1
|
Pereira AG, Fraga-Corral M, Silva A, Barroso MF, Grosso C, Carpena M, Garcia-Perez P, Perez-Gregorio R, Cassani L, Simal-Gandara J, Prieto MA. Unraveling the Bioactive Potential of Camellia japonica Edible Flowers: Profiling Antioxidant Substances and In Vitro Bioactivity Assessment. Pharmaceuticals (Basel) 2024; 17:946. [PMID: 39065796 PMCID: PMC11280385 DOI: 10.3390/ph17070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, the search for novel natural-based ingredients by food and related industries has sparked extensive research aimed at discovering new sources of functional molecules. Camellia japonica, traditionally known as an ornamental plant, has gained attention due to its diverse array of bioactive compounds with potential industrial applications. Although C. japonica flowers are edible, their phytochemical profile has not been thoroughly investigated. In this study, a phenolic profile screening through an HPLC-ESI-QQQ-MS/MS approach was applied to C. japonica flower extracts, revealing a total of 36 compounds, including anthocyanins, curcuminoids, dihydrochalcones, dihydroflavonols, flavonols, flavones, hydroxybenzoic acids, hydroxycinnamic acids, isoflavonoids, stilbenes, and tyrosols. Following extract profiling, their bioactivity was assessed by means of in vitro antioxidant, antimicrobial, cytotoxic, and neuroprotective activities. The results showed a multifaceted high correlation of phenolic compounds with all the tested bioactivities according to Pearson's correlation analysis, unraveling the potential of C. japonica flowers as promising sources of nutraceuticals. Overall, these findings provide insight into the valorization of C. japonica flowers from different unexplored cultivars thus diversifying their industrial outcome.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.F.B.); (C.G.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Rosa Perez-Gregorio
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
- LAQV-REQUIMTE Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (M.F.-C.); (A.S.); (M.C.); (P.G.-P.); (R.P.-G.); (L.C.); (J.S.-G.)
| |
Collapse
|
2
|
Liang B, Ye X, Li H, Li F, Wang S, Jiang C, Wang J, Wang P. Genome-Wide Identification and Analysis of Anthocyanidin Reductase Gene Family in Lychee ( Litchi chinensis Sonn.). Genes (Basel) 2024; 15:757. [PMID: 38927692 PMCID: PMC11202510 DOI: 10.3390/genes15060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanidin reductase (ANR) is a key enzyme regulating anthocyanin synthesis and accumulation in plants. Here, lychee ANR genes were globally identified, their sequence and phylogenetic characteristics were analyzed, and their spatiotemporal expression patterns were characterized. A total of 51 ANR family members were identified in the lychee genome. The length of the encoded amino acid residues ranged from 87 aa to 289 aa, the molecular weight ranged from 9.49 KD to 32.40 KD, and the isoelectric point (pI) ranged from 4.83 to 9.33. Most of the members were acidic proteins. Most members of the LcANR family were located in the cytoplasm. The 51 LcANR family members were unevenly distributed in 11 chromosomes, and their exons and motif conserved structures were significantly different from each other. Promoters in over 90% of LcANR members contained anaerobically induced response elements, and 88% contained photoresponsive elements. Most LcANR family members had low expression in nine lychee tissues and organs (root, young leaf, bud, female flower, male flower, pericarp, pulp, seed, and calli), and some members showed tissue-specific expression patterns. The expression of one gene, LITCHI029356.m1, decreased with the increase of anthocyanin accumulation in 'Feizixiao' and 'Ziniangxi' pericarp, which was negatively correlated with pericarp coloring. The identified LcANR gene was heterologously expressed in tobacco K326, and the function of the LcANR gene was verified. This study provides a basis for the further study of LcANR function, particularly the role in lychee pericarp coloration.
