1
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
2
|
Ahmed E, Mulay P, Ramirez C, Tirado-Mansilla G, Cheong E, Gormley AJ. Mapping Biomaterial Complexity by Machine Learning. Tissue Eng Part A 2024; 30:662-680. [PMID: 39135398 DOI: 10.1089/ten.tea.2024.0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Biomaterials often have subtle properties that ultimately drive their bespoke performance. Given this nuanced structure-function behavior, the standard scientific approach of one experiment at a time or design of experiment methods is largely inefficient for the discovery of complex biomaterials. More recently, high-throughput experimentation coupled with machine learning methods has matured beyond expert users allowing scientists and engineers from diverse backgrounds to access these powerful data science tools. As a result, we now have the opportunity to strategically utilize all available data from high-throughput experiments to train efficacious models and map the structure-function behavior of biomaterials for their discovery. Herein, we discuss this necessary shift to data-driven determination of structure-function properties of biomaterials as we highlight how machine learning is leveraged in identifying physicochemical cues for biomaterials in tissue engineering, gene delivery, drug delivery, protein stabilization, and antifouling materials. We also discuss data-mining approaches that are coupled with machine learning to map biomaterial functions that reduce the load on experimental approaches for faster biomaterial discovery. Ultimately, harnessing the prowess of machine learning will lead to accelerated discovery and development of optimal biomaterial designs.
Collapse
Affiliation(s)
- Eman Ahmed
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Prajakatta Mulay
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cesar Ramirez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Gabriela Tirado-Mansilla
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Eugene Cheong
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Aslan M, Ozturk S, Shahbazi R, Bozdemir Ö, Dilara Zeybek N, Vargel İ, Eroğlu İ, Ulubayram K. Therapeutic targeting of siRNA/anti-cancer drug delivery system for non-melanoma skin cancer. Part I: Development and gene silencing of JAK1siRNA/5-FU loaded liposome nanocomplexes. Eur J Pharm Biopharm 2024; 203:114432. [PMID: 39097115 DOI: 10.1016/j.ejpb.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Non-melanoma skin cancer (NMSC) is one of the most prevalent cancers, leading to significant mortality rates due to limited treatment options and a lack of effective therapeutics. Janus kinase (JAK1), a non-receptor tyrosine kinase family member, is involved in various cellular processes, including differentiation, cell proliferation and survival, playing a crucial role in cancer progression. This study aims to provide a more effective treatment for NMSC by concurrently silencing the JAK1 gene and administering 5-Fluorouracil (5-FU) using liposome nanocomplexes as delivery vehicles. Utilizing RNA interference (RNAi) technology, liposome nanocomplexes modified with polyethylene imine (PEI) were conjugated with siRNA molecule targeting JAK1 and loaded with 5-FU. The prepared formulations (NL-PEI) were characterized in terms of their physicochemical properties, morphology, encapsulation efficiency, in vitro drug release, and stability. Cell cytotoxicity, cell uptake and knockdown efficiency were evaluated in human-derived non-melanoma epidermoid carcinoma cells (A-431). High contrast transmission electron microscopy (CTEM) images and dynamic light scattering (DLS) measurements revealed that the nanocomplexes formed spherical morphology with uniform sizes ranging from 80-120 nm. The cationic NL-PEI nanocomplexes successfully internalized within the cytoplasm of A-431, delivering siRNA for specific sequence binding and JAK1 gene silencing. The encapsulation of 5-FU in the nanocomplexes was achieved at 0.2 drug/lipid ratio. Post-treatment with NL-PEI for 24, 48 and 72 h showed cell viability above 80 % at concentrations up to 8.5 × 101 µg/mL. Notably, 5-FU delivery via nanoliposome formulations significantly reduced cell viability at 5-FU concentration of 5 µM and above (p < 0.05) after 24 h of incubation. The NL-PEI nanocomplexes effectively silenced the JAK1 gene in vitro, reducing its expression by 50 %. Correspondingly, JAK1 protein level decreased after transfection with JAK1 siRNA-conjugated liposome nanocomplexes, leading to a 37 % reduction in pERK (phosphor extracellular signal-regulated kinase) protein expression. These findings suggest that the combined delivery of JAK1 siRNA and 5-FU via liposomal formulations offers a promising and novel treatment strategy for targeting genes and other identified targets in NMSC therapy.
