based Bi-Material Cantilever (B-MaC) valve allows the autonomous loading and control of multiple fluid reagents which contributes to the accurate operation of paper-based microfluidic devices utilized for biological and chemical sensing applications. In this paper, an extensive parametric study is presented to evaluate the effects of key geometric parameters of the valve, such as paper direction, cantilever width, paper type, tape type, and sample volume, in addition to the effects of relative humidity and temperature on the functionality of the B-MaC and to provide a better understanding of the rate of fluid flow and resulting deflection of the cantilever. Machine direction, cantilever width, paper type, and tape type were found to be important parameters that affect the B-MAC's activation time. It was also observed that the rate of fluid imbibition in the B-MaC is considerably affected by change in humidity for high (55 °C) and low (25 °C) temperatures, while humidity levels have no significant effect during imbibition in the B-MaC at an ambient temperature of 45 °C. It was also found that a minimum distance of 4 mm is required between the B-MaC and the stationary component to prevent accidental activation of the B-MaC prior to sample insertion when relative humidity is higher than 90% and temperature is lower than 35 °C. The rate of fluid imbibition that determines the wetted length of the B-MaC and the final deflection of the cantilever are critical in designing and fabricating point-of-care microfluidic paper-based devices. The B-MaC valve can be utilized in a fluidic circuit to sequentially load several reagents, in addition to the sample to the detection area.
Collapse
|
30
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
31
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:6232. [PMID: 36015999 PMCID: PMC9412717 DOI: 10.3390/s22166232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
The general objective of Analytical Chemistry, nowadays, is to obtain best-quality information in the shortest time to contribute to the resolution of real problems. In this regard, electrochemical biosensors are interesting alternatives to conventional methods thanks to their great characteristics, both those intrinsically analytical (precision, sensitivity, selectivity, etc.) and those more related to productivity (simplicity, low costs, and fast response, among others). For many years, the scientific community has made continuous progress in improving glucose biosensors, being this analyte the most important in the biosensor market, due to the large amount of people who suffer from diabetes mellitus. The sensitivity of the electrochemical techniques combined with the selectivity of the enzymatic methodologies have positioned electrochemical enzymatic sensors as the first option. This review, focusing on the electrochemical determination of glucose using paper-based analytical devices, shows recent approaches in the use of paper as a substrate for low-cost biosensing. General considerations on the principles of enzymatic detection and the design of paper-based analytical devices are given. Finally, the use of paper in enzymatic electrochemical biosensors for glucose detection, including analytical characteristics of the methodologies reported in relevant articles over the last years, is also covered.
Collapse
Affiliation(s)
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
32
|
A smartphone based-paper test strip chemosensor coupled with gold nanoparticles for the Pb2+ detection in highly contaminated meat samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Development of a Paper-Based Analytical Method for the Selective Colorimetric Determination of Bismuth in Water Samples. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel, direct and simple colorimetric method employing μicroanalytical paper-based devices (μ-PADs) for the selective determination of bismuth is described. The suggested method exploits the colorimetric variation of bismuth after its rapid reaction with methyl thymol blue (MTB) in an acidic medium (pH ranging between 0.7 and 3.0), modified with nitric acid, on the surface of a paper device at room temperature. The devices are low cost, composed of chromatographic paper and wax barriers and the analytical protocol is easily applicable with minimal technical expertise and without the need for experimental apparatus. The user must add a test sample and read the color intensity of the colored Bi(III)–MTB complex formed at the sensing area using a simple imaging device such as a flatbed scanner. Various chemical variables, such as HNO3 and MTB concentration, reaction time, ionic strength, detection zone size and photo-capture detector are optimized. A study of interfering ions such as K+, Na+, Ca2+, Mg2+, Cl−, SO42− and HCO3− was also conducted. The stability of the paper devices is also studied in different maintenance conditions with particularly satisfactory results, rendering the method suitable for field analysis. The detection limits are as low as 3.0 mg L−1 with very satisfactory precision, ranging from 4.0% (intra-day) to 5.5% (inter-day). Natural water samples are successfully analyzed, and bismuth percentage recoveries were calculated in the range of 82.8 to 115.4%.