Collapse
Affiliation(s)
- Bin Liang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiuxu Ye
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huanling Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fang Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shujun Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengdong Jiang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jiabao Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
3
|
Zhang X, Fan R, Yu Z, Du X, Yang X, Wang H, Xu W, Yu X. Genome-wide identification of GATA transcription factors in tetraploid potato and expression analysis in differently colored potato flesh. FRONTIERS IN PLANT SCIENCE 2024; 15:1330559. [PMID: 38576788 PMCID: PMC10991705 DOI: 10.3389/fpls.2024.1330559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
The GATA gene family belongs to a kind of transcriptional regulatory protein featuring a zinc finger motif, which is essential for plant growth and development. However, the identification of the GATA gene family in tetraploid potato is still not performed. In the present research, a total of 88 GATA genes in the tetraploid potato C88.v1 genome were identified by bioinformatics methods. These StGATA genes had an uneven distribution on 44 chromosomes, and the corresponding StGATA proteins were divided into four subfamilies (I-IV) based on phylogenetic analysis. The cis-elements of StGATA genes were identified, including multiple cis-elements related to light-responsive and hormone-responsive. The collinearity analysis indicates that segmental duplication is a key driving force for the expansion of GATA gene family in tetraploid potato, and that the GATA gene families of tetraploid potato and Arabidopsis share a closer evolutionary relationship than rice. The transcript profiling analysis showed that all 88 StGATA genes had tissue-specific expression, indicating that the StGATA gene family members participate in the development of multiple potato tissues. The RNA-seq analysis was also performed on the tuber flesh of two potato varieties with different color, and 18 differentially expressed GATA transcription factor genes were screened, of which eight genes were validated through qRT-PCR. In this study, we identified and characterized StGATA transcription factors in tetraploid potato for the first time, and screened differentially expressed genes in potato flesh with different color. It provides a theoretical basis for further understanding the StGATA gene family and its function in anthocyanin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoxia Yu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Zhang M, Li Y, Wang J, Shang S, Wang H, Yang X, Lu C, Wang M, Sun X, Liu X, Wang X, Wei B, Lv W, Mu G. Integrated transcriptomic and metabolomic analyses reveals anthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.). BMC PLANT BIOLOGY 2024; 24:203. [PMID: 38509491 PMCID: PMC10953167 DOI: 10.1186/s12870-024-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.
Collapse
Affiliation(s)
- Min Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Yueyou Li
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Junling Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Shaopu Shang
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Hongxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Mei Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinbo Sun
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoqing Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Boxiang Wei
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China.
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China.
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China.
| |
Collapse
|
5
|
Parrish SB, Paudel D, Deng Z. Transcriptome analysis of Lantana camara flower petals reveals candidate anthocyanin biosynthesis genes mediating red flower color development. G3 (BETHESDA, MD.) 2023; 14:jkad259. [PMID: 37974306 PMCID: PMC10755171 DOI: 10.1093/g3journal/jkad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Flower color plays a crucial role in the appeal and selection of ornamental plants, directly influencing breeding strategies and the broader horticulture industry. Lantana camara, a widely favored flowering shrub, presents a rich palette of flower colors. Yet, the intricate molecular mechanisms governing this color variation in the species have remained largely unidentified. With the aim of filling this gap, this study embarked on a comprehensive de novo transcriptome assembly and differential gene expression analysis across 3 distinct lantana accessions, each showcasing a unique flower color. By harnessing the capabilities of both PacBio and Illumina sequencing platforms, a robust transcriptome assembly, encompassing 123,492 gene clusters and boasting 94.2% BUSCO completeness, was developed. The differential expression analysis unveiled 72,862 unique gene clusters that exhibited varied expression across different flower stages. A pronounced upregulation of 8 candidate core anthocyanin biosynthesis genes in the red-flowered accession was uncovered. This was further complemented by an upregulation of candidate MYB75 (PAP1) and bHLH42 (TT8) transcription factors. A candidate carotenoid cleavage dioxygenase (CCD4a) gene cluster also manifested a marked upregulation in white flowers. The study unveils the molecular groundwork of lantana's flower color variation, offering insights for future research and potential applications in breeding ornamental plants with desired color traits.
Collapse
Affiliation(s)
- Stephen Brooks Parrish
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| |
Collapse
|
6
|
Guan L, Liu J, Wang R, Mu Y, Sun T, Wang L, Zhao Y, Zhu N, Ji X, Lu Y, Wang Y. Metabolome and Transcriptome Analyses Reveal Flower Color Differentiation Mechanisms in Various Sophora japonica L. Petal Types. BIOLOGY 2023; 12:1466. [PMID: 38132292 PMCID: PMC10740404 DOI: 10.3390/biology12121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Sophora japonica L. is an important landscaping and ornamental tree species throughout southern and northern parts of China. The most common color of S. japonica petals is yellow and white. In this study, S. japonica flower color mutants with yellow and white flag petals and light purple-red wing and keel petals were used for transcriptomics and metabolomics analyses. To investigate the underlying mechanisms of flower color variation in S. japonica 'AM' mutant, 36 anthocyanin metabolites were screened in the anthocyanin-targeting metabolome. The results demonstrated that cyanidins such as cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside in the 'AM' mutant were the key metabolites responsible for the red color of the wing and keel petals. Transcriptome sequencing and differentially expressed gene (DEG) analysis identified the key structural genes and transcription factors related to anthocyanin biosynthesis. Among these, F3'5'H, ANS, UFGT79B1, bHLH, and WRKY expression was significantly correlated with the cyanidin-type anthocyanins (key regulatory factors affecting anthocyanin biosynthesis) in the flag, wing, and keel petals in S. japonica at various flower development stages.