Collapse
Affiliation(s)
- Minela Aslan
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reza Shahbazi
- School of Medicine, Indiana University, Indianapolis, IN
| | - Özlem Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İbrahim Vargel
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Kezban Ulubayram
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Padhy A, Das P, Mahadik NS, Panda S, Anas M, Das S, Banerjee R, Sen Gupta S. Design and synthesis of a shikimoyl-functionalized cationic di-block copolypeptide for cancer cell specific gene transfection. J Mater Chem B 2024; 12:8952-8965. [PMID: 39171401 DOI: 10.1039/d4tb01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted and efficient gene delivery systems hold tremendous potential for the improvement of cancer therapy by enabling appropriate modification of biological processes. Herein, we report the design and synthesis of a novel cationic di-block copolypeptide, incorporating homoarginine (HAG) and shikimoyl (LSA) functionalities (HDA-b-PHAGm-b-PLSAn), tailored for enhanced gene transfection specifically in cancer cells. The di-block copolypeptide was synthesized via sequential N-carboxyanhydride (NCA) ring-opening polymerization (ROP) techniques and its physicochemical properties were characterized, including molecular weight, dispersity, secondary conformation, size, morphology, and surface charge. In contrast to the cationic poly-L-homoarginine, we observed a significantly reduced cytotoxic effect of this di-block copolypeptide due to the inclusion of the shikimoyl glyco-polypeptide block, which also added selectivity in internalizing particular cells. This di-block copolypeptide was internalized via mannose-receptor-mediated endocytosis, which was investigated by competitive receptor blocking with mannan. We evaluated the transfection efficiency of the copolypeptide in HEK 293T (noncancerous cells), MDA-MB-231 (breast cancer cells), and RAW 264.7 (dendritic cells) and compared it with commonly employed transfection agents (Lipofectamine). Our findings demonstrate that the homoarginine and shikimoyl-functionalized cationic di-block copolypeptide exhibits potent gene transfection capabilities with minimal cytotoxic effects, particularly in cancer cells, while it is ineffective for normal cells, indicative of its potential as a promising platform for cancer cell-specific gene delivery systems. To evaluate this, we delivered an artificially designed miRNA-plasmid against Hsp90 (amiR-Hsp90) which upon successful transfection depleted the Hsp90 (a chaperone protein responsible for tumour growth) level specifically in cancerous cells and enforced apoptosis. This innovative approach offers a new avenue for the development of targeted therapeutics with an improved efficacy and safety profile in cancer treatment.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Pritam Das
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Namita S Mahadik
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sidharth Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sabyasachi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Rajkumar Banerjee
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
5
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Singh N, Singh A, Dhanka M, Bhatia D. DNA functionalized programmable hybrid biomaterials for targeted multiplexed applications. J Mater Chem B 2024. [PMID: 38973587 DOI: 10.1039/d4tb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.
Collapse
Affiliation(s)
- Nihal Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Ankur Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Mukesh Dhanka
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Dhiraj Bhatia
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| |
Collapse
|
7
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
Li M, Chen F, Yang Q, Tang Q, Xiao Z, Tong X, Zhang Y, Lei L, Li S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater Res 2024; 28:0023. [PMID: 38694229 PMCID: PMC11062511 DOI: 10.34133/bmr.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Fenglei Chen
- College of Veterinary Medicine, Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou University, Yangzhou 225009, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
10
|
Koch KC, Jadon N, Thesmar I, Tew GN, Minter LM. Combating bone marrow failure with polymer materials. Front Immunol 2024; 15:1396486. [PMID: 38694497 PMCID: PMC11061490 DOI: 10.3389/fimmu.2024.1396486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.
Collapse
Affiliation(s)
- Kayla C. Koch
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nidhi Jadon
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Iris Thesmar
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
11
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Aranda-Barradas ME, Coronado-Contreras HE, Aguilar-Castañeda YL, Olivo-Escalante KD, González-Díaz FR, García-Tovar CG, Álvarez-Almazán S, Miranda-Castro SP, Del Real-López A, Méndez-Albores A. Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems. Mol Biotechnol 2024:10.1007/s12033-024-01087-9. [PMID: 38400988 DOI: 10.1007/s12033-024-01087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
Collapse
Affiliation(s)
- María Eugenia Aranda-Barradas
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México.
| | - Héctor Eduardo Coronado-Contreras
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Yareli Lizbeth Aguilar-Castañeda
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Karen Donají Olivo-Escalante
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Francisco Rodolfo González-Díaz
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Carlos Gerardo García-Tovar
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Samuel Álvarez-Almazán
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Susana Patricia Miranda-Castro
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Alicia Del Real-López
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Juriquilla La Mesa, 76230, Santiago de Querétaro, México
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| |
Collapse
|
14
|
Mohammadi N, Fayazi Hosseini N, Nemati H, Moradi-Sardareh H, Nabi-Afjadi M, Kardar GA. Revisiting of Properties and Modified Polyethylenimine-Based Cancer Gene Delivery Systems. Biochem Genet 2024; 62:18-39. [PMID: 37394575 DOI: 10.1007/s10528-023-10416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.