Collapse
|
34
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
35
|
Iles AH, He PJW, Katis IN, Horak P, Eason RW, Sones CL. Optimization of flow path parameters for enhanced sensitivity lateral flow devices. Talanta 2022; 248:123579. [PMID: 35660999 DOI: 10.1016/j.talanta.2022.123579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Lateral flow devices (LFDs) or lateral flow tests (LFTs) are one of the most widely used biosensor platforms for point-of-care (POC) diagnostics. The basic LFD design has remained largely unchanged since its first appearance, and this has limited LFD use in clinical applications due to a general lack of analytical sensitivity. We report here a comprehensive study of the use of laser-patterned geometric control barriers that influence the flow dynamics within an LFD, with the specific aim of enhancing LFD sensitivity and lowering the limit of detection (LOD). This control of sample flow produces an increase in the time available for optimizing the binding kinetics of the implemented assay. The geometric modification to the flow path is in the form of a constriction that is produced by depositing a photo-sensitive polymer onto the nitrocellulose membrane which when polymerized, creates impermeable barrier walls through the depth of the membrane. Both the position of the constriction within the flow path and the number of constrictions allow for an increase in the sensitivity because of a slower overall flow rate within the test and a larger volume of sample per unit width of the test line. For these high sensitivity LFDs (HS-LFD), through optimization of the constriction position and addition of a second constriction we attained a 62% increase in test line color intensity for the detection of procalcitonin (PCT) and were also able to lower the LOD from 10 ng/mL to 1 ng/mL. In addition, of relevance for future commercial exploitation, this also significantly decreases the antibody consumption per device leading to reduced costs for test production. We have further tested our HS-LFD with contrived human samples, validating its application for future clinical use.
Collapse
Affiliation(s)
- Alice H Iles
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK.
| | - Peijun J W He
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Ioannis N Katis
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Peter Horak
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Robert W Eason
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| | - Collin L Sones
- Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
36
|
Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, we explore a new method for controlling fluid transport rate on paper-based analytical devices that enables both the delay and the acceleration of fluid flow. The delays were incorporated by wax printing linear patterns of variable width within the flow channel and melted to penetrate the paper. In this manner, the surface tension of the fluid decreases while its contact angle increases, causing a pressure drop along the fluid path that reduces capillary flow. The acceleration of flow was accomplished by overlaying hydrophobic stripes (prepared by wax printing and melting the wax) on the hydrophilic path (top or top–bottom). In this manner, the fluid was repelled from two dimensions (vertical and applicate), increasing the flow rate. The combination of these methods on the same devices could adjust wicking time in intermediate time internals. The method enabled a wide timing of fluid transport, accomplishing a change in wicking times that extended from −41% to +259% compared to open paper channels. As a proof of concept, an enzymatic assay of glucose was used to demonstrate the utility of these fluid control methods in kinetic methods of analysis.
Collapse
|
38
|
Woolf MS, Dignan LM, Karas SM, Lewis HM, Hadley KC, Nauman AQ, Gates-Hollingsworth MA, AuCoin DP, Green HR, Geise GM, Landers JP. Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform. MICROMACHINES 2022; 13:487. [PMID: 35334778 PMCID: PMC8950265 DOI: 10.3390/mi13030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
To bring to bear the power of centrifugal microfluidics on vertical flow immunoassays, control of flow orthogonally through nanoporous membranes is essential. The on-disc approach described here leverages the rapid print-cut-laminate (PCL) disc fabrication and prototyping method to create a permanent seal between disc materials and embedded nanoporous membranes. Rotational forces drive fluid flow, replacing capillary action, and complex pneumatic pumping systems. Adjacent microfluidic features form a flow path that directs fluid orthogonally (vertically) through these embedded membranes during assay execution. This method for membrane incorporation circumvents the need for solvents (e.g., acetone) to create the membrane-disc bond and sidesteps issues related to undesirable bypass flow. In other recently published work, we described an orthogonal flow (OF) platform that exploited embedded membranes for automation of enzyme-linked immunosorbent assays (ELISAs). Here, we more fully characterize flow patterns and cellulosic membrane behavior within the centrifugal orthogonal flow (cOF) format. Specifically, high-speed videography studies demonstrate that sample volume, membrane pore size, and ionic composition of the sample matrix significantly impact membrane behavior, and consequently fluid drainage profiles, especially when cellulosic membranes are used. Finally, prototype discs are used to demonstrate proof-of-principle for sandwich-type antigen capture and immunodetection within the cOF system.