Collapse
Affiliation(s)
- Lingshan Guan
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Jinshi Liu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Ruilong Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Yanjuan Mu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tao Sun
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Lili Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yunchao Zhao
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Nana Zhu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- State-Owned Yishan Forest Farm in Yishui County, Linyi 276400, China
| | - Xinyue Ji
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| |
Collapse
|
7
|
Fu M, Guo J, Tang K, Jiang S, Luo S, Luo W, Khan I, Li G. Comparative Transcriptome Analysis of Purple and Green Flowering Chinese Cabbage and Functional Analyses of BrMYB114 Gene. Int J Mol Sci 2023; 24:13951. [PMID: 37762252 PMCID: PMC10531404 DOI: 10.3390/ijms241813951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Flowering Chinese cabbage (Brassica rapa var. parachinensis) is one of the most popular vegetables in the south of China. As an antioxidant, anthocyanin is an important quality trait in vegetables, and the gene related to anthocyanin biosynthesis in purple flowering Chinese cabbage is also important. In this study, two flowering Chinese cabbage with extreme colors in the stem were used as materials for transcriptome analysis. RNA-seq analysis showed that 6811 differentially expressed genes (DEGs) were identified, including 295 transcription factors. Phenylpropanoid biosynthesis, flavone and flavanol biosynthesis, and flavonoid biosynthesis pathways were found to be significantly enriched in the purple flowering Chinese cabbage. A total of 25 DEGs associated with anthocyanin biosynthesis were found at a higher expression in purple flowering Chinese cabbage than in green flowering Chinese cabbage. Bioinformatics analysis shows that BrMYB114 is a candidate gene for the regulation of anthocyanin biosynthesis, and heterologous expression analysis of BrMYB114 in Nicotiana benthamiana indicates that BrMYB114 functions in anthocyanin biosynthesis. Therefore, our findings provide vital evidence for elucidating the molecular mechanism in the purple stem in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shanwei Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (M.F.); (J.G.); (K.T.); (S.J.); (S.L.); (W.L.)
| |
Collapse
|
8
|
Wang W, Pu Y, Wen H, Lu D, Yan M, Liu M, Wu M, Bai H, Shen L, Wu C. Transcriptome and weighted gene co-expression network analysis of jujube (Ziziphus jujuba Mill.) fruit reveal putative genes involved in proanthocyanin biosynthesis and regulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Du Y, Lin Y, Zhang K, Rothenberg DO, Zhang H, Zhou H, Su H, Zhang L. The Chemical Composition and Transcriptome Analysis Reveal the Mechanism of Color Formation in Tea ( Camellia sinensis) Pericarp. Int J Mol Sci 2023; 24:13198. [PMID: 37686006 PMCID: PMC10487661 DOI: 10.3390/ijms241713198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To elucidate the molecular mechanisms underlying the differential metabolism of albino (white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequencing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L. var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var. Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chlorophyll/carotene ratio may be the biochemical basis for albino characteristics in the 'Zhongbaiyihao' pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including DFR, F3'5'H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple 'Baitangziya' pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-reductase both showed high expression levels compared to the green one, which indicated that albino 'Zhongbaiyihao' pericarp had a higher chlorophyll synthesis capacity than 'Jinxuan'. Meanwhile, chlorophyllase (CLH, CSS0004684) was lower in 'Baitang' than in 'Jinxuan' and 'Zhongbaiyihao' pericarp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509), bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp, suggesting that transcription factors played a role in regulating tea pericarp coloration. These findings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing functional components of tea pericarp.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510640, China; (Y.D.); (Y.L.); (K.Z.); (D.O.R.); (H.Z.); (H.Z.); (H.S.)
