1
|
Mirković S, Tadić V, Milenković MT, Ušjak D, Racić G, Bojović D, Žugić A. Antimicrobial Activities of Essential Oils of Different Pinus Species from Bosnia and Herzegovina. Pharmaceutics 2024; 16:1331. [PMID: 39458660 PMCID: PMC11511195 DOI: 10.3390/pharmaceutics16101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The emergence of antimicrobial resistance has urged researchers to explore new antimicrobial agents, such as essential oils (EOs). The aim of this study was to examine chemical composition and antimicrobial activity of the EOs from the needles and green cones of four Pinus species (Pinus mugo Turra., P. nigra J.F., P. syilvestris L., and P. halepensis Miller) from Bosnia and Herzegovina. METHODS Chemical profiles of EOs were assessed by gas chromatography, while microdilution method was used to test their antimicrobial activity. A synergistic action of EOs and gentamicin was investigated by the checkerboard assay. RESULTS The chemical composition of the tested EOs showed a high percentage of α-pinene, (E)-caryophyllene, limonene, germacrene D, myrcene, and δ-3-carene. EO from green cones of P. sylvestris showed high efficiency against S. aureus and E. faecalis. The MIC of P. nigra cones' EO was 100 μg/mL against E. coli. The EO of P. halepensis green cones demonstrated the strongest activity against E. faecalis. EOs of P. halepensis needles and green cones exhibited the highest activity against C. albicans. Further, synergistic interaction was detected in combination of the selected EOs/gentamicin toward S. aureus and K. pneumoniae. CONCLUSIONS Among the tested EOs, oils of P. sylvestris cones and P. halepensis cones and needles showed the greatest antimicrobial activity. The same EOs and EO from P. nigra cones displayed synergistic potential in combination with gentamicin, supporting their utilization as antimicrobial agents alone or in combination with antibiotics, which is in line with their ethnopharmacological usage and circular bioeconomy principles.
Collapse
Affiliation(s)
- Snježana Mirković
- PHI Hospital “Sveti Vračevi”, Srpske vojske 53, 76300 Bijeljina, Bosnia and Herzegovina
| | - Vanja Tadić
- Institute of Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Marina T. Milenković
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Dušan Ušjak
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Gordana Racić
- Faculty of Ecological Agriculture, University Educons, Vojvode Putnika 87, 21208 Novi Sad, Serbia
| | - Dragica Bojović
- Faculty for Food Technology, Food Safety and Ecology, University of Donja Gorica, Oktoih 1, 20000 Podgorica, Montenegro
| | - Ana Žugić
- Institute of Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Cho YR, Lee S, Kim H, Park EC, Jeong SY, Hamishehkar H, Jung SM, Kim KH. Pinuseldarone, a Clerodane-Type Diterpene from Pinus eldarica Needles and Phytochemicals as Novel Agents for Regulating Brown Adipogenesis and Thermogenesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:58-67. [PMID: 38159296 DOI: 10.1021/acs.jnatprod.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Phytochemical investigation of the MeOH extract of Pinus eldarica needles led to the isolation and identification of a new clerodane-type diterpene, pinuseldarone (1), along with a known flavonoid, 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2), through HPLC purification. The structure of the new compound 1 was elucidated using spectroscopic methods, including 1D and 2D NMR, as well as HRESIMS. Its absolute configuration was established through NOESY analysis and computational methods, including electronic circular dichroism (ECD) calculations and gauge-including atomic orbital NMR chemical shift calculations, followed by DP4+ probability analysis. The metabolic implications of the isolated compounds were assessed using a cultured brown adipocyte model derived from murine brown adipose tissue. It was observed that treatment with dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (2) downregulates the adipogenic marker C/EBPδ and fatty acid transporter CD36, resulting in a significant reduction in lipid accumulation during brown adipocyte differentiation. However, pinuseldarone (1) treatment did not affect brown adipocyte differentiation. Interestingly, pretreatment with pinuseldarone (1) potentiated the pharmacological stimulation of brown adipocytes, seemingly achieved by sensitizing their response to β3-adrenoreceptor signaling. Therefore, our findings indicate that phytochemicals derived from P. eldarica needles could potentially serve as valuable compounds for adjusting the metabolic activity of brown adipose tissue, a vital component in maintaining whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Yeo Rang Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoju Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eon Chung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
de Veras BO, Moura GMDM, Barros AVD, Vanusa da Silva M, Assis PACD, Aguiar JCRDOFD, Navarro DMDAF, Ximenes RM, Wanderley AG, Oliveira MBMD, Lopes ACDS. Antinociceptive and anti-inflammatory activities of essential oil of the leaves of Amburana cearensis (Allemão) A.C. Smith. from the semi-arid region of Northeastern Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116858. [PMID: 37400005 DOI: 10.1016/j.jep.2023.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amburana cearensis (Allemão) A.C. Smith is a medicinal plant with wide distribution in South America, popularly known in Brazil as "cumaru" or "amburana de cheiro". In folk medicine, in the semi-arid region of Northeastern Brazil, infusions, teas and decoctions of leaves of Amburana cearensis have their practical use for treating fever, gastrointestinal disorders, inflammation, and inflammation pain. However, none of the ethnopharmacological properties has been scientifically evaluated using volatile compounds obtained from its leaves (essential oil). AIM OF THE STUDY This study investigated the chemical composition, acute oral toxicity, and antinociceptive and anti-inflammatory activities of the essential oil from the leaves of A. cearensis. MATERIAL AND METHODS The acute toxicity of the essential oil was investigated in mice. The antinociceptive effect was evaluated using the formalin test and, abdominal writhing induced by acetic acid, being investigated the possible mechanisms of action involved in antinociception. The acute anti-inflammatory effect was investigated through models of carrageenan-induced peritonitis, yeast-induced pyrexia, and carrageenan- and histamine-induced paw inflammation. RESULTS No acute toxicity was observed at doses up to 2000 mg/kg; p.o. The antinociceptive effect was statistically equal to morphine. In the formalin assay, the oil showed analgesic activity in the neurogenic and inflammatory phases, having as mechanisms the cholinergic, adenosinergic system, and ATP-sensitive potassium channels (K-ATP). In peritonitis, a reduction in TNF-α and IL-1β levels and leukocyte migration were observed. The antipyretic effect was statistically superior to dipyrone. The reduction in paw edema was statistically superior to the standard in both models. CONCLUSION The results obtained not only support the traditional use of the species in inflammatory conditions and pain in folk medicine but also demonstrate that this is a rich source of phytocomponents such as germacrone, which can be used as a natural and sustainable therapeutic agent with industrial applications.