Collapse
Affiliation(s)
- Michael Shane Woolf
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
| | - Leah M. Dignan
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
| | - Scott M. Karas
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
| | - Hannah M. Lewis
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
| | - Kevyn C. Hadley
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
| | - Aeren Q. Nauman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
- TeGrex Technologies, Charlottesville, VA 22903, USA
| | | | - David P. AuCoin
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA; (M.A.G.-H.); (D.P.A.); (H.R.G.)
| | - Heather R. Green
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA; (M.A.G.-H.); (D.P.A.); (H.R.G.)
| | - Geoffrey M. Geise
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - James P. Landers
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (L.M.D.); (S.M.K.); (H.M.L.); (K.C.H.); (A.Q.N.); (J.P.L.)
- Department of Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
39
|
Wang Y, Ye D, Zhu X, Yang Y, Qin C, Chen R, Liao Q. Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2677-2685. [PMID: 35168321 DOI: 10.1021/acs.langmuir.1c03403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have quickly been an excellent choice for point-of-care diagnostic platforms ever since they appeared. Because capillary force is the main driving force for the transport of analytes in μPADs, low spontaneous imbibition rates may limit the detection sensitivity. Therefore, quantitative understanding of internal spontaneous capillary flow progress is requisite for designing sensitive and accurate μPADs. In this work, experimental and numerical studies have been performed to investigate the capillary flow in a typical filter paper. We use light-transmitting imaging technology to study wetting saturation changes in the paper. Our experimental results show an obvious transition of a saturated wetting front into an unsaturated wetting front as the imbibition proceeds. We find that the single-phase Darcy model considerably overestimates the temporal wetting penetration depths. Alternatively, we use the Richards equation together with the two-phase flow material properties that are obtained from the image-based pore-network modeling of the filter paper. Moreover, we have considered a dynamic term in the capillary pressure due to strong wetting dynamics in spontaneous imbibition. As a result, the numerical predictions of spontaneous imbibition in the paper are significantly improved. Our studies provide insights into the development of a quantitative spontaneous imbibition model for μPADs applications.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Chaozhong Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
- School of Resources and Safety Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
40
|
Weng CH, Hsu PP, Huang AY, Lin JL. Paper-Based Microfluidics Perform Mixing Effects by Utilizing Planar Constricted-Expanded Structures to Enhance Chaotic Advection. SENSORS 2022; 22:s22031028. [PMID: 35161772 PMCID: PMC8837979 DOI: 10.3390/s22031028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to design and fabricate planar constricted–expanded structures that are integrated into paper-based channels in order to enhance their chaotic advection and improve their mixing performance. Chromatography papers were used to print paper-based microfluidics using a solid-wax printer. Three different constricted–expanded structures—i.e., zigzag, crossed, and curved channels—were designed in order to evaluate their mixing performance in comparison with that of straight channels. A numerical simulation was performed in order to investigate the mixing mechanism, and to examine the ways in which the planar constricted–expanded structures affected the flow patterns. The experimental and numerical results indicated that the proposed structures can successfully mix confluents. The experimental results revealed that the mixing indices (σ) rose from the initial 20.1% (unmixed) to 34.5%, 84.3%, 87.3%, and 92.4% for the straight, zigzag, curved, and cross-shaped channels, respectively. In addition, the numerical calculations showed a reasonable agreement with the experimental results, with a variation in the range of 1.0–11.0%. In future, we hope that the proposed passive paper-based mixers will be a crucial component in the application of paper-based microfluidic devices.
Collapse
Affiliation(s)
- Chen-Hsun Weng
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Pei-Pei Hsu
- Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (P.-P.H.); (A.-Y.H.)
| | - An-Yu Huang
- Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (P.-P.H.); (A.-Y.H.)
| | - Jr-Lung Lin
- Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (P.-P.H.); (A.-Y.H.)