| |
Collapse
|
10
|
Chen F, Chen YP, Wu H, Li Y, Zhang S, Ke J, Yao JY. Characterization of tea (Camellia sinensis L.) flower extract and insights into its antifungal susceptibilities of Aspergillus flavus. BMC Complement Med Ther 2023; 23:286. [PMID: 37580785 PMCID: PMC10424394 DOI: 10.1186/s12906-023-04122-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis L.) flowers will compete with tea leaves in nutrition and are abandoned as an undesirable by-product. In this study, the biological efficacy of tea flowers was investigated. Further exploration of its antifungal activity was explained. METHODS Tea flowers harvested from China were characterized in term of component, antioxidant ability, tyrosinase inhibition, and antifungal ability. Chemical compounds of tea flowers were analyzed by LC-MS. Disinfectant compounds were identified in tea flowers, and 2-ketobutyric acid exhibited antifungal activity against Aspergillus flavusCCTCC AF 2023038. The antifungal mechanism of 2-ketobutyric acid was further investigated by RNA-seq. RESULTS Water-soluble tea flower extracts (TFEs) exhibited free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS) as well as a high ferric-reducing ability. However, no inhibition of tyrosinase activity was observed. In the antifungal test, 6.4 mg/mL TFE reached 71.5% antifungal rate and the electrical conductivity of the culture broth increased with increasing concentration of TFE, implying that it damaged the fungal cell membrane by the TFE. Several disinfectants were identified in TFE by LC-MS, and 2-ketobutyric acid was also confirmed to be capable of fungal inhibition. Propidium iodide (PI) staining indicated that 2-ketobutyric acid caused damage to the cell membrane. RNA-seq analysis revealed that 3,808 differentially expressed genes (DEGs) were found in A. flavus CCTCC AF 2023038 treated by 2-ketobutyric acid, and more than 1,000 DEGs involved in the integral and intrinsic component of membrane were affected. Moreover, 2-ketobutyric acid downregulated aflatoxin biosynthesis genes and decreased the aflatoxin production. CONCLUSIONS Overall, TFE exhibited excellent antioxidant ability and fungal inhibition against A. flavus CCTCC AF 2023038 due to its abundant disinfectant compounds. As a recognized food additive, 2-ketobutyric acid is safe to use in the food industry and can be utilized as the basis for the research and development of strong fungicides.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Ya Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Jincheng Ke
- Department of Dermatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, 361000, China
| | - Jeng-Yuan Yao
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China
| |
Collapse
|
11
|
Sun Y, Cai D, Qin D, Chen J, Su Y, Zheng X, Meng Z, Zhang J, Xiong L, Dong Z, Cheng P, Peng X, Yu G. The plant protection preparation GZM improves crop immunity, yield, and quality. iScience 2023; 26:106819. [PMID: 37250797 PMCID: PMC10212988 DOI: 10.1016/j.isci.2023.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dianxian Cai
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jialiang Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoying Zheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
| | - Xiaoming Peng
- Laboratory of Plant Health, Zhuhai Runnong Science and Technology Co. Ltd, Zhuhai 519000, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangzhou 510225, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Gao Y, Han Z, Xu YQ, Yin JF. Chemical composition and anti-cholesterol activity of tea (Camellia sinensis) flowers from albino cultivars. Front Nutr 2023; 10:1142971. [PMID: 37051128 PMCID: PMC10083420 DOI: 10.3389/fnut.2023.1142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
| | - Zhen Han
- Agro-Technical Extension Station of Ningbo City, Ningbo, China
| | - Yong-Quan Xu
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- Jun-Feng Yin,
| |
Collapse
|
13
|
Luo Y, Deng M, Zhang X, Zhang D, Cai W, Long Y, Xiong X, Li Y. Integrative Transcriptomic and Metabolomic Analysis Reveals the Molecular Mechanism of Red Maple ( Acer rubrum L.) Leaf Coloring. Metabolites 2023; 13:metabo13040464. [PMID: 37110123 PMCID: PMC10143518 DOI: 10.3390/metabo13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
This study employed a combination of ultraviolet spectrophotometry, LC-ESI-MS/MS system, and RNA-sequencing technology; the extracts and isolation of total RNA from the red and yellow leaf strains of red maple (Acer rubrum L.) at different developmental stages were subjected to an intercomparison of the dynamic content of chlorophyll and total anthocyanin, flavonoid metabolite fingerprinting, and gene expression. The metabonomic results indicated that one hundred and ninety-two flavonoids were identified, which could be classified into eight categories in the red maple leaves. Among them, 39% and 19% were flavones and flavonols, respectively. The metabolomic analysis identified 23, 32, 24, 24, 38, and 41 DAMs in the AR1018r vs. AR1031r comparison, the AR1018r vs. AR1119r comparison, the AR1031r vs. AR1119r comparison, the AR1018y vs. AR1031y comparison, the AR1018y vs. AR1119y comparison, and the AR1031y vs. AR1119y comparison, respectively. In total, 6003 and 8888 DEGs were identified in AR1018r vs. AR1031r comparison and in the AR1018y vs. AR1031y comparison, respectively. The GO and KEGG analyses showed that the DEGs were mainly involved in plant hormone signal transduction, flavonoid biosynthesis, and other metabolite metabolic processes. The comprehensive analysis revealed that caffeoyl-CoA 3-O-methyltransferase (Cluster-28704.45358 and Cluster-28704.50421) was up-regulated in the red strain but down-regulated in the yellow strain, while Peonidin 3-O-glucoside chloride and Pelargonidin 3-O-beta-D-glucoside were up-regulated in both the red and yellow strains. By successfully integrating the analyses on the behavior of pigment accumulation, dynamics of flavonoids, and differentially expressed genes with omics tools, the regulation mechanisms underlying leaf coloring in red maple at the transcriptomic and metabolomic levels were demonstrated, and the results provide valuable information for further research on gene function in red maple.