Collapse
Affiliation(s)
- Bruno Oliveira de Veras
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Post-graduation in Biotechnology - RENORBIO, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | - Geovanna Maria de Medeiros Moura
- Department of Biochemistry, Laboratory Chemistry and Function of Bioactive Proteins, Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil
| | - Amanda Vieira de Barros
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Priscilla Anne Castro de Assis
- Department of Physiology and Pathology, Laboratory of Immunology and Cell Biology, Federal University of Paraiba, 58051-900, João Pessoa, Paraiba, Brazil
| | | | | | - Rafael Matos Ximenes
- Post-graduation in Biotechnology - RENORBIO, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09913-030, Diadema, São Paulo, Brazil
| | - Maria Betânia Melo de Oliveira
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina de Sousa Lopes
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Chen Y, Zhao J, Liu C, Wu D, Wang X. In-vitro antibacterial activity and mechanism of Monarda didyma essential oils against Carbapenem-resistant Klebsiella pneumoniae. BMC Microbiol 2023; 23:263. [PMID: 37730531 PMCID: PMC10512558 DOI: 10.1186/s12866-023-03015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
To fight the global epidemic of drug-resistant bacteria, essential oils have gained increasing attention as a new source of antibiotics. The antimicrobial activity of Monarda didyma essential oils (MDEO) for the Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were determined by agar disc diffusion assay and broth microdilution assay. To further understand MDEO efficacy, a time-growth curve was performed. The biofilm formation of CRKP were determined by crystalline violet staining method, additionally, changes in intracellular Adenosine triphosphate (ATP), protein, Alkaline phosphatase (AKP) activities, and membrane integrity were investigated to assess the influence of MDEO on cell membrane damage. Finally, the activities of key enzymes in the tricarboxylic acid (TCA) pathways and pentose phosphate (PPP) pathways were examined to determine the effect of MDEO on the respiratory metabolism of CRKP. This study presents the antibacterial mechanism of MDEO against CRKP with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 1.25 mg/ml. To understand MDEO efficacy, a time-kill kinetics approach was performed. The bactericidal effect of MDEO was evident at 2 h compared to the control at its MIC and 2MIC. Surface electron microscopic and ATP assay studies provided evidence for the multi-target action of MDEO against CRKP. MDEO could inhibit CRKP biofilm formation. MDEO could also cause irreversible damage to the CRKP cell membrane, resulting in the leakage of biological macromolecules (protein, ATP) and the reduction of intracellular enzymes (AKP) activities. Finally, MDEO affected the pathways of respiratory metabolism, such as PPP and TCA pathways. MDEO could reduce the activity of key enzymes (Glucose-6-phosphate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase) in the PPP and TCA pathways to exert its biological effects against CRKP. These results suggest MDEO can exert inhibitory effects on CRKP, and potential mechanisms of action including inhibition of biofilm formation, damage of cell membrane structure and inhibition of energy metabolism.
Collapse
Affiliation(s)
- Ying Chen
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, NO. 148 Xuefu Street, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, China
- The First Affiliated Hospital of Jiamusi University, NO 348 Dexiang street, Xiangyang district, Jiamusi, 154000, Heilongjiang Province, China
| | - Jinda Zhao
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, NO. 148 Xuefu Street, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, China
| | - Chenyu Liu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, NO. 148 Xuefu Street, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, China
| | - Dongmei Wu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, NO. 148 Xuefu Street, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, China.
| | - Xianhe Wang
- The First Affiliated Hospital of Jiamusi University, NO 348 Dexiang street, Xiangyang district, Jiamusi, 154000, Heilongjiang Province, China.
| |
Collapse
|
6
|
Torabiardekani N, Karami F, Khorram M, Zare A, Kamkar M, Zomorodian K, Zareshahrabadi Z. Encapsulation of Zataria multiflora essential oil in polyvinyl alcohol/chitosan/gelatin thermo-responsive hydrogel: Synthesis, physico-chemical properties, and biological investigations. Int J Biol Macromol 2023:125073. [PMID: 37245771 DOI: 10.1016/j.ijbiomac.2023.125073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Zataria multiflora essential oil is a natural volatile plant product whose therapeutic applications require a delivery platform. Biomaterial-based hydrogels have been extensively used in biomedical applications, and they are promising platforms to encapsulate essential oils. Among different hydrogels, intelligent hydrogels have recently attracted many interests because of their response to environmental stimuli such as temperature. Herein, Zataria multiflora essential oil is encapsulated in a polyvinyl alcohol/chitosan/gelatin hydrogel as a positive thermo-responsive and antifungal platform. According to the optical microscopic image, the encapsulated spherical essential oil droplets reveal a mean size of 1.10 ± 0.64 μm, which are in consistent with the SEM imaging results. Encapsulation efficacy and loading capacity are 98.66 % and 12.98 %, respectively. These results confirm the successful efficient encapsulation of the Zataria multiflora essential oil within the hydrogel. The chemical compositions of the Zataria multiflora essential oil and the fabricated hydrogel are analyzed by gas chromatography-mass spectroscopy (GC-MS) and Fourier transform infrared (FTIR) techniques. It is found that thymol (44.30 %) and γ-terpinene (22.62 %) are the main constituents of the Zataria multiflora essential oil. The produced hydrogel inhibits the metabolic activity of Candida albicans biofilms (~60-80 %), which can be related to the antifungal activity of the essential oil constituents and chitosan. Based on the rheological results, the produced thermo-responsive hydrogel shows a gel-sol viscoelastic transition at a temperature of 24.5 °C. This transition leads to a facile release of the loaded essential oil. The release test depicts that about 30 % of Zataria multiflora essential oil is released during the first 16 min. In addition, 2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrates that the designed thermo-sensitive formulation is biocompatible with high cell viability (over 96 %). The fabricated hydrogel can be deemed as a potential intelligent drug delivery platform for controlling cutaneous candidiasis due to antifungal effectiveness and less toxicity, which can be a promising alternative to traditional drug delivery systems.
Collapse
Affiliation(s)
| | - Forough Karami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Chemistry Department, Yasouj University, Yasouj, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Alireza Zare
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Milad Kamkar
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Oriola AO, Oyedeji AO. Essential Oils and Their Compounds as Potential Anti-Influenza Agents. Molecules 2022; 27:7797. [PMID: 36431899 PMCID: PMC9693178 DOI: 10.3390/molecules27227797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) are chemical substances, mostly produced by aromatic plants in response to stress, that have a history of medicinal use for many diseases. In the last few decades, EOs have continued to gain more attention because of their proven therapeutic applications against the flu and other infectious diseases. Influenza (flu) is an infectious zoonotic disease that affects the lungs and their associated organs. It is a public health problem with a huge health burden, causing a seasonal outbreak every year. Occasionally, it comes as a disease pandemic with unprecedentedly high hospitalization and mortality. Currently, influenza is managed by vaccination and antiviral drugs such as Amantadine, Rimantadine, Oseltamivir, Peramivir, Zanamivir, and Baloxavir. However, the adverse side effects of these drugs, the rapid and unlimited variabilities of influenza viruses, and the emerging resistance of new virus strains to the currently used vaccines and drugs have necessitated the need to obtain more effective anti-influenza agents. In this review, essential oils are discussed in terms of their chemistry, ethnomedicinal values against flu-related illnesses, biological potential as anti-influenza agents, and mechanisms of action. In addition, the structure-activity relationships of lead anti-influenza EO compounds are also examined. This is all to identify leading agents that can be optimized as drug candidates for the management of influenza. Eucalyptol, germacrone, caryophyllene derivatives, eugenol, terpin-4-ol, bisabolene derivatives, and camphecene are among the promising EO compounds identified, based on their reported anti-influenza activities and plausible molecular actions, while nanotechnology may be a new strategy to achieve the efficient delivery of these therapeutically active EOs to the active virus site.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa
| | | |
Collapse
|
8
|
Taboada-Castro H, Gil J, Gómez-Caudillo L, Escorcia-Rodríguez JM, Freyre-González JA, Encarnación-Guevara S. Rhizobium etli CFN42 proteomes showed isoenzymes in free-living and symbiosis with a different transcriptional regulation inferred from a transcriptional regulatory network. Front Microbiol 2022; 13:947678. [PMID: 36312930 PMCID: PMC9611204 DOI: 10.3389/fmicb.2022.947678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
A comparative proteomic study at 6 h of growth in minimal medium (MM) and bacteroids at 18 days of symbiosis of Rhizobium etli CFN42 with the Phaseolus vulgaris leguminous plant was performed. A gene ontology classification of proteins in MM and bacteroid, showed 31 and 10 pathways with higher or equal than 30 and 20% of proteins with respect to genome content per pathway, respectively. These pathways were for energy and environmental compound metabolism, contributing to understand how Rhizobium is adapted to the different conditions. Metabolic maps based on orthology of the protein profiles, showed 101 and 74 functional homologous proteins in the MM and bacteroid profiles, respectively, which were grouped in 34 different isoenzymes showing a great impact in metabolism by covering 60 metabolic pathways in MM and symbiosis. Taking advantage of co-expression of transcriptional regulators (TF’s) in the profiles, by selection of genes whose matrices were clustered with matrices of TF’s, Transcriptional Regulatory networks (TRN´s) were deduced by the first time for these metabolic stages. In these clustered TF-MM and clustered TF-bacteroid networks, containing 654 and 246 proteins, including 93 and 46 TFs, respectively, showing valuable information of the TF’s and their regulated genes with high stringency. Isoenzymes were specific for adaptation to the different conditions and a different transcriptional regulation for MM and bacteroid was deduced. The parameters of the TRNs of these expected biological networks and biological networks of E. coli and B. subtilis segregate from the random theoretical networks. These are useful data to design experiments on TF gene–target relationships for bases to construct a TRN.