- Correspondence: ; Tel.: +886-7-6577-711 (ext. 3320); Fax: +886-7-6578-853
| |
Collapse
|
41
|
Gerlero GS, Valdez AR, Urteaga R, Kler PA. Validity of Capillary Imbibition Models in Paper-Based Microfluidic Applications. Transp Porous Media 2022. [DOI: 10.1007/s11242-021-01724-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Couple batch-injection analysis and microfluidic paper-based analytical device: A simple and disposable alternative to conventional BIA apparatus. Talanta 2021; 240:123201. [PMID: 34998146 DOI: 10.1016/j.talanta.2021.123201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Under controlled dispersion conditions, sample injection towards a detector opened essential fields for the Analytical Chemistry fast development methods. Flow injection analysis (FIA) and batch injection analysis (BIA) systems are crucial for injecting the sample in these analytical methods. The BIA system eliminated the flow manifold, with samples injected directly onto the detector inside the batch injection cell. Paper was slightly evaluated coupled to FIA, and no reports were found associated with BIA. Still, it can potentially reduce the BIA manifold by removing the batch injection cell based on the capillarity properties to disperse the injected solution over the detection system. Hence, this article reported the first work coupling batch-injection analysis and microfluidic paper-based analytical device (BIA-μPAD) with pencil-drawn electrodes directly attached to the paper using a CO2 laser pre-treated chromatographic paper. The laser pretreatment of the paper (optimized conditions: 6.5% laser power, 12 mm s-1 scan rate, and 12 mm output distance) was essential to enhance the electrochemical response for ferri/ferrocyanide redox couple and paracetamol (PAR), as shown by spectroscopic and electrochemical techniques. The proposed BIA-μPAD was evaluated using pharmaceutical paracetamol samples as proof-of-concept (optimized conditions: 15 μL injected volume and 6.4 μL s-1 dispensing rate), obtaining good linearity (R = 0.9961) and recovery values ranging from 95 to 103%. Repeatability (n = 16) and reproducibility (n = 9) tests with 1 mmol L-1 PAR also presented well relative standard deviation (RSD) results of 5.1% and 6.6%, respectively. A sampling frequency of 76 h-1 was obtained, which is a similar value compared with conventional BIA apparatus. Limits of detection and quantification were estimated in 0.046 and 0.154 mmol L-1, respectively. Additionally, an improvement in the current response and the sample throughput was observed when comparing FIA and BIA-μPADs, attesting the applicability of the proposed device and opening for new possibilities related to paper-based devices coupled with flow techniques.
Collapse
|
43
|
Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm ® Hot Pressing. MICROMACHINES 2021; 13:mi13010048. [PMID: 35056213 PMCID: PMC8780184 DOI: 10.3390/mi13010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
Paper-based analytical devices have been substantially developed in recent decades. Many fabrication techniques for paper-based analytical devices have been demonstrated and reported. Herein, we report a relatively rapid, simple, and inexpensive method for fabricating paper-based analytical devices using parafilm hot pressing. We studied and optimized the effect of the key fabrication parameters, namely pressure, temperature, and pressing time. We discerned the optimal conditions, including a pressure of 3.8 MPa, temperature of 80 °C, and 3 min of pressing time, with the smallest hydrophobic barrier size (821 µm) being governed by laminate mask and parafilm dispersal from pressure and heat. Physical and biochemical properties were evaluated to substantiate the paper functionality for analytical devices. The wicking speed in the fabricated paper strips was slightly lower than that of non-processed paper, resulting from a reduced paper pore size after hot pressing. A colorimetric immunological assay was performed to demonstrate the protein binding capacity of the paper-based device after exposure to pressure and heat from the fabrication. Moreover, mixing in a two-dimensional paper-based device and flowing in a three-dimensional counterpart were thoroughly investigated, demonstrating that the paper devices from this fabrication process are potentially applicable as analytical devices for biomolecule detection. Fast, easy, and inexpensive parafilm hot press fabrication presents an opportunity for researchers to develop paper-based analytical devices in resource-limited environments.