Collapse
Affiliation(s)
- Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Nemati
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Immunology Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Słyk Ż, Wrzesień R, Barszcz S, Gawrychowski K, Małecki M. Adeno-associated virus vector hydrogel formulations for brain cancer gene therapy applications. Biomed Pharmacother 2024; 170:116061. [PMID: 38154269 DOI: 10.1016/j.biopha.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Gelatin-based formulations are utilized in neurosurgical procedures, with Medisponge® serving as an illustration of a secure and biocompatible hemostatic formulation. Noteworthy are combined hemostatic products that integrate pharmacological agents with gelatin. Gelatin matrices, which host biologically active substances, provide a platform for a variety of molecules. Biopolymers function as carriers for chemicals and genes, a facet particularly pertinent in brain cancer therapy, as gene therapy complement conventional approaches. The registration of Zolgensma underscores the efficacy of rAAV vectors in therapeutic gene delivery to the CNS. rAAVs, renowned for their safety, stability, and neuron-targeting capabilities, predominate in CNS gene therapy studies. The effectiveness of rAAV vector therapy varies based on the serotype and administration route. Local gene therapy employing hydrogel (e.g., post-tumor resection) enables the circumvention of the blood-brain barrier and restricts formulation diffusion. This study formulates gelatin rAAV gene formulations and evaluates vector transduction potential. Transduction efficiency was assessed using ex vivo mouse brains and in vitro cancer cell lines. In vitro, the transduction of rAAV vectors in gelatin matrices was quantified through qPCR, measuring the itr and Gfp expression. rAAVDJ and rAAV2 demonstrated superior transduction in ex vivo and in vitro models. Among the cell lines tested (Hs683, B16-F10, NIH:OVCAR-3), gelatin matrix F1 exhibited selective transduction, particularly with Hs683 human glioma cells, surpassing the performance Medisponge®. This research highlights the exploration of local brain cancer therapy, emphasizing the potential of gelatin as an rAAV vector carrier for gene therapy. The functional transduction activity of gelatin rAAV formulations is demonstrated.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Barszcz
- Department of Neurosurgery, Children's Clinical Hospital, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Gawrychowski
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
17
|
Gorejová R, Ozaltin K, Šišoláková I, Kupková M, Sáha P, Oriňaková R. Fucoidan- and Ciprofloxacin-Doped Plasma-Activated Polymer Coatings on Biodegradable Zinc: Hemocompatibility and Drug Release. ACS OMEGA 2023; 8:44850-44860. [PMID: 38046307 PMCID: PMC10688044 DOI: 10.1021/acsomega.3c06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/05/2023]
Abstract
Blood-contacting medical devices such as biodegradable metallic bone implant materials are expected to show excellent hemocompatibility both in vitro and in vivo. Different approaches are being studied and used to modify biomaterial surfaces for enhanced biocompatibility and hemocompatibility. However, the composition of degradable biomaterial must address several drawbacks at once. Iron-reinforced zinc material was used as a metallic substrate with improved mechanical properties when compared with those of pure zinc. Poly(lactic) acid (PLA) or polyethylenimine (PEI) was selected as a polymeric matrix for further doping with antibiotic ciprofloxacin (CPR) and marine-sourced polysaccharide fucoidan (FU), which are known for their antibacterial and potential anticoagulant properties, respectively. Radiofrequency air plasma was employed to induce metallic/polymer-coated surface activation before further modification with FU/CPR. Sample surface morphology and composition were studied and evaluated (contact angle measurements, AFM, SEM, and FT-IR) along with the hemolysis ratio and platelet adhesion test. Successful doping of the polymer layer by FU/CRP was confirmed. While PEI induced severe hemolysis over 12%, the PLA-coated samples exhibited even lower hemolysis (∼2%) than uncoated samples while the uncoated samples showed the lowest platelet adhesion. Moreover, gradual antibiotic release from PLA determined by the electrochemical methods using screen-printed carbon electrodes was observed after 24, 48, and 72 h, making the PLA-coated zinc-based material an attractive candidate for biodegradable material design.
Collapse
Affiliation(s)
- Radka Gorejová
- Department
of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Kadir Ozaltin
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Ivana Šišoláková
- Department
of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Miriam Kupková
- Institute
of Materials Research, Slovak Academy of
Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Petr Sáha
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Renáta Oriňaková
- Department
of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
18
|
Moradbeygi F, Ghasemi Y, Farmani AR, Hemmati S. Glucarpidase (carboxypeptidase G2): Biotechnological production, clinical application as a methotrexate antidote, and placement in targeted cancer therapy. Biomed Pharmacother 2023; 166:115292. [PMID: 37579696 DOI: 10.1016/j.biopha.2023.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
Patients receiving high-dose methotrexate (HDMTX) for malignancies are exposed to diverse complications, including nephrotoxicity, hepatotoxicity, mucositis, myelotoxicity, neurological symptoms, and death. Glucarpidase is a recombinant carboxypeptidase G2 (CPG2) that converts MTX into nontoxic metabolites. In this study, the role of vector type, gene optimization, orientation, and host on the expression of CPG2 is investigated. The effectiveness of various therapeutic regimens containing glucarpidase is classified and perspectives on the dose adjustment based on precision medicine are provided. Conjugation with cell-penetrating peptides, human serum albumin, and polymers such as PEG and dextran for delivery, higher stability, and production of the biobetter variants of CPG2 is highlighted. Conjugation of CPG2 to F(ab՜)2 or scFv antibody fragments against tumor-specific antigens and the corresponding prodrugs for tumor-targeted drug delivery using the antibody-directed enzyme prodrug therapy (ADEPT) is communicated. Trials to reduce the off-target effects and the possibility of repeated ADEPT cycles by adding pro-domains sensitive to tumor-overexpressed proteases, antiCPG2 antibodies, CPG2 mutants with immune-system-unrecognizable epitopes, and protective polymers are reported. Intracellular cpg2 gene expression by gene-directed enzyme prodrug therapy (GDEPT) and the concerns regarding the safety and transfection efficacy of the GDEPT vectors are described. A novel bifunctional platform using engineered CAR-T cell micropharmacies, known as Synthetic Enzyme-Armed KillER (SEAKER) cells, expressing CPG2 to activate prodrugs at the tumor niche is introduced. Taken together, integrated data in this review and recruiting combinatorial strategies in novel drug delivery systems define the future directions of ADEPT, GDEPT, and SEAKER cell therapy and the placement of CPG2 therein.