Collapse
Affiliation(s)
- Hermenegildo Taboada-Castro
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Jeovanis Gil
- Division of Oncology, Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Leopoldo Gómez-Caudillo
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Juan Miguel Escorcia-Rodríguez
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Julio Augusto Freyre-González
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sergio Encarnación-Guevara
- Proteomics Laboratory, Program of Functional Genomics of Prokaryotes, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
- *Correspondence: Sergio Encarnacion Guevara,
| |
Collapse
|
9
|
Jeong SY, Na MW, Park EC, Kim JC, Kang DM, Hamishehkar H, Ahn MJ, Kim JK, Kim KH. Labdane-type Diterpenes from Pinus eldarica Needles and Their Anti- Helicobacter pylori Activity. ACS OMEGA 2022; 7:29502-29507. [PMID: 36033661 PMCID: PMC9404486 DOI: 10.1021/acsomega.2c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Pinus eldarica is a medicinal tree used in traditional herbal medicine for the treatment of bronchial asthma and various skin diseases. As part of our ongoing search for bioactive phytochemicals with novel structures in natural products, we performed a phytochemical analysis of the methanol (MeOH) extract from P. eldarica needles collected in Iran. Phytochemical investigation of the MeOH extract, aided by liquid chromatography-mass spectrometry-based analysis, resulted in the isolation and identification of three labdane-type diterpenes (1-3), including a new and relatively unique norlabdane-type diterpene with a peroxide moiety, eldaricoxide A (1). The chemical structures of the isolated labdane-type diterpenes were elucidated by analyzing the spectroscopic data from 1D and 2D NMR and high-resolution electrospray ionization-mass spectrometry. The absolute configuration of eldaricoxide A (1) was established by employing a computational method, including electronic circular dichroism calculation and specific optical rotation. An anti-Helicobacter pylori test was conducted, where compound 3 exhibited the most potent antibacterial activity against H. pylori strain 51, inducing 72.7% inhibition (MIC50 value of 92 μM), whereas eldaricoxide A (1) exhibited moderate antibacterial activity against H. pylori strain 51, inducing 54.5% inhibition (MIC50 value of 95 μM). These findings demonstrated that the identified bioactive labdane-type diterpenes 1 and 3 can be applied in the development of novel antibiotics against H. pylori for the treatment of gastric and duodenal ulcers.
Collapse
Affiliation(s)
- Se Yun Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myung Woo Na
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eon Chung Park
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Chul Kim
- KIST
Gangneung Institute of Natural Products, Natural Product Informatics
Research Center, Gangneung 25451, Republic of Korea
| | - Dong-Min Kang
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hamed Hamishehkar
- Drug
Applied Research Center, Tabriz University
of Medical Sciences, Tabriz 51656-65811, Iran
| | - Mi-Jeong Ahn
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung Kyu Kim
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Ullah O, Shah M, Rehman NU, Ullah S, Al-Sabahi JN, Alam T, Khan A, Khan NA, Rafiq N, Bilal S, Al-Harrasi A. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022; 27:molecules27165197. [PMID: 36014440 PMCID: PMC9414473 DOI: 10.3390/molecules27165197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022] Open
Abstract
The present analysis explores the chemical constituents and determines the in vitro antimicrobial, antidiabetic, and antioxidant significance of the essential oils (EOs) of the stem, leaves, and flowers of Ochradenus arabicus for the first time. The EOs of the flowers presented seventy-four constituents contributing to 81.46% of the total EOs, with the major compounds being 24-norursa-3,12-diene (13.06%), 24-norursa-3,12-dien-11-one (6.61%), and 24-noroleana-3,12-diene (6.25%). The stem EOs with sixty-one compounds contributed 95.95% of the total oil, whose main bioactive compounds were (+)-camphene (21.50%), eremophilene (5.87%), and δ-selinene (5.03%), while a minimum of fifty-one compounds in the leaves’ EOs (98.75%) were found, with the main constituents being n-hexadecanoic acid (12.32%), octacosane (8.62%), tetradecanoic acid (8.54%), and prehydro fersenyl acetone (7.27%). The antimicrobial activity of the EOs of O. arabicus stem, leaves, and flowers was assessed against two bacterial strains (Escherichia coli and Streptococcus aureus) and two fungal strains (Penicillium simplicissimum and Rhizoctonia solani) via the disc diffusion assay. However, the EOs extracted from the stem were found effective against one bacterial strain, E. coli, and one fungal strain, R. Solani, among the examined microbes in comparison to the standard and negative control. The tested EOs samples of the O. arabicus stem displayed a maximum potential to cure diabetes with an IC50 = 0.40 ± 0.10 µg/mL, followed by leaves and flowers with an IC50 = 0.71 ± 0.11 µg/mL and IC50 = 10.57 ± 0.18 µg/mL, respectively, as compared to the standard acarbose (IC50 = 377.26 ± 1.20 µg/mL). In addition, the EOs of O. arabicus flowers had the highest antioxidant activity (IC50 = 106.40 ± 0.19 µg/mL) as compared to the standard ascorbic acid (IC50 = 73.20 ± 0.17 µg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In the ABTS assay, the EOs of the same sample (flower) depicted the utmost potential to scavenge the free radicals with an IC50 = 178.0 ± 0.14 µg/mL as compared with the ascorbic acid, having an IC50 of 87.34 ± 0.10 µg/mL the using 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic acid (ABTS) assay. The EOs of all parts of O. arabicus have useful bioactive components due to which they present antidiabetic and antioxidant significance. Furthermore, additional investigations are considered necessary to expose the responsible components of the examined biological capabilities, which would be effective in the production of innovative drugs.