Collapse
|
44
|
Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021; 194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted much attention over the past decade. They embody many advantages, such as abundance, portability, cost-effectiveness, and ease of fabrication, making them superior for clinical diagnostics, environmental monitoring, and food safety assurance. Despite these advantages, μPADs lack the high sensitivity to detect many analytes at trace levels than other commercial analytical instruments such as mass spectrometry. Therefore, a preconcentration step is required to enhance their sensitivity. This review focuses on the techniques used to separate and preconcentrate the analytes onto the μPADs, such as ion concentration polarization, isotachophoresis, and field amplification sample stacking. Other separations and preconcentration techniques, including liquid-solid and liquid-liquid extractions coupled with μPADs, are also reviewed and discussed. In addition, the fabrication methods, advantages, disadvantages, and the performance evaluation of the μPADs concerning their precision and accuracy were highlighted and critically assessed. Finally, the challenges and future perspectives have been discussed.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
45
|
Solin K, Borghei M, Imani M, Kämäräinen T, Kiri K, Mäkelä T, Khakalo A, Orelma H, Gane PAC, Rojas OJ. Bicomponent Cellulose Fibrils and Minerals Afford Wicking Channels Stencil-Printed on Paper for Rapid and Reliable Fluidic Platforms. ACS APPLIED POLYMER MATERIALS 2021; 3:5536-5546. [PMID: 34796333 PMCID: PMC8593863 DOI: 10.1021/acsapm.1c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 05/14/2023]
Abstract
Flexible and easy-to-use microfluidic systems are suitable options for point-of-care diagnostics. Here, we investigate liquid transport in fluidic channels produced by stencil printing on flexible substrates as a reproducible and scalable option for diagnostics and paper-based sensing. Optimal printability and flow profiles were obtained by combining minerals with cellulose fibrils of two different characteristic dimensions, in the nano- and microscales, forming channels with ideal wettability. Biomolecular ligands were easily added by inkjet printing on the channels, which were tested for the simultaneous detection of glucose and proteins. Accurate determination of clinically relevant concentrations was possible from linear calibration, confirming the potential of the introduced paper-based diagnostics. The results indicate the promise of simple but reliable fluidic channels for drug and chemical analyses, chromatographic separation, and quality control.
Collapse
Affiliation(s)
- Katariina Solin
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
- VTT
Technical Research Centre of Finland Ltd., Functional Cellulose, Tietotie 4E, FI-02044 Espoo, Finland
| | - Maryam Borghei
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
| | - Monireh Imani
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
| | - Kaisa Kiri
- VTT
Technical Research Centre of Finland Ltd., Micronova, Tietotie 3, FI-02150 Espoo, Finland
| | - Tapio Mäkelä
- VTT
Technical Research Centre of Finland Ltd., Micronova, Tietotie 3, FI-02150 Espoo, Finland
| | - Alexey Khakalo
- VTT
Technical Research Centre of Finland Ltd., Functional Cellulose, Tietotie 4E, FI-02044 Espoo, Finland
| | - Hannes Orelma
- VTT
Technical Research Centre of Finland Ltd., Functional Cellulose, Tietotie 4E, FI-02044 Espoo, Finland
| | - Patrick A. C. Gane
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076 Espoo, Finland
- The
Bioproducts Institute, Departments of Chemical and Biological Engineering,
Chemistry and Wood Science, University of
British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
46
|
Soulis D, Trachioti M, Kokkinos C, Economou A, Prodromidis M. Single-Use Fluidic Electrochemical Paper-Based Analytical Devices Fabricated by Pen Plotting and Screen-Printing for On-Site Rapid Voltammetric Monitoring of Pb(II) and Cd(II). SENSORS (BASEL, SWITZERLAND) 2021; 21:6908. [PMID: 34696121 PMCID: PMC8539493 DOI: 10.3390/s21206908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
This work reports the fabrication of integrated electrochemical fluidic paper-based analytical devices (ePADs) using a marker pen drawing and screen-printing. Electrodes were deposited on paper using screen-printing with conductive carbon ink. Then, the desired fluidic patterns were formed on the paper substrate by drawing with a commercial hydrophobic marker pen using an inexpensive computer-controlled x-y plotter. The working electrode was characterized by cyclic voltammetry and scanning electron microscopy. The analytical utility of the electrochemical PADs is demonstrated through electrochemical determination of Pb(II) and Cd(II) by anodic stripping voltammetry. For this purpose, the sample was mixed with a buffer solution and a Bi(III) solution, applied to the test zone of the PAD, the metals were preconcentrated as a bismuth alloy on the electrode surface and oxidized by applying an anodic potential scan. The proposed manufacturing approach enables the large-scale fabrication of fit-for-purpose disposable PADs at low cost which can be used for rapid on-site environmental monitoring.
Collapse
Affiliation(s)
- Dionysios Soulis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.S.); (C.K.)
| | - Maria Trachioti
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (M.T.); (M.P.)
| | - Christos Kokkinos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.S.); (C.K.)
| | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (D.S.); (C.K.)
| | - Mamas Prodromidis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (M.T.); (M.P.)
| |
Collapse
|
47
|
Smartphone-Based Chemiluminescent Origami µPAD for the Rapid Assessment of Glucose Blood Levels. BIOSENSORS-BASEL 2021; 11:bios11100381. [PMID: 34677337 PMCID: PMC8533763 DOI: 10.3390/bios11100381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Microfluidic paper analytical devices (µPADs) represent one of the most appealing trends in the development of simple and inexpensive analytical systems for diagnostic applications at the point of care (POC). Herein, we describe a smartphone-based origami µPAD for the quantitative determination of glucose in blood samples based on the glucose oxidase-catalyzed oxidation of glucose leading to hydrogen peroxide, which is then detected by means of the luminol/hexacyanoferrate(III) chemiluminescent (CL) system. By exploiting the foldable µPAD format, a two-step analytical procedure has been implemented. First, the diluted blood sample was added, and hydrogen peroxide was accumulated, then the biosensor was folded, and a transport buffer was added to bring hydrogen peroxide in contact with CL reagents, thus promoting the CL reaction. To enable POC applicability, the reagents required for the assay were preloaded in the µPAD so that no chemicals handling was required, and a 3D-printed portable device was developed for measuring the CL emission using the smartphone’s CMOS camera. The µPAD was stable for 30-day storage at room temperature and the assay, displaying a limit of detection of 10 µmol L−1, proved able to identify both hypoglycemic and hyperglycemic blood samples in less than 20 min.
Collapse
|
48
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
49
|
Development of a High-Throughput Low-Cost Approach for Fabricating Fully Drawn Paper-Based Analytical Devices Using Commercial Writing Tools. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work reports the development and optimization of a rapid and low-cost pen-on-paper plotting approach for the fabrication of paper-based analytical devices (PADs) using commercial writing stationery. The desired fluidic patterns were drawn on the paper substrate with commercial marker pens using an inexpensive computer-controlled x–y plotter. For the fabrication of electrochemical PADs, electrodes were further deposited on the devices using a second x–y plotting step with commercial writing pencils. The effect of the fabrication parameters (type of paper, type of marker pen, type of pencil, plotting speed, number of passes, single- vs. double-sided plotting), the chemical resistance of the plotted devices to different solvents and the structural rigidity to multiple loading cycles were assessed. The analytical utility of these devices is demonstrated through application in optical sensing of total phenols using reflectance calorimetry and in electrochemical sensing of paracetamol and ascorbic acid. The proposed manufacturing approach is simple, low cost, flexible, rapid and fit-for-purpose and enables the fabrication of sub-“one-dollar” PADs with satisfactory mechanical and chemical resistance and good analytical performance.
Collapse
|
50
|
A New Direction in Microfluidics: Printed Porous Materials. MICROMACHINES 2021; 12:mi12060671. [PMID: 34201216 PMCID: PMC8229541 DOI: 10.3390/mi12060671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
In this work, the feasibility of a novel direction for microfluidics is studied by demonstrating a set of new methods to fabricate microfluidic systems. Similarly to microfluidic paper-based analytical devices, porous materials are being used. However, alternative porous materials and different printing methods are used here to give the material the necessary pattern to act as a microfluidic system. In this work, microfluidic systems were produced by the following three separate methods: (1) by curing a porous monolithic polymer sheet into a necessary pattern with photolithography, (2) by screen printing silica gel particles with gypsum, and (3) by dispensing silica gel particles with polyvinyl acetate binder using a modified 3D printer. Different parameters of the printed chips were determined (strength of the printed material, printing accuracy, printed material height, wetting characteristics, repeatability) to evaluate whether the printed chips were suitable for use in microfluidics. All three approaches were found to be suitable, and therefore the novel approach to microfluidics was successfully demonstrated.
Collapse
|