Collapse
Affiliation(s)
- Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
20
|
Lembke HK, Espinasse A, Hanson MG, Grimme CJ, Tan Z, Reineke TM, Carlson EE. Cationic Polymers Enable Internalization of Negatively Charged Chemical Probes into Bacteria. ACS Chem Biol 2023; 18:2063-2072. [PMID: 37671702 PMCID: PMC10947785 DOI: 10.1021/acschembio.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The bacterial cell envelope provides a protective barrier that is challenging for small molecules and biomolecules to cross. Given the anionic nature of both Gram-positive and Gram-negative bacterial cell envelopes, negatively charged molecules are particularly difficult to deliver into these organisms. Many strategies have been employed to penetrate bacteria, ranging from reagents such as cell-penetrating peptides, enzymes, and metal-chelating compounds to physical perturbations. While cationic polymers are known antimicrobial agents, polymers that promote the permeabilization of bacterial cells without causing high levels of toxicity and cell lysis have not yet been described. Here, we investigate four polymers that display a cationic poly(2-(dimethylamino)ethyl methacrylate (D) block for the internalization of an anionic adenosine triphosphate (ATP)-based chemical probe into Escherichia coli and Bacillus subtilis. We evaluated two polymer architectures, linear and micellar, to determine how shape and hydrophobicity affect internalization efficiency. We found that, in addition to these reagents successfully promoting probe internalization, the probe-labeled cells were able to continue to grow and divide. The micellar structures in particular were highly effective for the delivery of the negatively charged chemical probe. Finally, we demonstrated that these cationic polymers could act as general permeabilization reagents, promoting the entry of other molecules, such as antibiotics.
Collapse
Affiliation(s)
- Hannah K Lembke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adeline Espinasse
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
22
|
Wang Y, Wei Y, Chen L, Yang Y, Jia F, Yu W, Zhou S, Yu S. Research progress of siVEGF complex and their application in antiangiogenic therapy. Int J Pharm 2023; 643:123251. [PMID: 37481098 DOI: 10.1016/j.ijpharm.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.
Collapse
Affiliation(s)
- Yan Wang
- Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Wei
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Jia
- Shanxi Medical University, Taiyuan 030001, China
| | - Weiran Yu
- The Affiliated High School of Shanxi University, Taiyuan 030006, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
23
|
Loginova TP, Khotina IA, Kabachii YA, Kochev SY, Abramov VM, Khlebnikov VS, Kulikova NL, Mezhuev YO. Promising Gene Delivery Properties of Polycations Based on 2-(N, N-dimethylamino)ethyl Methacrylate and Polyethylene Glycol Monomethyl Ether Methacrylate Copolymers. Polymers (Basel) 2023; 15:3036. [PMID: 37514425 PMCID: PMC10383831 DOI: 10.3390/polym15143036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cationic copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and polyethylene glycol monomethyl ether (pDMAEMA-co-PEO) with different molecular weights have been synthesized. Their physicochemical properties were studied by NMR spectroscopy, sedimentation, and potentiometric titration. According to the data of potentiometric titration for the synthesized pegylated cationic copolymers, the apparent dissociation constants were determined in the pH range from 4.5 to 8.5. The physicochemical properties of interpolyelectrolyte complexes of these polycations with circular DNA (IPEC DNA) were also studied by dynamic light scattering, electrophoretic mobility, and TEM methods. It has been established that the diameter and electrokinetic potential (ζ-potential) of interpolyelectrolyte complexes can be varied over a wide range (from 200 nm to 1.5 μm and from -25 mV to +30 mV) by changing the ratio of oppositely charged ionizable groups in pegylated cationic copolymers and DNA, as well as by regulating medium pH. The resistance of the IPEC DNA/polycation complex to the action of nucleases was studied by electrophoresis in agarose gel; the cytotoxic effect of the polymers in vitro, and the efficiency of penetration (transfection) of IPEC DNA with PDMAEMA-co-PEO-polycations into eukaryotic cells of a cell line derived from human embryonic kidneys HEK 293 in vitro.