Collapse
Affiliation(s)
- Yuanyuan Luo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- College of Oriental Science & Technology, Hunan Agricultural University, Changsha 410128, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xia Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
| | - Damao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
| | - Wenqi Cai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
| | - Yuelin Long
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha 410128, China
| | - Xingyao Xiong
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410128, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Kunpeng Institute of Modern Agriculture, Foshan 528200, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
14
|
Lv YP, Zhao G, Xie YF, Owusu AG, Wu Y, Gao JS. Transcriptome and Metabolome Profiling Unveil Pigment Formation Variations in Brown Cotton Lines (Gossypium hirsutum L.). Int J Mol Sci 2023; 24:ijms24065249. [PMID: 36982328 PMCID: PMC10049672 DOI: 10.3390/ijms24065249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Naturally brown colored cotton (NBCC) is becoming increasingly popular due to its natural properties of coloration. However, poor fiber quality and color fading are key issues that are hindering the cultivation of naturally colored cotton. In this study, based on transcriptome and metabolome of 18 days post-anthesis (DPA), we compared the variations of pigment formation in two brown cotton fibers (DCF and LCF), with white cotton fiber (WCF) belonging to a near-isogenic line. A transcriptome study revealed a total of 15,785 differentially expressed genes significantly enriched in the flavonoid biosynthesis pathway. Furthermore, for flavonoid biosynthesis-related genes, such as flavonoid 3′5′-hydroxylase (F3′5′H), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and chalcone isomerase (CHI), their expressions significantly increased in LCF compared with DCF and WCF. Moreover, transcription factors MYB and bHLH were significantly expressed in LCF and DCF. Most flavonoid-related metabolites (myricetin naringenin, catechin, epicatechin-epiafzelechin, and epigallocatechin) were found to be more highly up-regulated in LCF and DCF than WCF. These findings reveal the regulatory mechanism controlling different brown pigmentation in cotton fibers and elucidate the need for the proper selection of high-quality brown cotton fiber breeding lines for promising fiber quality and durable brown color pigmentation.
Collapse
|
15
|
Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages. Mol Biotechnol 2023; 65:52-60. [PMID: 35780278 DOI: 10.1007/s12033-022-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to explore the molecular mechanisms underlying the differential quality of tea made from leaves at different development stages. Fresh Camellia sinensis (L.) O. Kuntze "Sichuan Colonial" leaves of various development stages, from buds to old leaves, were subjected to transcriptome sequencing and metabolome analysis, and the DESeq package was used for differential expression analysis, followed by functional enrichment analyses and protein interaction analysis. Target metabolome analysis indicated that the contents of most compounds, including theobromine and epicatechin gallate, were lowest in old leaves, and transcriptome analysis revealed that DEGs were significantly involved in extracellular regions and phenylpropanoid biosynthesis, photosynthesis-related pathways, and the oleuropein steroid biosynthesis pathway. Protein-protein interaction analysis identified LOC114256852 as a hub gene. Caffeine, theobromine, L-theanine, and catechins were the main metabolites of the tea leaves, and the contents of all four main metabolites were the lowest in old leaves. Phenylpropanoid biosynthesis, photosynthesis, and brassinosteroid biosynthesis may be important targets for breeding efforts to improve tea quality.
Collapse
|
16
|
Luo B, Chen L, Chen G, Wang Y, Xie Q, Chen X, Hu Z. Transcription and Metabolism Pathways of Anthocyanin in Purple Shamrock ( Oxalis triangularis A.St.-Hil.). Metabolites 2022; 12:metabo12121290. [PMID: 36557327 PMCID: PMC9784199 DOI: 10.3390/metabo12121290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Anthocyanins are water-soluble pigments that can impart various colors to plants. Purple shamrock (Oxalis triangularis) possesses unique ornamental value due to its purple leaves. In this study, three anthocyanins, including malvidin 3-O-(4-O-(6-O-malonyl-glucopyranoside)-rhamnopyranosyl)-5-O-(6-O-malonyl-glucopyranoside), delphinidin-3-O-rutinoside and malvidin-3,5-di-O-glucoside, were characterized with ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in purple shamrock. To investigate the molecular mechanism of anthocyanin biosynthesis in green shamrock (Oxalis corymbosa) and purple shamrock, RNA-seq and qRT-PCR were performed, and the results showed that most of the anthocyanin biosynthetic and regulatory genes were up-regulated in purple shamrock. Then, dark treatment and low temperature treatment experiments in purple shamrock showed that both light and low temperature can induce the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liujun Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (X.C.); (Z.H.); Tel.: +86-1051503868 (X.C.); +86-13996265017 (Z.H.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China
- Correspondence: (X.C.); (Z.H.); Tel.: +86-1051503868 (X.C.); +86-13996265017 (Z.H.)
| |
Collapse
|
17
|
Comparative Transcriptome Analysis Unveils the Molecular Mechanism Underlying Sepal Colour Changes under Acidic pH Substratum in Hydrangea macrophylla. Int J Mol Sci 2022; 23:ijms232315428. [PMID: 36499756 PMCID: PMC9739076 DOI: 10.3390/ijms232315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.
Collapse
|
18
|
Mei X, Zhang K, Lin Y, Su H, Lin C, Chen B, Yang H, Zhang L. Metabolic and Transcriptomic Profiling Reveals Etiolated Mechanism in Huangyu Tea ( Camellia sinensis) Leaves. Int J Mol Sci 2022; 23:ijms232315044. [PMID: 36499369 PMCID: PMC9740216 DOI: 10.3390/ijms232315044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Leaf color is one of the key factors involved in determining the processing suitability of tea. It relates to differential accumulation of flavor compounds due to the different metabolic mechanisms. In recent years, photosensitive etiolation or albefaction is an interesting direction in tea research field. However, the molecular mechanism of color formation remains unclear since albino or etiolated mutants have different genetic backgrounds. In this study, wide-target metabolomic and transcriptomic analyses were used to reveal the biological mechanism of leaf etiolation for 'Huangyu', a bud mutant of 'Yinghong 9'. The results indicated that the reduction in the content of chlorophyll and the ratio of chlorophyll to carotenoids might be the biochemical reasons for the etiolation of 'Huangyu' tea leaves, while the content of zeaxanthin was significantly higher. The differentially expressed genes (DEGs) involved in chlorophyll and chloroplast biogenesis were the biomolecular reasons for the formation of green or yellow color in tea leaves. In addition, our results also revealed that the changes of DEGs involved in light-induced proteins and circadian rhythm promoted the adaptation of etiolated tea leaves to light stress. Variant colors of tea leaves indicated different directions in metabolic flux and accumulation of flavor compounds.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaikai Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yongen Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongfeng Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Baoyi Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Haijun Yang
- Center for Basic Experiments and Practical Training, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.Y.); (L.Z.); Tel.: +86-020-8528-0542 (L.Z.)
| |
Collapse
|
19
|
Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. BIOLOGY 2022; 11:biology11121721. [PMID: 36552231 PMCID: PMC9774537 DOI: 10.3390/biology11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental and medicinal values. However, little is known about the biosynthetic pathways of pigments, especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK) flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and 2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0, g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3'H, g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin metabolism in controlling cyclamen flower color.
Collapse
|
20
|
Li Y, Zhang Y, Luo H, Lv D, Yi Z, Duan M, Deng M. WGCNA Analysis Revealed the Hub Genes Related to Soil Cadmium Stress in Maize Kernel ( Zea mays L.). Genes (Basel) 2022; 13:2130. [PMID: 36421805 PMCID: PMC9690088 DOI: 10.3390/genes13112130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 01/12/2024] Open
Abstract
Soil contamination by heavy metals has become a prevalent topic due to their widespread release from industry, agriculture, and other human activities. Great progress has been made in elucidating the uptake and translocation of cadmium (Cd) accumulation in rice. However, there is still little known about corresponding progress in maize. In the current study, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) of maize immature kernel related to Cd stress. In total, 55, 92, 22, and 542 DEGs responsive to high cadmium concentration soil were identified between XNY22-CHS-8 vs. XNY22-YA-8, XNY22-CHS-24 vs. XNY22-YA-24, XNY27-CHS-8 vs. XNY27-YA-8, and XNY27-CHS-24 vs. XNY27-YA-24, respectively. The weighted gene co-expression network analysis (WGCNA) categorized the 9599 Cd stress-responsive hub genes into 37 different gene network modules. Combining the hub genes and DEGs, we obtained 71 candidate genes. Gene Ontology (GO) enrichment analysis of genes in the greenyellow module in XNY27-YA-24 and connectivity genes of these 71 candidate hub genes showed that the responses to metal ion, inorganic substance, abiotic stimulus, hydrogen peroxide, oxidative stress, stimulus, and other processes were enrichment. Moreover, five candidate genes that were responsive to Cd stress in maize kernel were detected. These results provided the putative key genes and pathways to response to Cd stress in maize kernel, and a useful dataset for unraveling the underlying mechanism of Cd accumulation in maize kernel.
Collapse
Affiliation(s)
- Yongjin Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| | - Dan Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China
| |
Collapse
|
21
|
Wang Y, Yin H, Long Z, Zhu W, Yin J, Song X, Li C. DhMYB2 and DhbHLH1 regulates anthocyanin accumulation via activation of late biosynthesis genes in Phalaenopsis-type Dendrobium. FRONTIERS IN PLANT SCIENCE 2022; 13:1046134. [PMID: 36457536 PMCID: PMC9705975 DOI: 10.3389/fpls.2022.1046134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Phalaenopsis-type Dendrobium is a popular orchid with good ornamental and market value. Despite their popularity, molecular regulation of anthocyanin biosynthesis during flower development remains poorly understood. In this study, we systematically investigated the regulatory roles of the transcription factors DhMYB2 and DhbHLH1 in anthocyanins biosynthesis. Gene expression analyses indicated that both DhMYB2 and DhbHLH1 are specifically expressed in flowers and have similar expression patterns, showing high expression in purple floral tissues with anthocyanin accumulation. Transcriptomic analyses showed 29 differentially expressed genes corresponding to eight enzymes in anthocyanin biosynthesis pathway have similar expression patterns to DhMYB2 and DhbHLH1, with higher expression in the purple lips than the yellow petals and sepals of Dendrobium 'Suriya Gold'. Further gene expression analyses and Pearson correlation matrix analyses of Dendrobium hybrid progenies revealed expression profiles of DhMYB2 and DhbHLH1 were positively correlated with the structural genes DhF3'H1, DhF3'5'H2, DhDFR, DhANS, and DhGT4. Yeast one-hybrid and dual-luciferase reporter assays revealed DhMYB2 and DhbHLH1 can bind to promoter regions of DhF3'H1, DhF3'5'H2, DhDFR, DhANS and DhGT4, suggesting a role as transcriptional activators. These results provide new evidence of the molecular mechanisms of DhMYB2 and DhbHLH1 in anthocyanin biosynthesis in Phalaenopsis-type Dendrobium.
Collapse
Affiliation(s)
- Yachen Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Hantai Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Zongxing Long
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Wenjuan Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Junmei Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Chonghui Li
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| |
Collapse
|
22
|
A Comparison of the Flavonoid Biosynthesis Mechanisms of Dendrobium Species by Analyzing the Transcriptome and Metabolome. Int J Mol Sci 2022; 23:ijms231911980. [PMID: 36233278 PMCID: PMC9569625 DOI: 10.3390/ijms231911980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Dendrobium huoshanense, Dendrobium officinale, and Dendrobium moniliforme, as precious Chinese medicinal materials, have a variety of medicinal properties. Flavonoids are important medicinal components of Dendrobium, but their accumulation rules and biosynthesis mechanisms remain unclear. To explore the similarities and differences of flavonoid accumulation and biosynthesis in these three Dendrobium species, we performed flavonoid content determination, widely-targeted metabolomics and transcriptome sequencing on 1-4 years old Dendrobium species. The results showed that in different growth years, D. huoshanense stems had the highest flavonoid content in the second year of growth, while D. officinale and D. moniliforme stems had the highest flavonoid content in the third year of growth. A total of 644 differentially accumulated metabolites (DAMs) and 10,426 differentially expressed genes (DEGs) were identified by metabolomic and transcriptomic analysis. It was found that DAMs and DEGs were not only enriched in the general pathway of "flavonoid biosynthesis", but also in multiple sub-pathways such as "Flavone biosynthesis", and "Flavonol biosynthesis" and "Isoflavonoid biosynthesis". According to a combined transcriptome and metabolome analysis, the expression levels of the F3'H gene (LOC110096779) and two F3'5'H genes (LOC110101765 and LOC110103762) may be the main genes responsible for the differences in flavonoid accumulation. As a result of this study, we have not only determined the optimal harvesting period for three Dendrobium plants, but also identified the key genes involved in flavonoid biosynthesis and provided a basis for further study of the molecular mechanism of flavonoid synthesis.
Collapse
|
23
|
Duan Y, Liu X, Wu J, You J, Wang F, Guo X, Tang T, Liao M, Guo J. Transcriptomic and metabolic analyses reveal the potential mechanism of increasing steroidal alkaloids in Fritillaria hupehensis through intercropping with Magnolia officinalis. FRONTIERS IN PLANT SCIENCE 2022; 13:997868. [PMID: 36275508 PMCID: PMC9585282 DOI: 10.3389/fpls.2022.997868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fritillaria hupehensis, a well-known medicinal perennial herb, is used as an antitussive and an expectorant. Continuous cropping and monoculture cultivation usually negativly affect the growth of F. hupehensis. Compared with the monoculture system, the F. hupehensis-Magnolia officinalis intercropping system significantly increases the yield of F. hupehensis. However, changes in steroidal alkaloid metabolites (the most important bioactive components) and their molecular regulatory mechanisms in F. hupehensis intercropping system remain unclear. We performed comparative transcriptomic and metabolomic analyses of F. hupehensis bulbs grown in monocropping and intercropping systems. A total of 40 alkaloids were identified, including 26 steroidal alkaloids, 4 plumeranes, 3 phenolamines, 1 pyridine alkaloid, and 6 other alkaloids. The results showed that intercropping significantly increased the levels of peimine, peiminine, hupehenine, korseveridine, verticinone N-oxide, delafrine, tortifoline, pingbeinone, puqienine B, puqienine E, jervine, ussuriedine, hydroxymandelonitrile, N-feruloylputrescine, and N-benzylmethylene isomethylamine in F. hupehensis, but decreased the levels of indole, p-coumaroylputrescine, and N-benzylformamide. Transcriptome sequencing identified 11,466 differentially expressed unigenes in F. hupehensis under the intercropping system, of which 5,656 genes were up-regulated and 5,810 genes were down-regulated. We proposed a possible steroidal alkaloid biosynthesis pathway, in which 12 differentially expressed genes were identified. The higher expressions of these genes in the intercropping system positively correlated with the high accumulation of peimine, peiminine, and hupehenine, further validating our proposal. Moreover, the biological processes of oxidative phosphorylation and plant hormone signal transduction, cytochrome P450 enzymes, ATP-binding cassette transporters, and transcription factors may play pivotal roles in the regulation of steroidal alkaloid biosynthesis. This study revealed the underlying molecular mechanisms of intercropping in improving steroidal alkaloids in F. hupehensis at the transcriptome and metabolome levels. These findings provided a theoretical foundation for sustainable development of this ecological planting method.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaohong Liu
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiaqi Wu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tao Tang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Mingyan Liao
- Productivity Promotion Center of Enshi Tujia and Miao Autonomous Prefecture, Bureau of Science and Technology of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jie Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
24
|
Tang D, Shen Y, Li F, Yue R, Duan J, Ye Z, Lin Y, Zhou W, Yang Y, Chen L, Wang H, Zhao J, Li P. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:1016692. [PMID: 36247612 PMCID: PMC9557745 DOI: 10.3389/fpls.2022.1016692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The flowers of tea plants (Camellia sinensis), as well as tea leaves, contain abundant secondary metabolites and are big potential resources for the extraction of bioactive compounds or preparation of functional foods. However, little is known about the biosynthesis and transcriptional regulation mechanisms of those metabolites in tea flowers, such as terpenoid, flavonol, catechins, caffeine, and theanine. This study finely integrated target and nontarget metabolism analyses to explore the metabolic feature of developing tea flowers. Tea flowers accumulated more abundant terpenoid compounds than young leaves. The transcriptome data of developing flowers and leaves showed that a higher expression level of later genes of terpenoid biosynthesis pathway, such as Terpene synthases gene family, in tea flowers was the candidate reason of the more abundant terpenoid compounds than in tea leaves. Differently, even though flavonol and catechin profiling between tea flowers and leaves was similar, the gene family members of flavonoid biosynthesis were selectively expressed by tea flowers and tea leaves. