1
|
Su H, Sun J, Wang C, Wang H. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water. ULTRASONICS SONOCHEMISTRY 2024; 108:106968. [PMID: 38941702 PMCID: PMC11260595 DOI: 10.1016/j.ultsonch.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Ultrasonic technology has a significant degassing effect and can increase the efficiency of hydrogen production in the proton exchange membrane electrolysis of water. However, further research is needed to understand its influence mechanism on hydrogen bubbles. In this work, a kinetic analysis is performed to investigate the principle of hydrogen production and the kinetic behaviour of hydrogen bubble evolution by applying the ultrasonic amplification technique under static and flow dynamics in the proton exchange membrane electrolysis cell. The evolution of hydrogen bubbles in the static and in the flow dynamic of the aqueous electrolyte solution under ultrasound was characterised by imaging. The results show that the aqueous electrolyte solution in the flow state reduces the size of hydrogen bubbles and increases the detachment speed compared to the static state, which promotes the process of hydrogen bubble evolution, and that the thermal effect of ultrasound on the temperature of the aqueous electrolyte solution in the flow state is very small compared to the static state and can be ignored. Ultrasound has different effects on the different stages of hydrogen bubble evolution. In the nucleation stage, the ultrasonic cavitation effect increases the highly reactive radicals such as •OH, H•, etc., and the mechanical vibration effect of ultrasound increases the nucleation sites, which are denser and more evenly distributed. In the growth phase, the ultrasonic cavitation effect and the mechanical vibration effect promote the breaking of hydrogen bonds of water molecules and improve mass transport, which promotes the growth of hydrogen bubbles, and the fluctuating energy of positive and negative ultrasound promotes the growth of hydrogen bubbles with the vibration speed. In the detachment phase, the radius of the hydrogen bubbles is influenced by the ultrasound. The radius of the hydrogen bubbles changes with the positive and negative ultrasonic pressure, the radius of the hydrogen bubbles at negative ultrasonic pressure increases, the positive ultrasonic pressure decreases, the changing effect of the radius of the hydrogen bubbles favours the detachment of the hydrogen bubbles. In the polymerisation phase, the ultrasound leads to increased polymerisation of the fine bubble streams. Ultrasound contributes to the hydrogen production effect of proton exchange membrane water electrolysis in actual operation.
Collapse
Affiliation(s)
- Hongqian Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jindong Sun
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Caizhu Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haofeng Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Thi Yein W, Wang Q, Kim DS. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. CHEMOSPHERE 2024; 353:141524. [PMID: 38403122 DOI: 10.1016/j.chemosphere.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
Collapse
Affiliation(s)
- Win Thi Yein
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea; Department of Industrial Chemistry, University of Yangon, Republic of the Union of Myanmar, Myanmar
| | - Qun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
3
|
Ahmed MA, Mohamed AA. Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: A review. iScience 2024; 27:108583. [PMID: 38226158 PMCID: PMC10788205 DOI: 10.1016/j.isci.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Water pollution and the global energy crisis are two significant challenges that the world is facing today. Ultrasound-assisted synthesis offers a simple, versatile, and green synthetic tool for nanostructured materials that are often unavailable by traditional synthesis. Furthermore, the integration of ultrasound and photocatalysis has recently received considerable interest due to its potential for environmental remediation as a low-cost, efficient, and environmentally friendly technique. The underlying principles and mechanisms of sonophotocatalysis, including enhanced mass transfer, improved catalyst-pollutant interaction, and reactive species production have been discussed. Various organic pollutants as dyes, pharmaceuticals, pesticides, and emerging organic pollutants are targeted based on their improved sonophotocatalytic degradation efficiency. Additionally, the important factors affecting sonophotocatalytic processes and the advantages and challenges associated with these processes are discussed. Overall, this review provides a comprehensive understanding of sono-assisted synthesis and photocatalytic degradation of organic pollutants and prospects for progress in this field.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
4
|
Yu B, Zhang Y, Wu H, Yan W, Meng Y, Hu C, Liu Z, Ding J, Zhang H. Advanced oxidation processes for synchronizing harmful microcystis blooms control with algal metabolites removal: From the laboratory to practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167650. [PMID: 37806585 DOI: 10.1016/j.scitotenv.2023.167650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Harmful algal blooms (HABs) in freshwater systems have become a global epidemic, leading to a series of problems related to cyanobacterial outbreaks and toxicity. Studies are needed to improve the technology used for the simultaneous removal of harmful cyanobacteria and algal metabolites. In this review, widely reported advanced oxidation processes (AOPs) strategies for removing major species Microcystis aeruginosa (M. aeruginosa) and microcystins (MCs) were screened through bibliometrics, such as photocatalysis, activated persulfate, H2O2, Ozone oxidation, ultrasonic oxidation, and electrochemical oxidation, etc. AOPs generate kinds of reactive oxygen species (ROS) to inactivate cyanobacteria and degrade cyanotoxins. A series of responses occurs in algal cells to resist the damaging effects of ROS generated by AOPs. Specifically, we reviewed laboratory research, mechanisms, practical applications, and challenges of HABs treatments in AOPs. Problems common to these technologies include the impact of algal response and metabolites, and environmental factors. This information provides guidance for future research on the removal of harmful cyanobacteria and treatment of algal metabolites using AOPs.
Collapse
Affiliation(s)
- Bingzhi Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Huazhen Wu
- Hangzhou Huanke Environmental Consulting Co. LTD, 310010 Hangzhou, Zhejiang, China
| | - Wen Yan
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yunjuan Meng
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 310018 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Dhull P, Sudhaik A, Raizada P, Thakur S, Nguyen VH, Van Le Q, Kumar N, Parwaz Khan AA, Marwani HM, Selvasembian R, Singh P. An overview on ZnO-based sonophotocatalytic mitigation of aqueous phase pollutants. CHEMOSPHERE 2023; 333:138873. [PMID: 37164195 DOI: 10.1016/j.chemosphere.2023.138873] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Over the past several decades, the increase in industrialization provoked the discharge of harmful pollutants into the environment, affecting human beings and ecosystems. ZnO-based photocatalysts seem to be the most promising photocatalysts for treating harmful pollutants. However, fast charge carrier recombination, photo corrosion, and long reaction time are the significant factors that reduce the photoactivity of ZnO-based photocatalysts. In order to enhance the photoactivity of such photocatalysts, a combined process i.e., sonocatalysis + photocatalysis = sonophotocatalysis was used. Sonophotocatalysis is one of several different AOP methods that have recently drawn considerable interest, as it produces high reactive oxygen species (ROS) which helps in the oxidation of pollutants by acoustic cavitation. This combined technique enhanced the overall efficiency of the individual method by overcoming its limiting factors. The current review aims to present the theoretical and fundamental aspects of sonocatalysis and photocatalysis along with a detailed discussion on the benefits that can be obtained by the combined process i.e., US + UV (sonophotocatalysis). Also, we have provided a comparison of the excellent performance of ZnO to that of the other metal oxides. The purpose of this study is to discuss the literature concerning the potential applications of ZnO-based sonophotocatalysts for the degradation of pollutants i.e., dyes, antibiotics, pesticides, phenols, etc. That are carried out for future developments. The role of the produced ROS under light and ultrasound stimulation and the degradation mechanisms that are based on published literature are also discussed. In the end, future perspectives are suggested, that are helpful in the development of the sonophotocatalysis process for the remediation of wastewater containing various pollutants.
Collapse
Affiliation(s)
- Priya Dhull
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Naveen Kumar
- Department of Chemistry Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 8 173229, India.
| |
Collapse
|
6
|
Wong CC, Sun LL, Liu MJ, Stride E, Raymond JL, Han HH, Kwan J, Sedgwick AC. Fluorescence-based chemical tools for monitoring ultrasound-induced hydroxyl radical production in aqueous solution and in cells. Chem Commun (Camb) 2023; 59:4328-4331. [PMID: 36942986 DOI: 10.1039/d3cc00364g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
We report the synthesis of hydroxyl-radical (˙OH) responsive fluorescent probes that utilise the 3,5-dihydroxybenzyl (DHB) functionality. 4-Methylumbeliferone-DHB (Umb-DHB) and resorufin-DHB (Res-DHB) in the presence of ˙OH radicals resulted in significant increases in their respective fluorescent emission intensities at 460 nm and 585 nm. The incubation of Res-DHB in HeLa cells followed by therapeutic ultrasound (1 MHz) resulted in a significant increase in fluorescence emission intensity thus permitting the ability to monitor ultrasound-induced ˙OH production in live cells.
Collapse
Affiliation(s)
- Cherie Cy Wong
- Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, UK.
| | - Lu-Lu Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P. R. China.
| | - Meng-Jiao Liu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Sciences, Old Road Campus Research Building, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jason L Raymond
- Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, UK.
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, P. R. China.
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - James Kwan
- Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, UK.
| | - Adam C Sedgwick
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| |
Collapse
|
7
|
Zhang T, Li H, Tang X, Zhong J, Li J, Zhang S, Huang S, Dou L. Boosted photocatalytic performance of OVs-rich BiVO 4 hollow microsphere self-assembled with the assistance of SDBS. J Colloid Interface Sci 2023; 634:874-886. [PMID: 36566633 DOI: 10.1016/j.jcis.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In this study, monoclinic phase bismuth vanadate (BiOV4) photocatalyst with unique hollow microsphere morphology was successfully prepared by a hydrothermal method in the existence of sodium dodecyl benzene sulfonate (SDBS). The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron (SEM) and X-ray photoelectron spectrometer (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). Experimental results show that SDBS definitely changes the microstructure of BiVO4, which is allocated to the template role of SDBS in the preparation process. Moreover, the hydrothermal treatment time is also of crucial importance in affecting the structure and morphology of the photocatalysts, and the optimal hydrothermal treatment time for the formation of hollow microsphere is 24 h. Furthermore, the feasible growth mechanism for hollow microsphere was elaborated. Enriched oxygen vacancies (OVs) are introduced into BiOV4 prepared with SDBS, largely elevating the separation efficiency of photo-generated charges. Under visible light irradiation, the photocatalytic activities of BiOV4 for destruction of rhodamine (RhB) were evaluated. The photocatalytic degradation rate constant of RhB on the 3SBVO is 2.23 times of that on the blank BiOV4 as the mass ratio of SDBS/BiOV4 is 3 %. Photocatalytic degradation mechanism of BiVO4 toward detoxification of organic pollutants was presented.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Huan Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Xiaoqian Tang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Junbo Zhong
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Jianzhang Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Shulin Zhang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Shengtian Huang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Lin Dou
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| |
Collapse
|
8
|
Park J, Min A, Theerthagiri J, Ashokkumar M, Choi MY. In situ studies on free-standing synthesis of nanocatalysts via acoustic levitation coupled with pulsed laser irradiation. ULTRASONICS SONOCHEMISTRY 2023; 94:106345. [PMID: 36871525 PMCID: PMC9988397 DOI: 10.1016/j.ultsonch.2023.106345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Acoustic levitation is a distinctive and versatile tool for levitating and processing free-standing single droplets and particles. Liquid droplets suspended in an acoustic standing wave provide container-free environments for understanding chemical reactions by avoiding boundary effects and solid surfaces. We attempted to use this strategy for the production of well-dispersed uniform catalytic nanomaterials in an ultraclean confined area without the addition of external reducing agents or surfactants. In this study, we report on the synthesis of gold and silver nanoparticles (NPs) via acoustic levitation coupled with pulsed laser irradiation (PLI). In situ UV-Visible and Raman spectroscopic techniques were performed to monitor the formation and growth of gold and silver NPs. The PLI was used for the photoreduction of targeted metal ions present in the levitated droplets to generate metal NPs. Additionally, the cavitation effect and bubble movement accelerate the nucleation and decrease the size of NPs. The synthesized Au NPs with ∼ 5 nm size showed excellent catalytic behavior towards the conversion of 4-nitrophenol to 4-aminophenol. This study may open a new door for synthesizing various functional nanocatalysts and for achieving new chemical reactions in suspended droplets.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
10
|
Arumugam S, Bavani T, Selvaraj M, Al-Shehri BM, Preeyanghaa M, Jung S, Theerthagiri J, Neppolian B, Murugesan S, Madhavan J, Choi MY. Construction of direct FeMoO 4/g-C 3N 4-2D/2D Z-scheme heterojunction with enhanced photocatalytic treatment of textile wastewater to eliminate the toxic effect in marine environment. CHEMOSPHERE 2023; 313:137552. [PMID: 36526136 DOI: 10.1016/j.chemosphere.2022.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
A novel FeMoO4/g-C3N4-2D/2D Z-scheme heterojunction photocatalyst was prepared via wet chemical method. The observed structural morphology of FeMoO4/g-C3N4 reveals the 2D-iron molybdate (FeMoO4) nanoplates compiled with the 2D-graphitic carbon nitride (g-C3N4) nanosheets like structure. The photocatalytic activity of the g-C3N4, FeMoO4, and FeMoO4/g-C3N4 composites were studied via the degradation of Rhodamine B (RhB) as targeted textile dye under visible light irradiation (VLI). The optimal FeMoO4/g-C3N4 (1:3 ratio of g-C3N4 and FeMoO4) composite show an enhanced degradation performance with rate constant value of 0.02226 min-1 and good stability even after three cycles. Thus, the h+ and O2•-are the key radicals in the degradation of RhB under VLI. It is proposed that the FeMoO4/g-C3N4 Z-scheme heterojunction effectively enhances the transfer and separation ability of e-/h+ pairs, by the way increasing the photocatalytic efficiency towards the RhB degradation. Thus, the newly constructed Z-scheme FeMoO4/g-C3N4 heterojunction photocatalyst is a promising material for the remediation of wastewater relevant to elimination of toxic effect in marine environment.
Collapse
Affiliation(s)
- Swaminathan Arumugam
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Sieon Jung
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | | | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
11
|
Boaretti C, Roso M, Modesti M, Lorenzetti A. Ultrasound-Promoted Abatement of Formaldehyde in Liquid Phase with Electrospun Nanostructured Membranes: The Synergy of Combined AOPs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:435. [PMID: 36770396 PMCID: PMC9920719 DOI: 10.3390/nano13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The present work investigates the effect of ultrasounds in the performance of combined advanced oxidation processes (AOPs) on the degradation of formaldehyde (HCHO)-polluted aqueous solutions for potential application in wastewater treatment. Different heterogeneous nanostructured catalysts based on TiO2 and FeSO4 for photocatalysis and the Fenton process were employed after electrospray deposition on electrospun nanofibrous membranes. Such systems were tested, without the use of any added hydrogen peroxide, by varying the combinations among the selected AOPs in a batch reactor configuration. The results show that, in the absence of a Fenton reaction, ultrasounds provided a significantly increased formaldehyde photocatalytic abatement, probably by increasing the concentration of active species through a different set of reactions while providing a favorable mass transfer regime by the cavitational effect. Due to the faster kinetics of the photo-Fenton process, thanks to its partial homogeneous nature, such a beneficial effect is more limited for the sono-photo-Fenton configuration. On the other hand, the employment of a sono-photocatalytic-Fenton process revealed a synergic effect that provided the best results, reducing the formaldehyde concentration to less than 99% after 240 min. Further analysis showed that, due to a mutual influence, only a tailored TiO2/FeSO4 ratio on the membranes was able to display the best performance.
Collapse
Affiliation(s)
- Carlo Boaretti
- Correspondence: (C.B.); (A.L.); Tel.: +39-049-827-5544 (C.B.); +39-049-827-5556 (A.L.)
| | | | | | - Alessandra Lorenzetti
- Correspondence: (C.B.); (A.L.); Tel.: +39-049-827-5544 (C.B.); +39-049-827-5556 (A.L.)
| |
Collapse
|
12
|
Mehralipour J, Jonidi Jafari A, Gholami M, Esrafili A, Kermani M. Photocatalytic-Proxone Process Application in the Degradation of Toluene-Diisocyante, and Methylene Diphenyl Diisocyanate from polluted air. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Kim JY, Jo Y, Kim JD, Choi MY, Lee S, Choi HC. Unveiling the effect of gas treatment on the electronic structure of carbon nanotube-supported Pd catalysts for electroreduction of H 2O 2 and Heck reaction. CHEMOSPHERE 2022; 307:135838. [PMID: 35963384 DOI: 10.1016/j.chemosphere.2022.135838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study explored the impact of gas treatments on the structures of multi-walled carbon nanotubes supported Pd (CNT-Pd) catalysts used for electrocatalytic H2O2 reduction and the Heck cross-coupling reaction. The CNT-Pd catalyst was prepared by anchoring Pd nanoparticles on thiolated CNTs. XPS was conducted to examine the surface composition and electronic structure changes of the CNT-Pd catalyst before and after gas treatment. The XPS results revealed that as-prepared CNT-Pd contains at least two different oxidation states on the surface, whereon their proportions depend on the gas used for treatment. Treatment with H2 leads to Pd(0) enrichment near the surface, while O2 treatment causes Pd(Ⅱ) enrichment of CNT-Pd. All catalysts containing both Pd(0) and Pd(Ⅱ) were active toward H2O2 reduction, and the Heck cross-coupling reaction of n-butyl acrylate and 4-iodotoluene; increased proportion of metallic Pd(0) boosted the catalytic reaction. However, the catalyst stability increased as the amount of Pd(II) increased.
Collapse
Affiliation(s)
- Ja Young Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Youngshin Jo
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Ji Dang Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| | - Hyun Chul Choi
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
14
|
Ahmadi-Leilakouhi B, Hormozi Jangi SR, Khorshidi A. Introducing a novel photo-induced nanozymatic method for high throughput reusable biodegradation of organic dyes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Miyashiro CS, Hamoudi S. Aqueous Acetamiprid Degradation Using Combined Ultrasonication and Photocatalysis Under Visible Light. WATER, AIR, AND SOIL POLLUTION 2022; 233:401. [PMID: 36168646 PMCID: PMC9508044 DOI: 10.1007/s11270-022-05867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Acetamiprid (ACE), a neonicotinoid pesticide widely used in pest control, was found in high concentrations in soils, rivers, and lakes. In the present study, ACE degradation was investigated using visible light driven photocatalysis over nitrogen-graphene oxide (N-GO) and palladium-graphene oxide (Pd-GO)-doped ZnO photocatalysts combined with ultrasonication implemented either as a pretreatment (sonolysis) or operated simultaneously with photocatalysis (sonophocatalysis). The effectiveness of the two ACE degradation processes was determined separately. The sonolysis pretreatment allowed reaching almost 40% acetamiprid conversion within 30 min of reaction. Pursuing with the photodegradation reaction in the presence of N-GO-ZnO and Pd-GO-ZnO resulted in a maximum conversion of 98% of ACE within 5 h. As for the sonophotocatalysis process, the reaction time was shortened from 5 to 2 h with 100% acetamiprid conversion. In addition, the photocatalysts were shown to keep their activity even after 5 sonophotocatalytic cycles, thus proving their reusability. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-022-05867-4.
Collapse
Affiliation(s)
- Carolina Sayury Miyashiro
- Department of Soil Sciences & Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr’Eau, Université Laval, Québec, G1V 0A6 Canada
| | - Safia Hamoudi
- Department of Soil Sciences & Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr’Eau, Université Laval, Québec, G1V 0A6 Canada
| |
Collapse
|
16
|
Ali A, Siddique M, Chen W, Han Z, Khan R, Bilal M, Waheed U, Shahzadi I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116396. [PMID: 35681981 PMCID: PMC9180375 DOI: 10.3390/ijerph19116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Phenol is the most common organic pollutant in many industrial wastewaters that may pose a health risk to humans due to its widespread application as industrial ingredients and additives. In this study, waste green tea leaves (WGTLs) were modified through chemical activation/carbonization and used as an adsorbent in the presence of ultrasound (cavitation) to eliminate phenol in the aqueous solution. Different treatments, such as cavitation, adsorption, and sono-adsorption were investigated to remove the phenol. The scanning electron microscope (SEM) morphology of the adsorbent revealed that the structure of WGTLs was porous before phenol was adsorbed. A Fourier Transform Infrared (FTIR) analysis showed an open chain of carboxylic acids after the sono-adsorption process. The results revealed that the sono-adsorption process is more efficient with enhanced removal percentages than individual processes. A maximum phenol removal of 92% was obtained using the sono-adsorption process under an optimal set of operating parameters, such as pH 3.5, 25 mg L−1 phenol concentration, 800 mg L−1 adsorbent dosage, 60 min time interval, 30 ± 2 °C temperature, and 80 W cavitation power. Removal of chemical oxygen demand (COD) and total organic carbon (TOC) reached 85% and 53%. The Freundlich isotherm model with a larger correlation coefficient (R2, 0.972) was better fitted for nonlinear regression than the Langmuir model, and the sono-adsorption process confirmed the pseudo-second-order reaction kinetics. The findings indicated that WGTLs in the presence of a cavitation effect prove to be a promising candidate for reducing phenol from the aqueous environment.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Zhixin Han
- Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Tai’an 271000, China;
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 59300, Pakistan;
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| |
Collapse
|
17
|
Al-Mohaimeed AM, Abbasi AM, Ali MA, Shazhni JRA. Detection of trizole contaminated waste water using biocatalyst and effective biodegradation potential of flubendiamide. ENVIRONMENTAL RESEARCH 2022; 206:112264. [PMID: 34687753 DOI: 10.1016/j.envres.2021.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Flubendiamide is a new class of chemical pesticide with broad spectrum activity against lepidopteran pests. Due to limited approach and high specificity towards various non targeted organisms, the unrestricted application of this pesticide as a prominent alternate for organochlorine and organophosphate pesticides, causing serious environmental pollution. In this study, wastewater was used for the determination of microbial strains and pesticide degrading fungi. Microbial population and flubendiamide resistant fungal strains were characterized using enriched medium. Aerobic bacteria (6.38 ± 0.23 log CFU/mL), nitrifying bacteria (2.73 ± 0.31 CFU/mL), Lactobaillus (0.72 ± 0.03 log CFU/mL), actinomycetes (5.36 ± 0.27 log CFU/mL) and fungi (4.79 ± 0.22 log CFU/mL) were detected. The prominent fungi genera were, Fusarium, Trichoderma, Cladophialophora, Paecilomyces, Talaromyces, Penicillium, Aspergillus, Candida, Phyllosticta, Mycosphaerella, Ochroconis, and Mucor. Minimum inhibitory concentration of the rapidly growing organism (FR04) revealed its ability to tolerate up to 1250 mg/L flubendiamide concentration. Morphological, biochemical and molecular analysis revealed that the strain was Aspergillus terreus FR04. The residual pesticide was detected using a High Performance Liquid Chromatography (HPLC). High performance liquid chromatography analysis revealed that 89 ± 1.9% pesticide removal efficiency was observed in strain FR04 at optimized culture conditions (96 h, pH 6.5, 30 °C and 300 mg/L pesticide concentration). The strain FR04 degraded pollutants from the wastewater and improved water quality. A. terreu sFR04 is an indigenous fungus and has the ability to degrade trizole pesticides from the wastewater significantly.
Collapse
Affiliation(s)
- Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Arshad Mehmood Abbasi
- University of Gastronomic Sciences, 12042, Pollenzo, Italy; Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - J R Abima Shazhni
- Department of Biochemistry, Lekshmipuram College of Ars and Science, Affiliated to Manonmaniam Sundaranar University, Tamil Nadu, India.
| |
Collapse
|
18
|
Chinnadurai K, Prema P, Veeramanikandan V, Kumar KR, Nguyen VH, Marraiki N, Zaghloul NSS, Balaji P. Toxicity evaluation and oxidative stress response of fumaronitrile, a persistent organic pollutant (POP) of industrial waste water on tilapia fish (Oreochromis mossambicus). ENVIRONMENTAL RESEARCH 2022; 204:112030. [PMID: 34508771 DOI: 10.1016/j.envres.2021.112030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The study was designed to determine the impact of acute toxicity of fumaronitrile exposure through tissue damaging, oxidative stress enzymes and histopathological studies in gills, liver and muscle cells of freshwater tilapia fish (Oreochromis mossambicus). In gill, liver, and muscle cells, biochemical indicators such as tissue damage enzymes (Acid Phosphatase (ACP), Alkaline Phosphatase (ALP), and Lactate Dehydrogenase (LDH)) and antioxidative enzymes (Superoxide Dismutase (SOD); Catalase (CAT); Glutathione-S-transferase (GST); Reduced Glutathione (GSH); Glutamate oxaloacetate transaminase (GOT) and Glutamate pyruvate transaminase (GPT) were quantified in the time interval of 30, 60 and 90 days exposure to the fumaronitrile. After 90 days, under 6 ppb exposure conditions, the acid phosphatase (ACP) levels of fish increased significantly in the gills (3.439 μmol/mg protein/min), liver (1.743 μmol/mg protein/min), and muscles (2.158 μmol/mg protein/min). After 90 days of exposure to the same concentration and days, ALP activity increased significantly in gills (4.354 μmol/mg protein/min) and liver (1.754 μmol/mg protein/min), but muscle cells had a little decrease in ALP activity (2.158 μmol/mg protein/min). The LDH concentration in gills following treatment with fumaronitrile over a period of 0-90 days was 3.573 > 3.521 > 2.245 μmol/mg protein/min over 30 > 60 > 90 days. However, at the same dose and treatment duration, a greater LDH level of 0.499 μmol/mg protein/min was found in liver and muscle cells. Histopathological abnormalities in the gills, liver, and muscle cells of treated fish were also examined, indicating that fumaronitrile treatment generated the most severe histological changes. The current study reveals that fumaronitrile exposure has an effect on Oreochromis mossambicus survival, explaining and emphasising the risk associated with this POP exposure to ecosystems and human populations.