Collapse
Affiliation(s)
- Tatiana P Loginova
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Irina A Khotina
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Yurii A Kabachii
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Sergei Yu Kochev
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Vyacheslav M Abramov
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Valentin S Khlebnikov
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Natalia L Kulikova
- JSC Institute Immunological Engineering, Nauchnaya street 1, 142380 Lybuchany, Moscow District, Moscow Region, Russia
| | - Yaroslav O Mezhuev
- A.N. Nesmeyanov Instituite of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
24
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
25
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
26
|
Rajendran AP, Ogundana O, Morales LC, Meenakshi Sundaram DN, Kucharski C, Kc R, Uludağ H. Transfection Efficacy and Cellular Uptake of Lipid-Modified Polyethyleneimine Derivatives for Anionic Nanoparticles as Gene Delivery Vectors. ACS APPLIED BIO MATERIALS 2023; 6:1105-1121. [PMID: 36853230 DOI: 10.1021/acsabm.2c00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cationic polyethylenimine (PEI)-based nonviral gene carriers have been desirable to overcome the limitations of viral vectors in gene therapy. A range of PEI derivatives were designed, synthesized, and evaluated for nonviral delivery applications of plasmid DNA (pDNA). Linolenic acid, lauric acid, and oleic acid were covalently conjugated with low-molecular-weight PEI (Mw ∼ 1200 Da) via two different linkers, gallic acid (GA) and p-hydroxybenzoic acid (PHPA), that allows a differential loading of lipids per modified amine (3 vs 1, respectively). 1H NMR spectrum confirmed the expected structure of the conjugates as well as the level of lipid substitution. SYBR Green binding assay performed to investigate the 50% binding concentration (BC50) of lipophilic polymers to pDNA revealed increased BC50 with an increased level of lipid substitution. The particle analysis determined that GA- and PHPA-modified lipopolymers gave pDNA complexes with ∼300 and ∼100 nm in size, respectively. At the polymer/pDNA ratio of 5.0, the ζ-potentials of the complexes were negative (-6.55 to -10.6 mV) unlike the complexes with the native PEI (+11.2 mV). The transfection experiments indicated that the prepared lipopolymers showed higher transfection in attachment-dependent cells than in suspension cells based on the expression of the reporter green fluorescent protein (GFP) gene. When loaded with Cy3-labeled pDNA, the lipopolymers exhibited effective cellular uptake in attachment-dependent cells while the cellular uptake was limited in suspension cells. These results demonstrate the potential of lipid-conjugated PEI via GA and PHPA linkers, which are promising for the modification of anchorage-dependent cells.
Collapse
Affiliation(s)
- Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Oluwanifemi Ogundana
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
27
|
Zhang W, Hou Z, Chen S, Guo J, Hu J, Yang L, Cai G. Aspergillus oryzae lipase-mediated in vitro enzymatic degradation of poly (2,2′-dimethyltrimethylene carbonate-co-ε-caprolactone). Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
28
|
Xiu K, Zhang J, Xu J, Chen YE, Ma PX. Recent progress in polymeric gene vectors: Delivery mechanisms, molecular designs, and applications. BIOPHYSICS REVIEWS 2023; 4:011313. [PMID: 37008888 PMCID: PMC10062053 DOI: 10.1063/5.0123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Gene therapy and gene delivery have drawn extensive attention in recent years especially when the COVID-19 mRNA vaccines were developed to prevent severe symptoms caused by the corona virus. Delivering genes, such as DNA and RNA into cells, is the crucial step for successful gene therapy and remains a bottleneck. To address this issue, vehicles (vectors) that can load and deliver genes into cells are developed, including viral and non-viral vectors. Although viral gene vectors have considerable transfection efficiency and lipid-based gene vectors become popular since the application of COVID-19 vaccines, their potential issues including immunologic and biological safety concerns limited their applications. Alternatively, polymeric gene vectors are safer, cheaper, and more versatile compared to viral and lipid-based vectors. In recent years, various polymeric gene vectors with well-designed molecules were developed, achieving either high transfection efficiency or showing advantages in certain applications. In this review, we summarize the recent progress in polymeric gene vectors including the transfection mechanisms, molecular designs, and biomedical applications. Commercially available polymeric gene vectors/reagents are also introduced. Researchers in this field have never stopped seeking safe and efficient polymeric gene vectors via rational molecular designs and biomedical evaluations. The achievements in recent years have significantly accelerated the progress of polymeric gene vectors toward clinical applications.