Collapse
Affiliation(s)
- Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Malakand, Chakdara Dir Lower 18800, Pakistan
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, Medical Research Center, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
11
|
Alizadeh M, Safaie N, Shams-Bakhsh M, Mehrabadi M. Neoscytalidium novaehollandiae causes dieback on Pinus eldarica and its potential for infection of urban forest trees. Sci Rep 2022; 12:9337. [PMID: 35665773 PMCID: PMC9167287 DOI: 10.1038/s41598-022-13414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Neoscytalidium novaehollandiae is one of the most important pathogens on woody plants which has increasingly been reported as a pathogen in different hosts in recent years. The pine trees are widely cultured in many cities of Iran. In recent years, dieback symptoms were observed on Pinus eldarica trees in Tehran and Qazvin provinces. The aim of this study was to investigate the dieback causal agent on P. eldarica trees in Iran. The branches and cones of P. eldarica trees were sampled for fungal isolation. The morphological and molecular characterizations (ITS, LSU, and TEF1-α regions) identified N. novaehollandiae as a dieback causal agent. This is the first report of N. novaehollandiae disease of P. eldarica trees in Iran. Furthermore, disease severity was assayed on 19 urban forest trees under three different temperature and relative humidity (RHs) regimes. C regime (29 °C and 15% RH) displayed more disease severity on detached branches than B (24 °C and 80% RH) and A (19 °C and 35% RH) ones. This study presents the host range of this pathogen, and showed that these potential hosts are prone to this pathogen under high temperature and low humidity which urban forest trees experienced in recent decades.
Collapse
Affiliation(s)
- Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Hassan N, El-Hawary SS, Emam M, Rabeh MA, Abdelmohsen UR, Selim NM. Potential Inhibitors of CYP51 Enzyme in Dermatophytes by Red Sea Soft Coral Nephthea sp.: In Silico and Molecular Networking Studies. ACS OMEGA 2022; 7:13808-13817. [PMID: 35559152 PMCID: PMC9088928 DOI: 10.1021/acsomega.2c00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/30/2022] [Indexed: 05/02/2023]
Abstract
In this study, the n-hexane fraction of soft coral Nephthea sp. gathered from the Red Sea was evaluated for its antidermatophyte activity. The antidermatophyte activity was performed versus different fungi, including Microsporum canis, Trichophyton gypseum, and Microsporum mentagrophytes, using a broth microdilution method. The n-hexane fraction showed minimum inhibitory concentrations (MICs) against the tested dermatophytes of 104.2 ± 20.8, 125 ± 0.0, and 83.33 ± 20.83 μg/mL respectively. The chemical constitution of the lipoidal matter (n-hexane fraction) was characterized by gas chromatography coupled with a mass spectrometer (GC-MS). The unsaponifiable fraction (USAP) of Nephthea sp. showed relative percentages of hydrocarbons and vitamins of 69.61% and 3.26%, respectively. Moreover, the percentages of saturated and unsaturated fatty acids were 53.67% and 42.05%, respectively. In addition, a molecular networking study (MN) of the GC-MS analysis performed using the Global Natural Products Social Molecular Networking (GNPS) platform was described. The molecular docking study illustrated that the highest binding energy score for spathulenol toward the CYP51 enzyme was -8.3674 kcal/mol, which predicted the mode of action of the antifungal activity, and then the results were confirmed by the inhibitory effect of Nephthea sp. against CYP51 with an IC50 value of 12.23 μg/mL. Our results highlighted the antifungal potential of Nephthea sp. metabolites.
Collapse
Affiliation(s)
- Nevine
H. Hassan
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology and Information, Cairo 11571, Egypt
| | - Seham S. El-Hawary
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Mahmoud Emam
- Phytochemistry
and Plant Systematics Department, National
Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A. Rabeh
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology and Information, Cairo 11571, Egypt
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| | - Usama Ramadan Abdelmohsen
- Pharmacognosy
Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
- Pharmacognosy
Department, Faculty of Pharmacy, Deraya
University, 61111 New Minia, Egypt
- Email for U.R.A.:
| | - Nabil M. Selim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
- Email for N.M.S.:
| |
Collapse
|
13
|
Sanad H, Belattmania Z, Nafis A, Hassouani M, Mazoir N, Reani A, Hassani L, Vasconcelos V, Sabour B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Mar Drugs 2022; 20:md20030169. [PMID: 35323468 PMCID: PMC8955006 DOI: 10.3390/md20030169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, β-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69–13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Hiba Sanad
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Zahira Belattmania
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Ahmed Nafis
- Department of Biology, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco;
| | - Meryem Hassouani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - Noureddine Mazoir
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Abdeltif Reani
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| | - Lahcen Hassani
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, University Cadi Ayyad, P.O. Box 2390, Marrakech 40001, Morocco;
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-223-401-817
| | - Brahim Sabour
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization—URL CNRST N°10, Faculty of Sciences El Jadida, University Chouaib Doukkali, P.O. Box 20, El Jadida 24000, Morocco; (H.S.); (Z.B.); (M.H.); (N.M.); (A.R.); (B.S.)
| |
Collapse
|
14
|
Abd-ElGawad AM, El-Amier YA, Bonanomi G, Gendy AENGE, Elgorban AM, Alamery SF, Elshamy AI. Chemical Composition of Kickxia aegyptiaca Essential Oil and Its Potential Antioxidant and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050594. [PMID: 35270064 PMCID: PMC8912309 DOI: 10.3390/plants11050594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its antioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates. Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids (75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining 40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl acetone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%). According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with IC50 values of 30.48 mg L-1 and 35.01 mg L-1 for DPPH and ABTS, respectively. In addition, the EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of 0.031 mg mL-1. The present study showed, for the first time, that the EO of K. aegyptiaca has more oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could be attributed to the effect of the main compounds, either singular or synergistic. Thus, further studies are recommended to characterize the major compounds, either alone or in combination as antioxidants or antimicrobial agents, and evaluate their biosafety.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Correspondence: ; Tel.: +20-1003438980
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Giuliano Bonanomi
- Department of Agriculture, University of Naples Federico II, 80055 Naples, Italy;
| | | | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salman F. Alamery
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
15
|
Chandrasekharan S, Chinnasamy G, Bhatnagar S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci Rep 2022; 12:156. [PMID: 34997051 PMCID: PMC8742086 DOI: 10.1038/s41598-021-04025-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Increase in bacterial resistance to commonly used antibiotics is a major public health concern generating interest in novel antibacterial treatments. Aim of this scientific endeavor was to find an alternative efficient antibacterial agent from non-conventional plant source for human health applications. We used an eco-friendly approach for phyto-fabrication of silver nanoparticles (AgNPs) by utilizing logging residue from timber trees Gmelina arborea (GA). GC-MS analysis of leaves, barks, flowers, fruits, and roots was conducted to determine the bioactive compounds. Biosynthesis, morphological and structural characterization of GA-AgNPs were undertaken by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). GA-AgNPs were evaluated for antibacterial, antibiofilm, antioxidant, wound healing properties and their toxicity studies were carried out. Results identified the presence of terpenoids, sterols, aliphatic alcohols, aldehydes, and flavonoids in leaves, making leaf extract the ideal choice for phyto-fabrication of silver nanoparticles. The synthesis of GA-AgNPs was confirmed by dark brown colored colloidal solution and spectral absorption peak at 420 nm. Spherical, uniformly dispersed, crystalline GA-AgNPs were 34-40 nm in diameter and stable in solutions at room temperature. Functional groups attributed to the presence of flavonoids, terpenoids, and phenols that acted as reducing and capping agents. Antibacterial potency was confirmed against pathogenic bacteria Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, MIC and MBC assay, biofilm inhibition assay, electron-microscopy, cell staining and colony counting techniques. The results from zone of inhibition, number of ruptured cells and dead-cell-count analysis confirmed that GA-AgNPs were more effective than GA-extract and their bacteria inhibition activity level increased further when loaded on hydrogel as GA-AgNPs-PF127, making it a novel distinguishing feature. Antioxidant activity was confirmed by the free radical scavenging assays (DPPH and ABTS). Wound healing potential was confirmed by cell scratch assay in human dermal fibroblast cell lines. Cell-proliferation study in human chang liver cell lines and optical microscopic observations confirmed non-toxicity of GA-AgNPs at low doses. Our study concluded that biosynthesized GA-AgNPs had enhanced antibacterial, antibiofilm, antioxidant, and wound healing properties.
Collapse
Affiliation(s)
- Smitha Chandrasekharan
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Gandhimathi Chinnasamy
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Somika Bhatnagar
- Plant Transformation and Tissue Culture, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
16
|
Mansouri S, Hosseini M, Beheshti F, Sobhanifar MA, Rakhshandeh H, Anaeigoudari A. Neuroprotective effects of Pinus eldarica in a mouse model of pentylenetetrazole-induced seizures. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:610-621. [PMID: 34804898 PMCID: PMC8588953 DOI: 10.22038/ajp.2021.18562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
Objective: Oxidative stress has pernicious effects on the brain. Pinus eldarica has antioxidant properties. We explored neuroprotective effect of P. eldarica against pentylenetetrazole (PTZ)-induced seizures. Materials and Methods: Male mice (BALB/c) were grouped as control, PTZ, Soxhlet (Sox) 100, Sox 200, Macerated (Mac) 100 and Mac 200 groups. Sox and Mac extracts (100 and 200 mg/kg) were injected during 7 days. Delay in onset of minimal clonic seizure (MCS) and generalized tonic- clonic seizure (GTCS) was measured. Number of dark neurons (DN) and levels of oxidative stress indicators in the hippocampus were evaluated. Results: Onset of MCS and GTCS was later in groups treated with the extracts than the PTZ group (p<0.01 and p<0.001). Number of DN in the hippocampus in the PTZ group was higher than the control group (p<0.001) while in the extract groups, was lower than the PTZ group (p<0.05, p<0.01 and p<0.001). MDA level was higher whereas total thiol level and activity of SOD and CAT were lower (p<0.001) in the PTZ group than the control group. MDA level in the Sox 100 (p<0.01), Sox 200 (p<0.001) and Mac 200 (p<0.01) groups was less than the PTZ group. Total thiol level in the Sox 200 (p<0.001), SOD in the Sox 100 (p<0.05), Sox 200, and Mac 200 and CAT in the Sox 200 (p<0.001) groups were higher than the PTZ group. Conclusion: P. eldarica prevented neuronal death and reduced seizures caused by PTZ via improving brain oxidative stress.
Collapse
Affiliation(s)
- Somaieh Mansouri
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomy, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad-Ali Sobhanifar
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
17
|
Ji W, Ji X. Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species-A Potentially Abundant Renewable Resource. Molecules 2021; 26:molecules26175244. [PMID: 34500678 PMCID: PMC8433728 DOI: 10.3390/molecules26175244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Pinaceae plants are widely distributed in the world, and the resources of pine leaves are abundant. In the extensive literature concerning Pinus species, there is much data on the composition and the content of essential oil of leaves. Still, a detailed comparative analysis of volatile terpenes and terpenoids between different species is missing. In this paper, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry was used to determine the volatile terpenes and terpenoids of typical Pinus species in China. A total of 46 volatile terpenes and terpenoids were identified, and 12 common compounds were found, which exhibited a great diversity in the leaves of Pinus species. According to the structures and properties of the compounds, all those compounds can be classified into four categories, namely monoterpenes, oxygenated terpenes, terpene esters, and sesquiterpenes. The results of principal component analysis and cluster analysis showed that the leaves of the six Pinus species could be divided into two groups. The species and contents of volatile terpenes and terpenoids in the leaves were quite different. The results not only provide a reference for the utilization of pine leaves resource, but also bring a broader vision on the biodiversity.
Collapse
Affiliation(s)
- Wensu Ji
- Ordnance Non-Commissioned Officers School, Army Engineering University of PLA, Wuhan 430075, China;
| | - Xiaoyue Ji
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
18
|
Ghaffari T, Hong JH, Asnaashari S, Farajnia S, Delazar A, Hamishehkar H, Kim KH. Natural Phytochemicals Derived from Gymnosperms in the Prevention and Treatment of Cancers. Int J Mol Sci 2021; 22:6636. [PMID: 34205739 PMCID: PMC8234227 DOI: 10.3390/ijms22126636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Abbas Delazar
- Research Center for Evidence based Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Ki-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
19
|
Lee J, Kang HK, Cheong H, Park Y. A Novel Antimicrobial Peptides From Pine Needles of Pinus densiflora Sieb. et Zucc. Against Foodborne Bacteria. Front Microbiol 2021; 12:662462. [PMID: 34093476 PMCID: PMC8172577 DOI: 10.3389/fmicb.2021.662462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
Pine needles are used in several East Asian countries as food or traditional medicine. It contains functional components that exhibit a wide spectrum of pharmacological effects such as antioxidant, antimicrobial, anti-diabetic, and anti-inflammatory activities. We determined and characterized the novel antimicrobial peptides (AMPs) isolated from Pinus densiflora Sieb. et Zucc. The four active pine-needle (PN) peptides showed antimicrobial activity against foodborne bacteria with minimum inhibitory concentration (MIC) values within the range of 8-128 μg/ml. PN peptides showed no detectable hemolytic activity or cytotoxicity at the antimicrobial concentrations. The N-terminal amino acid sequence of the PN5 was identified using Edman degradation and Antimicrobial Peptide Database (APD) homology analysis showed that it was not identical to any other plant peptide. This suggests that PN5 can serve as an alternative therapeutic agent to be used in the food industry.
Collapse
Affiliation(s)
- Junho Lee
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Hyeonsook Cheong
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea.,Research Center for Proteineous Materials (RCPM), Chosun University, Gwangju, South Korea
| |
Collapse
|
20
|
Alam A, Rehman NU, Ansari MN, Palla AH. Effects of Essential Oils of Elettaria cardamomum Grown in India and Guatemala on Gram-Negative Bacteria and Gastrointestinal Disorders. Molecules 2021; 26:molecules26092546. [PMID: 33925478 PMCID: PMC8123808 DOI: 10.3390/molecules26092546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The present study examined the chemical composition and antimicrobial and gastrointestinal activity of the essential oils of Elettaria cardamomum (L.) Maton harvested in India (EC-I) and Guatemala (EC-G). Monoterpenes were present in higher concentration in EC-I (83.24%) than in EC-G (73.03%), whereas sesquiterpenes were present in a higher concentration in EC-G (18.35%) than in EC-I (9.27%). Minimum inhibitory concentrations (MICs) of 0.5 and 0.25 mg/mL were demonstrated against Pseudomonas aeruginosa in EC-G and EC-I, respectively, whereas MICs of 1 and 0.5 mg/mL were demonstrated against Escherichia coli in EC-G and EC-I, respectively. The treatment with control had the highest kill-time potential, whereas the treatment with oils had shorter kill-time. EC-I was observed to be more potent in the castor oil-induced diarrhea model than EC-G. At 100 and 200 mg/kg, P.O., EC-I exhibited 40% and 80% protection, respectively, and EC-G exhibited 20% and 60% protection, respectively, in mice, whereas loperamide (10 mg/kg, i.p., positive control) exhibited 100% protection. In the in vitro experiments, EC-I inhibited both carbachol (CCh, 1 µM) and high K+ (80 mM)-induced contractions at significantly lower concentrations than EC-G. Thus, EC-I significantly inhibited P. aeruginosa and E. coli and exhibited more potent antidiarrheal and antispasmodic effects than EC-G.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +966-509790901
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.U.R.); (M.N.A.)
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.U.R.); (M.N.A.)
| | - Amber Hanif Palla
- Department of Basic Medical Sciences (Pharmacology), Salim Habib University, Deh Dih, Korangi Creek, Karachi 74900, Pakistan;
| |
Collapse
|
21
|
Alam A, Singh V. Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples. J Taibah Univ Med Sci 2021; 16:231-239. [PMID: 33897328 PMCID: PMC8046960 DOI: 10.1016/j.jtumed.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Objective This work attempted to isolate, identify, and correlate the composition of essential oils (EOs) and pharmacological properties of two imported Amomum subulatum fruit samples. These samples were collected from Indian and KSA local supermarkets to ensure consistency in their therapeutic effects. Methods EOs were extracted from Indian and KSA A. subulatum fruit samples using a hydro-distillation method and identified by gas chromatography-mass spectrometry (GC–MS). Antimicrobial activity against gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii) was determined using minimum inhibitory (MIC) and minimum bactericidal concentration methods. Antioxidant and anti-inflammatory activities were determined using a 2,2-diphenyl-1-picrylhydrazyl-induced free radical assay, and a bovine albumin inhibitory assay, respectively. These analyses were performed to evaluate the pharmacological activities of the substances. Results GC–MS retention times of both samples demonstrated 56 bioactive ingredients with different percentages. The principal bioactive compounds in the Indian and Saudi Arabian EO samples were 1,8-cineole (44.24% and 46.22%, respectively), α-terpineol (7.47% and 7.04%, respectively), terpinen-4-ol (5.01% and 4.83%, respectively), geraniol D (4.05% and 3.54%, respectively), and β-pinene (3.38% and 3.98%, respectively). Superior antimicrobial activity against the selected strains was observed for both samples, with an MIC range of 0.5%–1%. Antioxidant assays demonstrated moderate activity in both samples. Moreover, the Indian and Saudi Arabian samples exhibited IC50 values of 53.12% and 55.26 μg/mL, respectively, in albumin denaturation inhibition assays. This indicated an outstanding anti-inflammatory potential comparable to ibuprofen. Conclusions The composition of EOs from both samples exhibited similar qualitative but different quantitative variability. No major variations in the pharmacological properties of EOs were observed. More studies are essential for further validation of our study findings.
Collapse
Affiliation(s)
- Aftab Alam
- School of Pharmacy, Department of Pharmacognosy, Sharda University, Greater Noida, UP, India
| | - Vijender Singh
- School of Pharmacy, Department of Pharmacognosy, Sharda University, Greater Noida, UP, India
| |
Collapse
|
22
|
Efficacy of the Aqueous Extract of Azadirachta indica Against the Marine Parasitic Leech and Its Phytochemical Profiling. Molecules 2021; 26:molecules26071908. [PMID: 33805254 PMCID: PMC8037938 DOI: 10.3390/molecules26071908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zeylanicobdella arugamensis (Hirudinea), a marine parasitic leech, not only resulted in the mortality of the host fish (Groupers) but also caused economic losses. The current study aimed to elucidate the antiparasitic efficacy of the aqueous extract of the Azadirachta indica leaves against Z. arugamensis and to profile the composition via LC-Q Exactive HF Orbitrap mass spectrometry. Different concentrations (25, 50 and 100 mg/mL) of A. indica extract were prepared and tested on the parasitic leeches. The total mortality of leeches was noticed with an exposure to the A. indica aqueous extract. The average times required for the aqueous extract at concentrations of 25, 50 and 100 mg/mL to kill the leeches were 42.65 ± 9.20, 11.69 ± 1.11 and 6.45 ± 0.45 min, respectively, in a dose-dependent manner. The Orbitrap mass spectrometry analysis indicated the presence of five flavonoids (myricetin 3-O-galactoside, trifolin, isorhamnetin, quercetin and kaempferol), four aromatics (4-methoxy benzaldehyde, scopoletin, indole-3-acrylic acid and 2,4-quinolinediol), three phenolics (p-coumaric acid, ferulic acid and phloretin) and two terpenoids (pulegone and caryophyllene oxide). Thus, our study indicates that A. indica aqueous extract is a good source of metabolites with the potential to act as a biocontrol agent against the marine parasitic leech in aquaculture.
Collapse
|
23
|
de Oliveira MA, da C Vegian MR, Brighenti FL, Salvador MJ, Koga-Ito CY. Antibiofilm effects of Thymus vulgaris and Hyptis spicigera essential oils on cariogenic bacteria. Future Microbiol 2021; 16:241-255. [PMID: 33625248 DOI: 10.2217/fmb-2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The inhibitory and antibiofilm effects of Thymus vulgaris (EOTv) and Hyptis spicigera essential oils (EOHs) on cariogenic microorganisms were evaluated. Materials & methods: The chemical characterization of EOTv was performed by gas chromatography/mass spectrometry. Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguinis, Streptococcus mitis, Streptococcus sobrinus, Lactobacillus acidophilus and Actinomyces naeslundii were used for agar diffusion assays and determination of minimal inhibitory and minimal bactericide concentrations. In addition, 20 streptococci and lactobacilli clinical isolates were also tested. The effects of essential oil on microbial initial biofilm formation and on preformed microcosm biofilm formed from human saliva were studied. Results & conclusion: Both essential oils had inhibitory effects on the cariogenic species and reduced the bacterial adherence to dental enamel. Essential oils were able to disrupt preformed microcosm biofilms. Thymus vulgaris and Hyptis spicigera essential oils have potential to be used in the development of formulations to the control of cariogenic biofilms.
Collapse
Affiliation(s)
- Maria Ac de Oliveira
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Mariana R da C Vegian
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| | - Fernanda L Brighenti
- Department of Morphology & Pediatric Dentistry, Araraquara Dental School, São Paulo State University - UNESP, Araraquara, Brazil
| | - Marcos J Salvador
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering & Oral Biopathology Graduate Program, Institute of Science & Technology, São Paulo State University - UNESP, São José dos Campos, Brazil
| |
Collapse
|
24
|
de Veras BO, de Oliveira JRS, de Menezes Lima VL, do Amaral Ferraz Navarro DM, de Oliveira Farias de Aguiar JCR, de Medeiros Moura GM, da Silva JW, de Assis CRD, Gorlach-Lira K, de Assis PAC, de Souza Barbosa JI, de Melo MRCS, de Oliveira MBM, da Silva MV, de Souza Lopes AC. The essential oil of the leaves of Verbesina macrophylla (Cass.) S.F.Blake has antimicrobial, anti-inflammatory and antipyretic activities and is toxicologically safe. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113248. [PMID: 32805356 DOI: 10.1016/j.jep.2020.113248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Verbesina macrophylla (Cass.) S.F.Blake is a medicinal plant from South America, popularly known as "asa de peixe", "asa de peixe branco", "cambará branco" or "cambará guaçu", being used by traditional communities for its healing powers in the form of teas, infusions, liqueurs and extracts, for the treatment of bacterial and fungal infections of the urinary and respiratory tracts, such as kidney problems, bronchitis, inflammation and fever. However, none of the ethnopharmacological properties has been scientifically evaluated. AIM OF THE STUDY Based on the ethnopharmacological use of the species, this study investigated the chemical composition, and for the first time acute toxicity, hemolytic, antimicrobial, anti-inflammatory and antipyretic activities of the essential oil from leaves of V. macrophylla. MATERIAL AND METHODS The essential oil was obtained from the leaves by hydrodistillation (HD), being characterized by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography coupled to flame ionization detection (GC-FID). The antimicrobial activity was evaluated by the broth microdilution technique in bacteria and fungi that cause infections of the respiratory and urinary tract, and toxicological safety regarding hemolytic activity on human red blood cells (hRBCs), and acute toxicity in mice. The anti-inflammatory activity was evaluated by the model carrageenan-induced peritonitis with quantification of the levels of TNF-α and IL-1β in the intraperitoneal fluid, and ear edema induced by croton oil. The antipyretic activity evaluated in mice with pyrexia induced by yeast. RESULTS The extraction of essential oil by hydrodistillation (HD) showed a yield of 0.33 ± 0.04%, with its composition constituted mainly by sesquiterpenes of hydrocarbons (94.00%). The essential oil demonstrated antibacterial and antifungal activity, with a low rate of hemolysis in human red blood cells (hRBCs) and no clinical signs of toxicity were observed in animals after acute treatment, which suggested that the LD50 is greater than 5000 mg/kg; p.o. The essential oil demonstrated anti-inflammatory activity reducing levels of pro-inflammatory cytokines TNF-α (38.83%, 72.42% and 73.52%) and IL-1β (37.70%, 75.92% and 87.71%), and ear edema by 49.53%, 85.04% and 94.39% at concentrations of 4, 40 and 400 mg/kg, respectively. The antipyretic activity presented by the essential oil is statistically similar to dipyrone. CONCLUSION The set of results obtained, validates the main activities attributed to the traditional use of Verbesina macrophylla (Cass.) S.F.Blake. These data add industrial value to the species, considering that the antimicrobial, anti-inflammatory and antipyretic activities present results similar to the drugs already used also presenting safety. The results suggest that essential oil from V. macrophylla may be used by industry for the development of drugs with natural antimicrobial, anti-inflammatory and antipyretic effect.
Collapse
Affiliation(s)
- Bruno Oliveira de Veras
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil; Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil.
| | | | - Vera Lúcia de Menezes Lima
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | | | | | - Geovanna Maria de Medeiros Moura
- Department of Biochemistry, Laboratory Chemistry and Function of Bioactive Proteins, Federal University of Rio Grande do Norte, 59078-970, Natal, Rio Grande do Norte, Brazil
| | - José Wellinton da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Caio Rodrigo Dias de Assis
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Krystyna Gorlach-Lira
- Department of Molecular and Cellular Biology, Laboratory of Biology Molecular of Microorganisms, Federal University of Paraiba, 58059-900, João Pessoa, Paraiba, Brazil
| | - Priscilla Anne Castro de Assis
- Department of Physiology and Pathology, Laboratory of Immunology and Cell Biology, Federal University of Paraiba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Jorge Irapuan de Souza Barbosa
- Department of Biology, Herbarium Professor Vasconcelos Sobrinho, Rural Federal University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Maria Rita Cabral Sales de Melo
- Department of Biology, Herbarium Professor Vasconcelos Sobrinho, Rural Federal University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil
| | - Maria Betânia Melo de Oliveira
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Márcia Vanusa da Silva
- Department of Biochemistry, Laboratory of Natural Products, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina de Souza Lopes
- Post-graduation in Tropical Medicine, Laboratory of Microbiology, Federal University of Pernambuco, 50670-420, Recife, Pernambuco, Brazil
| |
Collapse
|
25
|
Afsharnezhad M, Shahangian SS, Rasti B, Faezi Ghasemi M. Inhibitory Potential of Acroptilon repens against Key Enzymes involved in Alzheimer and Diabetes, Phytochemical Profile,
Radical Scavenging, and Antibacterial Activity. IRANIAN BIOMEDICAL JOURNAL 2021; 25:21-32. [PMID: 33129236 PMCID: PMC7748113 DOI: 10.29252/ibj.25.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: This study was devoted to assessing the inhibitory potential of acetone, methanol, and ethanol extracts of Acroptilon repens against disease-associated enzymes, as well as their antioxidant/antibacterial activity and phytochemical composition. Methods: Comparative assessment using various antioxidant evaluation methods, including FRAP, scavenging ability on DPPH radical and hydrogen peroxide, and RP, indicated that the acetone extract presented the highest antioxidant activity, due to its highest total antioxidant content. Results: The TPC and TFC of these extracts were 3.44 ± 0.32 mg GAE/g DW and 2.09 ± 0.2 mg QE/g DW, respectively. The hydrodistillation essential oil from A. repens was analyzed by GC/MS, and 17 compounds were identified. All extracts showed good inhibitory activities against disease-related enzyme acetylcholinesterase and α-amylase, with the lowest IC50 for acetonic extract. Extracts of A. repens exhibited inhibiting activities against the Gram-positive bacteria, with the most effect of acetone extract. Conclusion: Our findings suggest A. repens as a promising source of natural antioxidant, antimicrobial, anti-cholinesterase and anti-amylase agents for the management of oxidative damage, and pharmaceutical, food, and cosmeceutical purposes.
Collapse
Affiliation(s)
- Moslem Afsharnezhad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - S. Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Corresponding Author: S. Shirin Shahangian, Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran; Tel./Fax: (+98-13) 33333647; E-mail:
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
26
|
Al-Harrasi MMA, Al-Sadi AM, Al-Sabahi JN, Al-Farsi K, Waly MI, Velazhahan R. Essential oils of Heliotropium bacciferum, Ocimum dhofarense and Zataria multiflora exhibit aflatoxin B1 detoxification potential. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1991006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Jamal Nasser Al-Sabahi
- Central Analytical Laboratory, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | | | - Mostafa Ibrahim Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
27
|
Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, Zhang J, Zhang S, Xu L, Han T. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112897. [PMID: 32620264 DOI: 10.1016/j.jep.2020.112897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant widely distributed in India, Malaysia, Thailand, and the southeastern coastal areas of China including Fujian, Guangdong, and Guizhou. It has been used for centuries for the treatment of wind-cold cough, fever, rheumatism arthralgia, diarrhea dysentery, postpartum foot swelling, stomachache, toothache, diabetes, and traumatic injury. AIMS OF THE REVIEW To critically anayze the literature for the botany, traditional uses, phytochemistry, pharmacology, toxicity, and clinical trials of P. sarmentosum in order to provide a scientific consensus for further research and discovery of potential candidate drugs. MATERIALS AND METHODS The contents of this review were sourced from electronic databases including PubMed, SciFinder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wanfang, Chinese Scientific and Technological Periodical Database (VIP), Chinese Biomedical Database (CBM), Cochrane Controlled register of Clinical Trials, Clinical Trials. gov, and Chinese Clinical Trial Registry. Chinese medicine books published over the years were used to elucidate the traditional uses of P. sarmentosum and additional information was also collected from Yao Zhi website (https://db.yaozh.com/). RESULTS Phytochemical analyses of the chemical constituents of P. sarmentosum include essential oil, alkaloids, flavonoids, lignans, and steroids. The literature supports the ethnomedicinal uses of P. sarmentosum for the treatment of cold, gastritis, and rheumatoid joint pain, and further confirms its relatively new pharmacological activities, including anti-inflammatory, antineoplastic, and antipyretic activities. Other biological roles such as anti-osteoporosis, antibacterial, antidepressant, anti-atherosclerotic, and hypoglycemic activities have also been reported. However, the methodologies employed in individual studies are limited. CONCLUSIONS There is convincing evidence from both in vitro and in vivo studies supporting the traditional use of P. sarmentosum and it is imperative that natural bioactive compounds are examined further. More efforts should be focused on the pharmacodynamic constituents of P. sarmentosum to provide practical basis for quality control, and additional studies are needed to understand the mechanism of their action. Further studies on the comprehensive evaluation of medicinal quality and understandings of serum chemistry, multi-target network pharmacology, and molecular docking technology of P. sarmentosum are of great importance and should be considered.
Collapse
Affiliation(s)
- Xiaolei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Wenhua Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Wei Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China; Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Yan Wang
- Military Drug Research and Development Center, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jiabao Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Shiyao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, 250355, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
28
|
Paris M, Ramírez-Corona N, Palou E, López-Malo A. Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Moghadam P, Dadelahi S, Hajizadeh YS, Matin MG, Amini M, Hajazimian S. Chemical Composition and Antibacterial Activities of Sumac Fruit (Rhus coriaria) Essential Oil on Dental Caries Pathogens. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Dental caries is an infectious disease, and various microorganisms are involved in its progression. The common antibacterial agents against oral pathogens have many side effects and their excessive use cause drug resistance. Therefore, the identification of natural compounds and medicinal plants with antibacterial activity has been considered by the researchers. The Sumac (Rhus coriaria) is one of the native plants of Iran, which used as a food flavoring.
Aims & Objectives:
The aim of this study was to evaluate the antimicrobial activity of Sumac essential oil on oral pathogens, including Streptococcus mutans, Lactobacillus rhamnosus, and Actinomyces viscosus.
Materials & Methods:
In this study, the Sumac essential oil was prepared and its antibacterial activity was evaluated by disk diffusion, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) methods on established terminology strains of S. mutans, L. rhamnosus, and A. viscosus.
Results:
The obtained results showed that the Sumac essential oil has high inhibitory effects against S. mutans, followed by L. rhamnosus and A. viscosus. The predominant compound in the Sumac essential oil was related to Beta-caryophyllene.
Conclusion:
In conclusion, Sumac essential oil has an appropriate antibacterial activity and can be used in the pharmaceutical industry to produce antibacterial agents and mouthwash, against oral infectious diseases and dental caries.
Collapse
|
30
|
Isolation and Characterization of a New Endophytic Actinobacterium Streptomyces californicus Strain ADR1 as a Promising Source of Anti-Bacterial, Anti-Biofilm and Antioxidant Metabolites. Microorganisms 2020; 8:microorganisms8060929. [PMID: 32575628 PMCID: PMC7355773 DOI: 10.3390/microorganisms8060929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
In view of the fast depleting armamentarium of drugs against significant pathogens, like methicillin-resistant Staphylococcus aureus (MRSA) and others due to rapidly emerging drug-resistance, the discovery and development of new drugs need urgent action. In this endeavor, a new strain of endophytic actinobacterium was isolated from the plant Datura metel, which produced secondary metabolites with potent anti-infective activities. The isolate was identified as Streptomyces californicus strain ADR1 based on 16S rRNA gene sequence analysis. Metabolites produced by the isolate had been investigated for their antibacterial attributes against important pathogens: S. aureus, MRSA, S. epidermis, Enterococcus faecium and E. faecalis. Minimum inhibitory concentration (MIC90) values against these pathogens varied from 0.23 ± 0.01 to 5.68 ± 0.20 μg/mL. The metabolites inhibited biofilm formation by the strains of S. aureus and MRSA (Biofilm inhibitory concentration [BIC90] values: 0.74 ± 0.08–4.92 ± 0.49 μg/mL). The BIC90 values increased in the case of pre-formed biofilms. Additionally, the metabolites possessed good antioxidant properties, with an inhibitory concentration (IC90) value of 217.24 ± 6.77 µg/mL for 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging. An insight into different classes of compounds produced by the strain ADR1 was obtained by chemical profiling and GC-MS analysis, wherein several therapeutic classes, for example, alkaloids, phenolics, terpenes, terpenoids and glycosides, were discovered.
Collapse
|
31
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
32
|
Raita MS, Iconaru SL, Groza A, Cimpeanu C, Predoi G, Ghegoiu L, Badea ML, Chifiriuc MC, Marutescu L, Trusca R, Furnaris CF, Turculet CS, Enache DV, Predoi D. Multifunctional Hydroxyapatite Coated with Arthemisia absinthium Composites. Molecules 2020; 25:E413. [PMID: 31963829 PMCID: PMC7024177 DOI: 10.3390/molecules25020413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
There is significant research showing that essential oils extracted from the plants have antibacterial effects. The purpose of this study was to develop a biocomposite based on hydroxyapatite coated with Artemisia absinthium essential oil and to highlight its antibacterial activity. Therefore, present studies are aimed at developing new materials combining hydroxyapatite with Artemisia absinthium essential oil, in order to avoid postoperative infections. The purpose of this work is to highlight the antimicrobial properties of the Artemisia absinthium essential oil-hydroxyapatite composites obtained by a simple method and at low costs. The structural properties and antimicrobial efficiency of the Artemisia absinthium essential oil-hydroxyapatite composite have been studied. The samples based on Artemisia absinthium essential oil analyzed in this study showed that wormwood essential oil presented the highest efficacy against the fungal strain of C. parapsilosis. It has been shown that wormwood essential oil has a strong antimicrobial effect against the microbial strains tested in this study. Furthermore, the antimicrobial properties of the biocomposites based on hydroxyapatite and essential oil are due to the presence of the essential oil in the samples.
Collapse
Affiliation(s)
- Mariana Stefania Raita
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| | - Andreea Groza
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania;
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, Sector 1, 011464 Bucharest, Romania;
| | - Gabriel Predoi
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Liliana Ghegoiu
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| | - Monica Luminita Badea
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, 77206 Bucharest, Romania; (M.C.C.); (L.M.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Luminita Marutescu
- Microbiology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, 77206 Bucharest, Romania; (M.C.C.); (L.M.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ciprian Florin Furnaris
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (M.S.R.); (G.P.); (C.F.F.)
| | - Claudiu Stefan Turculet
- Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania;
| | - Dorin Valter Enache
- Faculty of Food and Tourism, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brașov, Romania;
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (L.G.); (M.L.B.)
| |
Collapse
|