Collapse
Affiliation(s)
- K Chinnadurai
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - P Prema
- Department of Zoology, VHN Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | - V Veeramanikandan
- PG and Research Centre in Microbiology, MGR College, Hosur, Tamilnadu, India
| | - K Ramesh Kumar
- Department of Zoology, Vivekananda College (Autonomous), Madurai, Tamil Nadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India.
| |
Collapse
|
19
|
Rezania S, Mojiri A, Park J, Nawrot N, Wojciechowska E, Marraiki N, Zaghloul NSS. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. ENVIRONMENTAL RESEARCH 2022; 204:111959. [PMID: 34474032 DOI: 10.1016/j.envres.2021.111959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the new lanthanum sulfide nanoparticle (La2S3) was synthesized and incorporated onto magnetic graphene oxide (MGO) sheets surface to produce potential adsorbent (MGO@LaS) for efficient removal of lead ions (Pb2+) from wastewater. The synthesized MGO@LaS adsorbent was characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effective parameters on the adsorption process including solution pH (~5), adsorbent dosage (20 mg), contact time (40 min), initial Pb2+ concentration and temperature were studied. The removal efficiency was obtained >95% for lead ions at pH 5 with 20 mg adsorbent. To validate the adsorption rate and mechanism, the kinetic and thermodynamic models were studied based on experimental data. The Langmuir isotherm model was best fitted to initial equilibrium concentration with a maximum adsorption capacity of 123.46 mg/g. This indicated a monolayer adsorption pattern for Pb2+ ions over MGO@LaS. The pseudo-second-order as the kinetic model was best fitted to describe the adsorption rate due to high R2 > 0.999 as compared first-order. A thermodynamic model suggested a chemisorption and physisorption adsorption mechanism for Pb2+ ions uptake into MGO@LaS at different temperatures; ΔG° < -5.99 kJ mol-1 at 20 °C and ΔG° -18.2 kJ mol-1 at 45 °C. The obtained results showed that the novel nanocomposite (MGO@LaS) can be used as an alternative adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Nicole Nawrot
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
20
|
Reddy BS, Maurya AK, Narayana PL, Pasha SKK, Reddy MR, Hatshan MR, Darwish NM, Kori SA, Cho KK, Reddy NS. Knowledge extraction of sonophotocatalytic treatment for acid blue 113 dye removal by artificial neural networks. ENVIRONMENTAL RESEARCH 2022; 204:112359. [PMID: 34774834 DOI: 10.1016/j.envres.2021.112359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Removing decolorizing acid blue 113 (AB113) dye from textile wastewater is challenging due to its high stability and resistance to removal. In this study, we used an artificial neural network (ANN) model to estimate the effect of five different variables on AB113 dye removal in the sonophotocatalytic process. The five variables considered were reaction time (5-25 min), pH (3-11), ZnO dosage (0.2-1.0 g/L), ultrasonic power (100-300 W/L), and persulphate dosage (0.2-3 mmol/L). The most effective model had a 5-7-1 architecture, with an average deviation of 0.44 and R2 of 0.99. A sensitivity analysis was used to analyze the impact of different process variables on removal efficiency and to identify the most effective variable settings for maximum dye removal. Then, an imaginary sonophotocatalytic system was created to measure the quantitative impact of other process parameters on AB113 dye removal. The optimum process parameters for maximum AB 113 removal were identified as 6.2 pH, 25 min reaction time, 300 W/L ultrasonic power, 1.0 g/L ZnO dosage, and 2.54 mmol/L persulfate dosage. The model created was able to identify trends in dye removal and can contribute to future experiments.
Collapse
Affiliation(s)
- B S Reddy
- Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - A K Maurya
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea
| | - P L Narayana
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea
| | - S K Khadheer Pasha
- Department of Physics, Vellore Institute of Technology (Amaravati Campus), Amaravati, 522501, Guntur, Andhra Pradesh, India
| | - M R Reddy
- Computer Science and Engineering. Srinivasa Ramanujan Institute of Technology, Anantapur, 515701, India
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noura M Darwish
- Faculty of Science Ain Shams University, Biochemistry Department, Abbasaya, P.O. Box., 11566, Cairo, Egypt; Ministry of Health Laboratories, Tanta, Egypt
| | - S A Kori
- Central University of Andra Pradesh (CUAP), Anantapuram, Andra Pradesh, 515002, India
| | - Kwon-Koo Cho
- Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - N S Reddy
- Virtual Materials Lab, School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
21
|
Al-Khattaf FS, Al-Ansari MM, Maruthamuthu MK, Dyona L, Agastian P. Polyhydroxybutyrate degradation by biocatalyst of municipal sludge water and degradation efficacy in sequencing batch biofilm reactor. ENVIRONMENTAL RESEARCH 2022; 204:112336. [PMID: 34740626 DOI: 10.1016/j.envres.2021.112336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The main aim of the study was to degrade poly-β-hydroxybutyrate (P(3HB)) in the sequencing batch biofilm reactor (SBBR) using biocatalyst. Enrichment method was used for the isolation of P(3HB) degrading bacteria. These bacterial strains were isolated from the wastewater sludge sample treated with P(3HB) sheets. A total of 75 bacteria were isolated after 60 days of incubation. The zone of clearance varied between 12 ± 1 mm and 19 ± 2 mm. Two bacterial strains (Nitrobacter vulgaris SW1 and Pseudomonas aeruginosa KS10) showed rapid PHB degradation activity on agar plates. Plate screening experiments confirmed PHB degrading ability of P. aeruginosa KS10 and N. vulgaris SW1. Biodegrading potential improved after 72 h fermentation period. The bacteria produced depolymerase and enzyme activity was maximum after 72 h. The sequencing batch biofilm reactor (SBBR) co-cultured with N. vulgaris SW1 and P. aeruginosa KS10 was operated to remove PHB from the wastewater. Biofilm in the reactor degraded PHB and the production of polyhydroxybutyrate depolymerase influenced on PHB degradation. Polyhydroxybutyrate degradation improved continuously and maximum degradation (95.6%) was achieved after 8 days. The degradation of biopolymers help to reduce environmental pollution associated with the petroleum based polymers.
Collapse
Affiliation(s)
- Fatimah S Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murali Kannan Maruthamuthu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Therapeutic Biomaterials Laboratory, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill. NC, USA
| | - L Dyona
- Department of Botany, Holycross College, Nagercoil, Kanyakumari District, Tamilnadu, India.
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College (Autonomous), University of Madras, Chennai, 34, Tamil Nadu, India.
| |
Collapse
|
22
|
Othmani A, Magdouli S, Senthil Kumar P, Kapoor A, Chellam PV, Gökkuş Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. ENVIRONMENTAL RESEARCH 2022; 204:111916. [PMID: 34428450 DOI: 10.1016/j.envres.2021.111916] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 05/21/2023]
Abstract
Management of basic natural resources and the spent industrial and domestic streams to provide a sustainable safe environment for healthy living is a magnum challenge to scientists and environmentalists. The present remedial approach to the wastewater focuses on recovering pure water for reuse and converting the contaminants into a solid matrix for permanent land disposal. However, the ground water aquifers, over a long period slowly leach the contaminants consequently polluting the ground water. Synthetic adsorbents, mainly consisting of polymeric resins, chelating agents, etc. are efficient and have high specificity, but ultimate disposal is a challenge as most of these materials are non-biodegradable. In this context, it is felt appropriate to review the utility of adsorbents based on natural green materials such as agricultural waste and restricted to few model contaminants: phenols, and heavy metals chromium(VI), and cadmium(II) in view of the vast amount of literature available. The article discusses the features of the agricultural waste material-based adsorbents including the mechanism. It is inferred that agricultural waste materials are some of the common renewable sources available across the globe and can be used as sustainable adsorbents. A discussion on challenges for industrial scale implementation and integration with advanced technologies like magnetic-based approaches and nanotechnology to improve the removal efficiency is included for future prospects.
Collapse
Affiliation(s)
- Amina Othmani
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Ontario, Canada; Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Qc, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 Boulevard du Collège, J9X0E1, Canada
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | | | - Ömür Gökkuş
- Erciyes University, Engineering Faculty Environmental Engineering Department, 38039, Kayseri, Turkey
| |
Collapse
|
23
|
Foroughi F, Immanuel Bernäcker C, Röntzsch L, Pollet BG. Understanding the Effects of Ultrasound (408 kHz) on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) on Raney-Ni in Alkaline Media. ULTRASONICS SONOCHEMISTRY 2022; 84:105979. [PMID: 35299037 PMCID: PMC8924425 DOI: 10.1016/j.ultsonch.2022.105979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) occurring at the Raney-Ni mesh electrode in 30 wt.-% aqueous KOH solution were studied in the absence (silent) and presence of ultrasound (408 kHz, ∼54 W, 100% acoustic amplitude) at different electrolyte temperatures (T = 25, 40 and 60 °C). Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) experiments were performed to analyse the electrochemical behaviour of the Raney-Ni electrode under these conditions. Under silent conditions, it was found that the electrocatalytic activity of Raney-Ni towards the HER and the OER depends upon the electrolyte temperature, and higher current densities at lower overpotentials were achieved at elevated temperatures. It was also observed that the HER activity of Raney-Ni under ultrasonic conditions increased at low temperatures (e.g., 25 °C) while the ultrasonic effect on the OER was found to be insignificant. In addition, it was observed that the ultrasonic effect on both the HER and OER decreases by elevating the temperature. In our conditions, it is suggested that ultrasound enhances the electrocatalytic performance of Raney-Ni towards the HER due to principally the efficient gas bubble removal from the electrode surface and the dispersion of gas bubbles into the electrolyte, and this effect depends upon the behaviour of the hydrogen and oxygen gas bubbles in alkaline media.
Collapse
Affiliation(s)
- Faranak Foroughi
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway.
| | - Christian Immanuel Bernäcker
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, Dresden 01277, Germany
| | - Lars Röntzsch
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Winterbergstraße 28, Dresden 01277, Germany
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway; Green Hydrogen Lab (GH2Lab), Pollet Research Group, Hydrogen Research Institute, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
24
|
Wu X, Lin Q, Belwal T, Huang H, Zou L, Lv W, Luo Z. Effect of advanced/hybrid oxidation process involving ultrasonication and ultraviolet radiation (sonophotolysis) on anthocyanin stability: Degradation kinetics and mechanism. Food Chem 2022; 370:131083. [PMID: 34600395 DOI: 10.1016/j.foodchem.2021.131083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022]
Abstract
The hybrid oxidation effect of ultrasonics (US) and ultraviolet light (UV-A) on Cyanidin-3-O-glucoside (C3G) stability were examined. For comparison, sonolysis and photolysis experiments were also conducted. The results showed that under hybrid sonophotolysis and sonolysis treatment, C3G degradation undergoes zero-order kinetics, while under photolysis, first-order degradation kinetic prevailed. The degradation rate increases with the increase in US power, with the lowest, was recorded as 0.70 μg/ml/h (14 W/L) and 0.77 μg/ml/h (28 W/L), and highest as 0.80 μg/ml/h (42 W/L). Similarly, the degradation ability of UV photolysis at 400 μW/cm2 was weak, which increased with increasing UV power (600 μW/cm2). Overall the sonophotolysis degradation rate was significantly higher than that of the individual effect. With the addition of gallic acid (GA), the degradation of C3G was found lower under sonophotolysis; thus, it could be used as a natural protective agent for C3G during food processing.
Collapse
Affiliation(s)
- Xiaohan Wu
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang R&D Center for Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Qianwei Lin
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang R&D Center for Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang R&D Center for Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China.
| | - Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang R&D Center for Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, People's Republic of China
| | - Weide Lv
- Hangzhou Vocational & Technical College, Hangzhou 310018, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang R&D Center for Food Technology and Equipment, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Yuhangtang Road 866, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
25
|
Supercritical Technology-Based Date Sugar Powder Production: Process Modeling and Simulation. Processes (Basel) 2022. [DOI: 10.3390/pr10020257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Date palm fruits (Phoenix dactylifera) contain high levels of fructose and glucose sugars. These natural sugar forms are healthy, nutritional and easily assimilate into human metabolism. The successful production of soluble date sugar powder from nutritious date fruits would result in a new food product that could replace the commercial refined sugar. In this work, a novel process technology based on the supercritical extraction of sugar components from date pulp was modeled and simulated using Aspen Plus software. The process model consisted of three main steps that were individually simulated for their optimal working conditions as follows: (a) freeze-drying of the date pulp at −42 °C and 0.0001 bar; (b) supercritical extraction of the sugar components using a 6.77 wt.% water mixed CO2 solvent system at a pressure of 308 bar, temperature of 65 °C, and CO2 flow rate of 31,000 kg/h; and (c) spray-drying of the extract using 40 wt.% Gum Arabic as the carrier agent and air as drying medium at 150 °C. The overall production yield of the process showed an extraction efficiency of 99.1% for the recovery of total reducing sugars from the date fruit. The solubility of the as-produced date sugar powder was improved by the process selectivity, elimination of insoluble fiber contents, and the addition of Gum Arabic. The solubility of the final date sugar product was estimated as 0.89 g/g water.
Collapse
|
26
|
Kumari MLA, Devi LG, Maia G, Chen TW, Al-Zaqri N, Ali MA. Mechanochemical synthesis of ternary heterojunctions TiO 2(A)/TiO 2(R)/ZnO and TiO 2(A)/TiO 2(R)/SnO 2 for effective charge separation in semiconductor photocatalysis: A comparative study. ENVIRONMENTAL RESEARCH 2022; 203:111841. [PMID: 34380049 DOI: 10.1016/j.envres.2021.111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
TiO2, ZnO, and SnO2 metal oxides were synthesized by the sol-gel method and heterojunctions were fabricated by combining TiO2 with either ZnO or SnO2 in a 1:1 ratio using mechanochemical ball milling process. The ball milling process promotes phase transition of TiO2 from anatase to rutile and yields ternary heterojunction of the type TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 (A-anatase and R-rutile). These ternary heterojunctions were characterized by various analytical techniques and its photocatalytic efficiency is evaluated using 4-Chloro Phenol as a model compound under UV and solar light. The enhanced catalytic activity of TiO2(A)/TiO2(R)/ZnO heterojunction is attributed to the formation of Ti3+-Vo defect states which leads to the efficient charge carrier separation. During the ball milling process severe crystal deformation takes place in TiO2 and ZnO lattices by creating crystal lattice distortion which leads to the formation of defects due to valency mismatch between Ti4+ and Zn2+. A mechanistic pathway is proposed for the enhanced photocatalytic activity of the ternary heterojunctions.
Collapse
Affiliation(s)
- M L Aruna Kumari
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India; Department of Chemistry, M. S. Ramaiah College of Arts, Science, and Commerce, Bengaluru, 560054, India.
| | - L Gomathi Devi
- Department of Post Graduate Studies in Chemistry, Bangalore University, Bengaluru, 560001, India
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS, 79074-460, Brazil
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
27
|
Xu Q, Zhang H, Leng H, You H, Jia Y, Wang S. Ultrasonic role to activate persulfate/chlorite with foamed zero-valent-iron: Sonochemical applications and induced mechanisms. ULTRASONICS SONOCHEMISTRY 2021; 78:105750. [PMID: 34544014 PMCID: PMC8455865 DOI: 10.1016/j.ultsonch.2021.105750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The novel system, consisting of composite oxidants (persulfate/chlorite, S2O82-/ClO2-) and stationary phase activator (zero-valent-iron foam, Fe0f) driven by ultrasonic (US) field, was applied to treat the triphenylmethane derivative effectively even at low temperature (≈ 289 K). By comparisons of sub-systems, the US roles to S2O82-, ClO2-, and Fe0f were seriatim analyzed. US made the reaction order of multi-component system tend to within 1 (leading to de-order reaction), and widened pH activating range of the Fe0f by sonicate-polishing during the process of ClO2- co-activating S2O82-. US and Fe0f were affected by fluid eddy on activating S2O82-/ClO2-. The Fe0f had slight effect on the temperature of US bubble-water interface but the addition of ClO2- lowered it. The partitioning capacity of the above US reactive zone increased during the reaction. US and ClO2- could enrich the kinds of degradation intermediates. The contributions of free radicals (ClOx-based radicals, sulfate radicals (SO4-), and hydroxyl radicals (OH)) and non-free radicals (ClO2, and O = FeIV/V from ionic Fe under "-O-O-" of S2O82- and cyclic adjustment reaction of ClO2-) processes by sonochemical induction were equally important by corresponding detection means. Especially, real-time and online high-resolution mass spectrum by self-developing further confirmed the chain transfers of different free radicals due to US role. The findings expanded the application of sono-persulfate-based systems and improved understanding on activation mechanism.
Collapse
Affiliation(s)
- Qihui Xu
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Haoran Leng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Aarthi A, Bindhu MR, Umadevi M, Parimaladevi R, Sathe GV, Al-Mohaimeed AM, Elshikh MS, Balasubramanian B. Evaluating the detection efficacy of advanced bimetallic plasmonic nanoparticles for heavy metals, hazardous materials and pesticides of leachate in contaminated groundwater. ENVIRONMENTAL RESEARCH 2021; 201:111590. [PMID: 34181923 DOI: 10.1016/j.envres.2021.111590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
During the decomposition of trashes, leachate is created and leaching is gradually pollutes the surface and groundwater. Thus, the most severe ecological impact is the risk of ground water pollution because of collection of leachate from unlined insecure landfills. Due to the low biodegradable organic strength, irregular productivity and composition, the environmentally neglected landfill leachate treatment is challenging. This work was conducted on a synthetically effective bimetallic surface enhanced Raman spectroscopic (SERS) nanosensor by gold/silver-bimetallic nanoparticles (Au/Ag-NPs), and used for the specific detection of municipal solid waste (MSW) landfill leachate in groundwater. The optical study of Au/Ag-NPs led to reflections from Ag cores and small Au shells. The structural studies represent the FCC structure of Au/Ag-NPs. The core-shell nanocrevice NPs with particle size of 23 nm played an important role with plasmonic behaviour enhances the electromagnetic excitation to achieve SERS detection and plasmonic photocatalysis. Thus, obtained results clearly show that Au was successfully added to Ag-NPs, and its existence can also be confirmed by energy dispersive spectroscopy (EDAX). The prepared SERS based sensors have the potential to detect aromatic hydrocarbon, pesticides and heavy metals from environmentally ignored MSW landfill leachate. In general, the application of this new synergetic strategy of the photocatalytic degradation of leachate was irradiated by visible wavelength with the rate constant of 0.0036/min, 0.0047/min and 0.005/min by Ag-NPs, Au-NPs and Au/Ag-NPs respectively. Overall, this is the only study achieved efficiently with photocatalytic degradation and SERS detection of environmentally ignored real sample (leachate) to make pollutant free homeland aquifers.
Collapse
Affiliation(s)
- A Aarthi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - M R Bindhu
- Department of Physics, Sree Devi Kumari Women's College, Kuzhithurai, 629163, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India.
| | - R Parimaladevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - G V Sathe
- UGC - DAE Consortium for Scientific Research, Indore, India
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|
29
|
Jawale NS, Arbuj SS, Umarji GG, Rane SB. Synthesis of Anatase/Brookite Mixed Phase TiO
2
Nanostructures and its Photocatalytic Performance Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Niteen S. Jawale
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Sudhir S. Arbuj
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Govind G. Umarji
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Sunit B. Rane
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| |
Collapse
|
30
|
Vijayaraghavan P, Lourthuraj AA, Arasu MV, AbdullahAl-Dhabi N, Ravindran B, WoongChang S. Effective removal of pharmaceutical impurities and nutrients using biocatalyst from the municipal wastewater with moving bed packed reactor. ENVIRONMENTAL RESEARCH 2021; 200:111777. [PMID: 34333016 DOI: 10.1016/j.envres.2021.111777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The presence of antibiotics in the wastewater is one of the important issues related to environmental management. In this study, antibiotics-degrading bacteria were screened from the enriched sewage sludge sample. Among the isolated bacterial strains, Bacillus subtilis AQ03 showed maximum antibiotic tolerance (>2000 ppm). The characterized strain B. subtilis AQ03 degraded sulfamethaoxazole and sulfamethoxine and the optimum nutrient and physical-factors were analyzed. B. subtilis AQ03 degraded 99.8 ± 1.3 % sulfamethaoxazole, and 93.3 ± 6.2 % sulfamethoxine. Sodium nitrate and ammonium chloride were improved antibiotics degradation (<90 %). The optimized conditions were maintained in a moving bed bioreactor for the removal of antibiotics and nutrients from the wastewater. The selected strain considerably produced proteases (109.4 U/mL), amylases (55.1 U/mL), cellulase (9.6 U/mL) and laccases (15.2). In moving bed reactor, sulfamethaoxazole degradation was maximum after 8 days (100 ± 1.5 %) and sulfamethoxazole (100 ± 0) was removed completely from wastewater after 10 days. In moving bed reactor, biological oxygen demand (92.1 ± 2.8 %), chemical oxygen demand (79.6 ± 1.2 %), nitrate (89.4 ± 3.9 %) and phosphate (91.8 ± 1.2) were removed from the wastewater along with antibiotics after 10 days of treatment. The findings indicate that the indigenous bacterial communities and the ability to survive in the presence of high antibiotic concentrations and xenobiotics. Moving bed bioreactor is useful for the removal of nutrients and antibiotics from wastewater.
Collapse
Affiliation(s)
| | - A Amala Lourthuraj
- Department of Biochemistry,Guru nanak College (autonomous), Velachery, Chennai, 600042, Tamil nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Naif AbdullahAl-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Soon WoongChang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| |
Collapse
|
31
|
Cheng G, Zhang Y, Sun L, Wan J, Li Z, Dang C, Fu J. Enhanced degradation of reactive brilliant red X-3B by photocatalysis integrated with micro-electrolysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49899-49912. [PMID: 33945093 DOI: 10.1007/s11356-021-14205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The microwave electrodeless lamp UV photocatalysis (MWUV) integrated with iron carbon micro-electrolysis (ME) was applied to degrade reactive brilliant red X-3B. In the present study, the removal rate of X-3B by MWUV/ME was 95%, which was significantly higher than 56% of MWUV and 62% of ME system. The experiment results demonstrated a synergistic effect in MWUV/ME system, wherein the ME system played an important role in color removal and the formation of ·OH in photocatalysis contributed most for the mineralization of X-3B and its intermediates. The removal efficiency of TOC was 32%, 7.5%, and 59.5% under MWUV, ME, and MWUV/ME processes at the end of the reaction, respectively. The Fe3+ existed in the system was an enhancer of producing ·OH via self-generation of ·OH by UV irradiation or improving the separation of electron-hole in photocatalysis by capturing the electrons. Therefore, the combined treatment of MWUV and ME system has the potential of synergistic effect compared to the separate process. Lowering the initial solution pH and increasing the iron filing dosage and dissolved oxygen were beneficial for the enhancement of degradation efficiency. The inorganic anions showed a diversity influencing the degradation of X-3B. NO3-, CO32-, and SO42- (at higher concentration) promoted the degradation reaction, while Cl- had non-significant effect.
Collapse
Affiliation(s)
- Gong Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Environmental Engineering Center, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
- Engineering Research Center for Cleaner Production of Textile Dyeing and Printing under Ministry of Education, Wuhan Textile University, Wuhan, 430073, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Sun
- Environmental Engineering Center, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Jing Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhang Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
32
|
Mani M, Pavithra S, Mohanraj K, Kumaresan S, Alotaibi SS, Eraqi MM, Gandhi AD, Babujanarthanam R, Maaza M, Kaviyarasu K. Studies on the spectrometric analysis of metallic silver nanoparticles (Ag NPs) using Basella alba leaf for the antibacterial activities. ENVIRONMENTAL RESEARCH 2021; 199:111274. [PMID: 34000268 DOI: 10.1016/j.envres.2021.111274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this present investigation, an aqueous Basella alba leaves extract was used to synthesize AgNPs. The green synthesis approach is carried out in our work due to non-toxic, less cost, and ecofriendly methods. FTIR spectra are used to confirm the biomolecules present in B.alba leaves extract along with AgNPs and these compounds are responsible for Ag particle from micro to nanostructure. The FCC structure and crystalline nature of the AgNPs are analyzed with the help of XRD and TEM techniques respectively. DLS and Zeta potential techniques are carried out to find the size and stability of AgNPs respectively and UV is used to verify the presence of AgNPs in synthesized samples employing SPR peaks around 435 nm. The antioxidant studies expose eminent scavenging activity which ranges from 13.71% to maximum 67.88%. Green synthesized AgNPs possess well organized biological activities concerning antioxidant and antibacterial, which can be used in some biologically applications.
Collapse
Affiliation(s)
- M Mani
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India.
| | - S Pavithra
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India
| | - K Mohanraj
- Department and Graduate Institute of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - S Kumaresan
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mostafa M Eraqi
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt; Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - M Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
33
|
Jayakumar V, Govindaradjane S, Senthil Kumar P, Rajamohan N, Rajasimman M. Sustainable removal of cadmium from contaminated water using green alga - Optimization, characterization and modeling studies. ENVIRONMENTAL RESEARCH 2021; 199:111364. [PMID: 34033830 DOI: 10.1016/j.envres.2021.111364] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
This research study reported the feasibility of cadmium removal using green algae, Caulerpa scalpelliformis, under controlled environmental conditions. The algal biosorbent could effectively remove cadmium under broad range of test conditions, namely, initial pH (3-6), adsorbent mass (0.5-2.5 gL-1) and shaking speed (60-100 rpm). The best operating conditions were identified using Central Composite Design under Response Surface methodology and found to be pH - 4.9, adsorbent mass - 2.1 gL-1 and shaking speed - 90 rpm. Equilibrium studies were conducted and monolayer sorption was identified as the mechanism, confirmed by Langmuir isotherm (R2 = 0.9920). The maximum Cd uptake achieved at optimal conditions was 111.11 mg g-1. The kinetic constants of the best fit model (pseudo second order) were determined. The thermodynamic feasibility was verified (ΔG ͦ < 0) and the biosorption process was found to be endothermic (ΔH ͦ > 0). The mass transfer studies shows that the mass transfer coefficient was inversely related to the temperature. Presence of favorable surface functional groups and enhanced surface area confirmed the suitability of the synthesized biosorbent for effective removal of cadmium.
Collapse
Affiliation(s)
- V Jayakumar
- Department of Chemical Engineering, MNGPC, Pudhucherry, 605008, India.
| | - S Govindaradjane
- Department of Civil Engineering, Pondicherry Engineering, College, Pudhucherry, 605014, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India
| | - N Rajamohan
- Chemical Engineering Section, Sohar University, Sohar, PC:311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, India
| |
Collapse
|
34
|
Tan WK, Cheah SC, Parthasarathy S, Rajesh RP, Pang CH, Manickam S. Fish pond water treatment using ultrasonic cavitation and advanced oxidation processes. CHEMOSPHERE 2021; 274:129702. [PMID: 33529956 DOI: 10.1016/j.chemosphere.2021.129702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
This investigation explores the efficacy of employing ultrasonic cavitation and coupling it with advanced oxidation processes (hydrogen peroxide and Fenton's reagent) for reducing the levels of total ammonia nitrogen in fish pond water containing Tilapia fishes. Ultrasonic cavitation is a phenomenon where the formation, growth and collapse of vaporous bubbles occur in a liquid medium producing highly reactive free radicals. Ultrasonic probe system (20 kHz with 750 W and 1000 W) was used to induce cavitation. Besides, to intensify the process, ultrasonic cavitation was coupled with hydrogen peroxide and Fenton's reagent. Using SERA colour indicator test kits, the levels of ammonium, nitrite and carbonate hardness were measured. The results obtained from this study clearly show that the advanced oxidation processes are more efficient in reducing the ammonium and nitrite levels in fish pond water than using ultrasound alone. The pH and carbonate hardness levels were not affected significantly by ultrasonic cavitation. The optimal treatment time and ultrasound power to treat the water samples were also established. Energy efficiency and cost analysis of this treatment have also been presented, indicating that ultrasonic cavitation coupled with hydrogen peroxide appears to be a promising technique for reducing total ammonia nitrogen levels in the fish pond water.
Collapse
Affiliation(s)
- Weng Kiat Tan
- Department of Mechanical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Siew Cheong Cheah
- Department of Mechanical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Shridharan Parthasarathy
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - R P Rajesh
- Centre for Molecular & Nanomedical Science, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
35
|
Theerthagiri J, Lee SJ, Karuppasamy K, Arulmani S, Veeralakshmi S, Ashokkumar M, Choi MY. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125245. [PMID: 33545645 DOI: 10.1016/j.jhazmat.2021.125245] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 05/20/2023]
Abstract
Significant advances in various industrial processes have resulted in the discharge of toxic pollutants into the environment. Consequently, it is essential to develop efficient wastewater treatment processes to reduce water contamination and increase recycling/reuse. Photocatalytic degradation is considered as an efficient method for the degradation of toxic pollutants in industrial wastewater. However, the use of photocatalytic approaches is associated with numerous limitations, such as lengthy procedures and the necessity for large amounts of catalysts. Hence, it has been proposed that photocatalysis could be combined with other techniques, including sonolysis, electrochemical, photothermal, microwave, ultrafiltration, and biological reactor. The integration of photocatalysis with sonolysis could be remarkably beneficial for environmental remediation. The combination of these processes has the advantages of using uniformly dispersed catalysts, regeneration of the catalyst surface, improved mass transfer, enhanced surface area due to smaller catalyst particles, and production of more active radicals for the degradation of organic pollutants. In this review, an overview on employing sonophotocatalysis for the removal of toxic organic contaminants from aqueous environments is provided. Additionally, the limitations of photocatalysis alone and the fundamental sonophotocatalytic mechanistic pathways are discussed. The importance of utilizing advanced two-dimensional (2D) semiconductor materials in sonophotocatalysis and the common synthetic approaches for the preparation of 2D materials are also highlighted. Lastly, the review provides comprehensive insights into different materials based on metal oxides, chalcogenides, graphene, and metal organic frameworks (MOFs), which are involved in sonophotocatalytic processes employed for the remediation of environmental pollutants.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Subramanian Arulmani
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, Tamil Nadu, India
| | - S Veeralakshmi
- Department of Applied Science and Technology, A.C. Tech. Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
36
|
Li X, Wang W, Dong F, Zhang Z, Han L, Luo X, Huang J, Feng Z, Chen Z, Jia G, Zhang T. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05354] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Weiwei Wang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiqiang Zhang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xudong Luo
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Juntong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhijun Feng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi Chen
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
37
|
Bavani T, Madhavan J, Prasad S, AlSalhi MS, AlJaafreh MJ. A straightforward synthesis of visible light driven BiFeO 3/AgVO 3 nanocomposites with improved photocatalytic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116067. [PMID: 33316499 DOI: 10.1016/j.envpol.2020.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Herein, an efficient visible-light-driven BiFeO3/AgVO3 nanocomposite was effectively fabricated via a facile co-precipitation procedure. The physicochemical properties of BiFeO3/AgVO3 nanocomposites were investigated via Fourier transform-infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV visible diffuse reflectance spectroscopy (DRS) and photoelectrochemical studies (PEC). The photocatalytic activity (PCA) of BiFeO3/AgVO3 nanocomposites was assessed with regard to the photocatalytic degradation of Rhodamine-B (RhB) when subjected to visible light irradiation (VLI). Upon 90 min of illumination, the optimal 3%-BiFeO3/AgVO3 nanocomposite showed a greater photocatalytic degradation, which was ∼3 times higher than the bare AgVO3. The lower PL intensity of 3%-BiFeO3/AgVO3 nanocomposite exposed the low recombination rate, which improved the photo-excited charge carriers separation efficiency. The experimental outcomes showed that the BiFeO3/AgVO3 nanocomposite might be an encouraging material for treatment of industrial and metropolitan wastewater. Moreover, a plausible RhB degradation mechanism was proposed proving the participation of the generated OH and O2- radicals in the degradation over BiFeO3/AgVO3 nanocomposite.
Collapse
Affiliation(s)
- Thirugnanam Bavani
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India.
| | - Saradh Prasad
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mamduh J AlJaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Pollet BG, Foroughi F, Faid AY, Emberson DR, Islam MH. Does power ultrasound (26 kHz) affect the hydrogen evolution reaction (HER) on Pt polycrystalline electrode in a mild acidic electrolyte? ULTRASONICS SONOCHEMISTRY 2020; 69:105238. [PMID: 32623347 DOI: 10.1016/j.ultsonch.2020.105238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effects of power ultrasound (26 kHz, up to ∼75 W/cm2, up to 100% acoustic amplitude, ultrasonic horn) on the hydrogen evolution reaction (HER) on a platinum (Pt) polycrystalline disc electrode in 0.5 M H2SO4 by cyclic and linear sweep voltammetry at 298 K. We also studied the formation of molecular hydrogen (H2) bubbles on a Pt wire in the absence and presence of power ultrasound using ultra-fast camera imaging. It was found that ultrasound significantly increases currents towards the HER i.e. a ∼250% increase in current density was achieved at maximum ultrasonic power. The potential at a current density of -10 mA/cm2 under silent conditions was found to be -46 mV and decreased to -27 mV at 100% acoustic amplitude i.e. a ΔE shift of ∼+20 mV, indicating the influence of ultrasound on improving the HER activity. A nearly 100% increase in the exchange current density (jo) and a 30% decrease in the Tafel slope (b) at maximum ultrasonic power, was observed in the low overpotential region, although in the high overpotential region, the Tafel slopes (b) were not significantly affected when compared to silent conditions. In our conditions, ultrasound did not greatly affect the "real" surface area (Ar) and roughness factor (R) i.e. the microscopic surface area available for electron transfer. Overall, it was found that ultrasound did not dramatically change the mechanism of HER but instead, increased currents at the Pt surface area through effective hydrogen bubble removal.
Collapse
Affiliation(s)
- Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Faranak Foroughi
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Alaa Y Faid
- Electrochemistry Research Group, Department of Materials Science and Engineering, Faculty of Natural Sciences. Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - David R Emberson
- Combustion Kinetics Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Md H Islam
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
39
|
Alvarado-Camacho C, Castillo-Araiza CO, Ruiz-Martínez RS. Degradation of Rhodamine B in water alone or as part of a mixture by advanced oxidation processes. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1835874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Carlos Alvarado-Camacho
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| | - Carlos O. Castillo-Araiza
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| | - Richard S. Ruiz-Martínez
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| |
Collapse
|
40
|
Dąbek L, Picheta-Oleś A, Szeląg B, Szulżyk-Cieplak J, Łagód G. Modeling and Optimization of Pollutants Removal during Simultaneous Adsorption onto Activated Carbon with Advanced Oxidation in Aqueous Environment. MATERIALS 2020; 13:ma13194220. [PMID: 32977457 PMCID: PMC7579614 DOI: 10.3390/ma13194220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The paper presents the results of studies on the modeling and optimization of organic pollutant removal from an aqueous solution in the course of simultaneous adsorption onto activated carbons with varied physical characteristics and oxidation using H2O2. The methodology for determining the models used for predicting the sorption and catalytic parameters in the process was presented. The analysis of the influence of the sorption and catalytic parameters of activated carbons as well as the oxidizer dose on the removal dynamics of organic dyes-phenol red and crystal violet-was carried out based on the designated empirical models. The obtained results confirm the influence of specific surface area (S) of the activated carbon and oxidizer dose on the values of the reaction rate constants related to the removal of pollutants from the solution in a simultaneous process. It was observed that the lower the specific surface area of carbon (S), the greater the influence of the oxidizer on the removal of pollutants from the solution. The proposed model, used for optimization of parameters in a simultaneous process, enables to analyze the effect of selected sorbents as well as the type and dose of the applied oxidizer on the pollutant removal efficiency. The practical application of models will enable to optimize the selection of a sorbent and oxidizer used simultaneously for a given group of pollutants and thus reduce the process costs.
Collapse
Affiliation(s)
- Lidia Dąbek
- Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland;
| | - Anna Picheta-Oleś
- Department of Environment and Waste Management, Marshal’s Office of the Świętokrzyskie Voivodeship, IX Wieków Kielc 3, 25-516 Kielce, Poland;
| | - Bartosz Szeląg
- Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland;
- Correspondence: (B.S.); (G.Ł.); Tel.: +48-4134-3473 (B.S.); +48-81-538-4322 (G.Ł.)
| | - Joanna Szulżyk-Cieplak
- Faculty of Fundamentals of Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland;
| | - Grzegorz Łagód
- Environmental Engineering Faculty, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
- Correspondence: (B.S.); (G.Ł.); Tel.: +48-4134-3473 (B.S.); +48-81-538-4322 (G.Ł.)
| |
Collapse
|
41
|
How Photocatalyst Dosage and Ultrasound Application Influence the Photocatalytic Degradation Rate of Phenol in Water: Elucidating the Mechanisms Behind. WATER 2020. [DOI: 10.3390/w12061672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photocatalysis is of high interest for the treatment of wastewater containing non-biodegradable organic components. In this work, the photocatalytic degradation of phenol by TiO2 photocatalysis was assessed, the influence of ultrasound (US) treatment was evaluated, and the mechanisms behind it were elucidated. It was shown that the TiO2 concentration (in suspension) has a large influence on the degradation kinetics. At high TiO2 concentrations, a reduced efficiency was observed due to the shielding of the UV light by TiO2 particles. US treatment effectively increased phenol degradation by improving the mass transfer while it was shown by the experimental data that particle deagglomeration did not play a significant role. The degradation mainly occurred through indirect phenol oxidation by hydroxyl (OH*) radicals, which were formed in situ at the surface of the photocatalyst. Finally, based on the partial least squares (PLS) methodology, a mathematical model was developed, representing phenol degradation as a function of the selected process conditions.
Collapse
|
42
|
Theerthagiri J, Madhavan J, Lee SJ, Choi MY, Ashokkumar M, Pollet BG. Sonoelectrochemistry for energy and environmental applications. ULTRASONICS SONOCHEMISTRY 2020; 63:104960. [PMID: 31986327 DOI: 10.1016/j.ultsonch.2020.104960] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 05/14/2023]
Abstract
Sonoelectrochemistry is the study of the effects and applications of ultrasonic waves on electrochemical processes. The integration of ultrasound and electrochemistry offers many advantages: fast reaction rates, enhanced surface activation, and increased mass transport at an electrode. Significant progress has been made in advancing basic and applied aspects of sonoelectrochemical techniques, which are herein reviewed by addressing the development and applications of sonoelectrochemical processes in energy and environmental areas. This review examines the experimental procedures that are used in various sonoelectrochemical techniques generally used for the synthesis of energy related materials (e.g., fuel cell electrocatalysts and materials for hydrogen production) and for the degradation of various organic compounds/pollutants. The challenges that remain for the sonoelectrochemical production of energy materials, the degradation of organic pollutants, and their associated reaction pathway mechanism(s) are also discussed. This review also highlights the significant improvements made to date. The provided information in this review may be helpful to scientists working in the research areas of environmental remediation, energy exploitation and exploration, as well as synthetic process-oriented research.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jagannathan Madhavan
- Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632 115, India
| | - Seung Jun Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
43
|
Abstract
The research study was conducted to design the ultrasonic-assisted electrochemical reactor and the bioreactor/filter to evaluate the potential applicability of biological trickling filter system and to compare the efficiency of two reactors such as SER and TF for the treatment of textile industry effluents. Also the study to design Sonoelectrolytic process for wastewater treatment of textile industry containing strong color, high temperature, suspended particles and dissolved solid particles has been conducted. Effect to environment and health is caused by oxygen demand (BOD), high chemical oxygen demand (COD). The percentage removal efficiency for wastewater treatment of textile industry by using sonoelectrolytic reactor (SER) was found to be higher than 95% at temperature of 25°C and a pH value of 8.9, while for trickling filter (TF), having adsorbent as a filter medium, efficiency was found to be 95%, and optimum conditions obtained were applied for the treatment of different dye samples. Based on experimental outcomes, it is determined that treatment through SER is done faster than trickling filter because in TF the adsorbent capacity decreases with time and is a time-consuming process, but the chance of deposition on electrodes also increases in SER, so both these processes can yield better results if these problems are eliminated.
Collapse
|
44
|
Wu Q, Zhang Z. Fabrication of black TiO 2−x/CuFe 2O 4 decorated on diatomaceous earth with enhanced sonocatalytic activity for ibuprofen mitigation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports facile fabrication of black TiO2−x/CuFe2O4 (Ti3+ self-doped titania coupled with copper ferrite), an efficient sonocatalyst for ibuprofen (IBP) mitigation.
Collapse
Affiliation(s)
- Qiong Wu
- College of Environment
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zhaohong Zhang
- College of Environment
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|