Collapse
Affiliation(s)
- Kemao Xiu
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | - Peter X. Ma
- Author to whom correspondence should be addressed:. Tel.: (734) 764-2209
| |
Collapse
|
29
|
Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1853. [PMID: 36193561 PMCID: PMC10023321 DOI: 10.1002/wnan.1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 03/15/2023]
Abstract
Nonviral nanoparticles have emerged as an attractive alternative to viral vectors for gene therapy applications, utilizing a range of lipid-based, polymeric, and inorganic materials. These materials can either encapsulate or be functionalized to bind nucleic acids and protect them from degradation. To effectively elicit changes to gene expression, the nanoparticle carrier needs to undergo a series of steps intracellularly, from interacting with the cellular membrane to facilitate cellular uptake to endosomal escape and nucleic acid release. Adjusting physiochemical properties of the nanoparticles, such as size, charge, and targeting ligands, can improve cellular uptake and ultimately gene delivery. Applications in the central nervous system (CNS; i.e., neurological diseases, brain cancers) face further extracellular barriers for a gene-carrying nanoparticle to surpass, with the most significant being the blood-brain barrier (BBB). Approaches to overcome these extracellular challenges to deliver nanoparticles into the CNS include systemic, intracerebroventricular, intrathecal, and intranasal administration. This review describes and compares different biomaterials for nonviral nanoparticle-mediated gene therapy to the CNS and explores challenges and recent preclinical and clinical developments in overcoming barriers to nanoparticle-mediated delivery to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Joanna Yang
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Luly
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
31
|
Layachi M, Treizebré A, Hay L, Gilbert D, Pesez J, D’Acremont Q, Braeckmans K, Thommen Q, Courtade E. Novel opto-fluidic drug delivery system for efficient cellular transfection. J Nanobiotechnology 2023; 21:43. [PMID: 36747263 PMCID: PMC9901003 DOI: 10.1186/s12951-023-01797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Intracellular drug delivery is at the heart of many diagnosis procedures and a key step in gene therapy. Research has been conducted to bypass cell barriers for controlled intracellular drug release and made consistent progress. However, state-of-the-art techniques based on non-viral carriers or physical methods suffer several drawbacks, including limited delivery yield, low throughput or low viability, which are key parameters in therapeutics, diagnostics and drug delivery. Nevertheless, gold nanoparticle (AuNP) mediated photoporation has stood out as a promising approach to permeabilize cell membranes through laser induced Vapour NanoBubble (VNB) generation, allowing the influx of external cargo molecules into cells. However, its use as a transfection technology for the genetic manipulation of therapeutic cells is hindered by the presence of non-degradable gold nanoparticles. Here, we report a new optofluidic method bringing gold nanoparticles in close proximity to cells for photoporation, while avoiding direct contact with cells by taking advantage of hydrodynamic focusing in a multi-flow device. Cells were successfully photoporated with [Formula: see text] efficiency with no significant reduction in cell viability at a throughput ranging from [Formula: see text] to [Formula: see text]. This optofluidic approach provides prospects of translating photoporation from an R &D setting to clinical use for producing genetically engineered therapeutic cells.
Collapse
Affiliation(s)
- Majid Layachi
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.121334.60000 0001 2097 0141Present Address: Laboratoire Charles Coulomb - UMR 5221, Université de Montpellier, Montpellier, France
| | - Anthony Treizebré
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France ,grid.464109.e0000 0004 0638 7509Institut d’Électronique, de
Microélectronique et de Nanotechnologie - UMR CNRS 8520, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Laurent Hay
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - David Gilbert
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Jean Pesez
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Quentin D’Acremont
- grid.464109.e0000 0004 0638 7509Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Kevin Braeckmans
- grid.5342.00000 0001 2069 7798Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Quentin Thommen
- grid.503422.20000 0001 2242 6780CANTHER - Cancer
Heterogeneity Plasticity and Resistance to Therapies - UMR9020-UMR1277, Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Emmanuel Courtade
- Laboratoire Physique des Lasers, Atomes et Molécules - UMR 8523, Université de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
32
|
da Silva TN, de Lima EV, Barradas TN, Testa CG, Picciani PH, Figueiredo CP, do Carmo FA, Clarke JR. Nanosystems for gene therapy targeting brain damage caused by viral infections. Mater Today Bio 2023; 18:100525. [PMID: 36619201 PMCID: PMC9816812 DOI: 10.1016/j.mtbio.2022.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.
Collapse
Affiliation(s)
| | - Emanuelle V. de Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thaís Nogueira Barradas
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Carla G. Testa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Paulo H.S. Picciani
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ, 21941-598, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Flavia A. do Carmo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author.
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
- Corresponding author. Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
33
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
34
|
Luo X, Zeng X, Gong L, Ye Y, Sun C, Chen T, Zhang Z, Tao Y, Zeng H, Zou Q, Yang Y, Li J, Sun H. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape. Drug Deliv 2022; 29:2912-2924. [PMID: 36081335 PMCID: PMC9467597 DOI: 10.1080/10717544.2022.2120565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccinations, especially DNA vaccines that promote host immunity, are the most effective interventions for tuberculosis (TB) control. However, the vaccine delivery system exhibits a significant impact on the protective effects of the vaccine. Recently, effective nanomaterial-based delivery systems (including nanoparticles, nanogold, nanoliposomes, virus-like particles, and virus carriers) have been developed for DNA vaccines to control TB. This review highlights the historical development of various nanomaterial-based delivery systems for TB DNA vaccines, along with the emerging technologies. Nanomaterial-based vaccine delivery systems could enhance the efficacy of TB vaccination; therefore, this summary could guide nanomaterial selection for optimal and safe vaccine delivery, facilitating the design and development of highly effective TB vaccines.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cun Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zelong Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Department of Hematology, Changsha Central Hospital, Changsha, China
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
36
|
Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/FeO4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
38
|
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022; 6:400-423. [PMID: 36051855 PMCID: PMC9428923 DOI: 10.7150/ntno.74613] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Over the last few years, progress has been made across the nanomedicine landscape, in particular, the invention of contemporary nanostructures for cancer diagnosis and overcoming complexities in the clinical treatment of cancerous tissues. Thanks to their small diameter and large surface-to-volume proportions, nanomaterials have special physicochemical properties that empower them to bind, absorb and transport high-efficiency substances, such as small molecular drugs, DNA, proteins, RNAs, and probes. They also have excellent durability, high carrier potential, the ability to integrate both hydrophobic and hydrophilic compounds, and compatibility with various transport routes, making them especially appealing over a wide range of oncology fields. This is also due to their configurable scale, structure, and surface properties. This review paper discusses how nanostructures can function as therapeutic vectors to enhance the therapeutic value of molecules; how nanomaterials can be used as medicinal products in gene therapy, photodynamics, and thermal treatment; and finally, the application of nanomaterials in the form of molecular imaging agents to diagnose and map tumor growth.
Collapse
Affiliation(s)
- Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad reza Moaddeli
- Assistant Professor, Department of Oral and Maxillofacial Surgery, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hatam
- Assistant Lecturer, Azad University, Zarghan Branch, Shiraz, Iran
- ExirBitanic, Science and Technology Park of Fars, Shiraz, Iran
| |
Collapse
|
39
|
Rathod S, Arya S, Kanike S, Shah SA, Bahadur P, Tiwari S. Advances on nanoformulation approaches for delivering plant-derived antioxidants: A case of quercetin. Int J Pharm 2022; 625:122093. [PMID: 35952801 DOI: 10.1016/j.ijpharm.2022.122093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Oxidative stress has been implicated in tumorigenic, cardiovascular, neuro-, and age-related degenerative changes. Antioxidants minimize the oxidative damage through neutralization of reactive oxygen species (ROS) and other causative agents. Ever since the emergence of COVID-19, plant-derived antioxidants have received enormous attention, particularly in the Indian subcontinent. Quercetin (QCT), a bio-flavonoid, exists in the glycosylated form in fruits, berries and vegetables. The antioxidant potential of QCT analogs relates to the number of free hydroxyl groups in their structure. Despite presence of these groups, QCT exhibits substantial hydrophobicity. Formulation scientists have tested nanotechnology-based approaches for its improved solubilization and delivery to the intended site of action. By the virtue of its hydrophobicity, QCT gets encapsulated in nanocarriers carrying hydrophobic domains. Apart from passive accumulation, active uptake of such formulations into the target cells can be facilitated through well-studied functionalization strategies. In this review, we have discussed the approaches of improving solubilization and bioavailability of QCT with the use of nanoformulations.
Collapse
Affiliation(s)
- Sachin Rathod
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shirisha Kanike
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shailesh A Shah
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
40
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
41
|
Ali LMA, Gary-Bobo M. Photochemical Internalization of siRNA for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14153597. [PMID: 35892854 PMCID: PMC9331967 DOI: 10.3390/cancers14153597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The objective of this review is to focus on the different nanovectors capable of transporting genetic material such as small-interfering RNA (siRNA) in order to block the expression of genes responsible for the development of cancer. Usually, these nanovectors are internalized by cancer cells via the endo-lysosomal pathway. To increase the lysosomal cargo escape, excitation using a lamp or a laser, can be applied to induce a more efficient leakage of siRNA to the cytoplasm, which is the site of action of the siRNA to block the translation of RNA into proteins. This is the mechanism of photochemical internalization. Abstract In the race to design ever more effective therapy with ever more focused and controlled actions, nanomedicine and phototherapy seem to be two allies of choice. Indeed, the use of nanovectors making it possible to transport and protect genetic material is becoming increasingly important. In addition, the use of a method allowing the release of genetic material in a controlled way in space and time is also a strategy increasingly studied thanks to the use of lasers. In parallel, the use of interfering RNA and, more particularly, of small-interfering RNA (siRNA) has demonstrated significant potential for gene therapy. In this review, we focused on the design of the different nanovectors capable of transporting siRNAs and releasing them so that they can turn off the expression of deregulated genes in cancers through controlled photoexcitation with high precision. This mechanism, called photochemical internalization (PCI), corresponds to the lysosomal leakage of the cargo (siRNA in this case) after destabilization of the lysosomal membrane under light excitation.
Collapse
Affiliation(s)
- Lamiaa Mohamed Ahmed Ali
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France;
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
- Correspondence:
| | - Magali Gary-Bobo
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France;
| |
Collapse
|
42
|
Mady MF, Karaly AH, Abdel-Azeim S, Hussein IA, Kelland MA, Younis A. Phosphonated Lower-Molecular-Weight Polyethyleneimines as Oilfield Scale Inhibitors: An Experimental and Theoretical Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed F. Mady
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
- Department of Green Chemistry, National Research Centre, Dokki, Giza, Cairo 12622, Egypt
| | - Ali H. Karaly
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Safwat Abdel-Azeim
- Center of Integrative Petroleum Research (CIPR), College of Petroleum and Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibnelwaleed A. Hussein
- Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Cairo 12622, Egypt
| | - Malcolm A. Kelland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Ahmed Younis
- Department of Green Chemistry, National Research Centre, Dokki, Giza, Cairo 12622, Egypt
| |
Collapse
|
43
|
Random Copolymers of Lysine and Isoleucine for Efficient mRNA Delivery. Int J Mol Sci 2022; 23:ijms23105363. [PMID: 35628177 PMCID: PMC9140483 DOI: 10.3390/ijms23105363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications.
Collapse
|
44
|
Akib AA, Shakil R, Rumon MMH, Roy CK, Chowdhury EH, Chowdhury AN. Natural and Synthetic Micelles for Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Curr Pharm Des 2022; 28:1389-1405. [PMID: 35524674 DOI: 10.2174/1381612828666220506135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs) and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, due to their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles at different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancement in formulating and targeting different natural and synthetic micelles including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.
Collapse
Affiliation(s)
- Anwarul Azim Akib
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ragib Shakil
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Chanchal Kumar Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
45
|
Huang Z, Xiao YP, Guo Y, Yang HZ, Zhao RM, Zhang J, Yu XQ. A cyclen-based fluoropolymer as a versatile vector for gene and protein delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Li Y, Wang S, Xing Z, Niu Y, Liao Z, Lu Y, Qiu J, Zhang J, Wang C, Dong L. Destructing biofilms by cationic dextran through phase transition. Carbohydr Polym 2022; 279:118778. [PMID: 34980345 DOI: 10.1016/j.carbpol.2021.118778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022]
Abstract
Eliminating biofilms from infected tissue presents one of the most challenging issues in clinical treatment of chronic wounds. In biofilms, the extracellular polymeric substances (EPS) form gel structures by electrostatic forces between macromolecules. We hypothesized that cationic polymers could induce the gel-to-sol phase transition of the network, leading to biofilms disruptions. We first validated this assumption by using polyethyleneimine (PEI) as a model molecule, and further synthesized two cationic dextrans with high biodegradability for in vitro and in vivo evaluation. All the cationic polymers could destruct Pseudomonas aeruginosa (P. aeruginosa) biofilms. Treating biofilm with cationic dextrans significantly enhanced the bacterial antibiotic sensitivity. When tested in a biofilm-presenting mouse wound healing model, the cationic dextrans efficiently controlled infection, and accelerated the healing process. Our findings suggest that devising cationic polymers to trigger phase transition of biofilm is an effective, straightforward, and perhaps generic strategy for anti-bacterial therapies.
Collapse
Affiliation(s)
- Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junni Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
47
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
48
|
Iqbal S, Zhao Z. Poly (β amino esters) copolymers: Novel potential vectors for delivery of genes and related therapeutics. Int J Pharm 2022; 611:121289. [PMID: 34775041 DOI: 10.1016/j.ijpharm.2021.121289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The unique properties of polymers have performed an essential contribution to the drug delivery system by providing an outstanding platform for the delivery of macromolecules and genes. However, the block copolymers have been the subject of many recently published works whose results have demonstrated excellent performance in drug targeting. Poly(β-amino esters) (PβAEs) copolymers are the synthetic cationic polymers that are tailored by chemically joining PβAEs with other additives to demonstrate extraordinary efficiency in designing pre-defined and pre-programmed nanostructures, site-specific delivery, andovercoming the distinct cellular barriers. Different compositional and structural libraries could be generated by combinatorial chemistry and by the addition of various novel functional additives that fulfill the multiple requirements of targeted delivery. These intriguing attributes allow PβAE-copolymers to have customized therapeutic functions such as excellent encapsulation capacity, high stability, and stimuli-responsive release. Here, we give an overview of PβAE copolymers-based formulations along with focusing on most notable improvements such as structural modifications, bio-conjugations, and stimuli-responsive approaches, for safe and effective nucleic acids delivery.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
49
|
Roshani M, Kiaie N, Aghdam RM. Biomaterials and stem cells as drug/gene-delivery vehicles for Parkinson's treatment: an update. Regen Med 2021; 16:1057-1072. [PMID: 34865515 DOI: 10.2217/rme-2021-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By introducing biomaterials and stem cells into Parkinson's disease (PD), therapeutic approaches have led to promising results due to facilitating brain targeting and blood-brain barrier permeation of the drugs and genes. Here, after reviewing the most recent drug- and gene-delivery vehicles including liposomes, exosomes, natural/synthetic polymeric particles/fibers, metallic/ceramic nanoparticles and microbubbles, used for Parkinson's disease treatment, the effect of stem cells as a reservoir of neurotrophic factors and exosomes is provided.
Collapse
Affiliation(s)
- Milad Roshani
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.,Department of Biomedical Engineering, Shahab Danesh University, Qom, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
50
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|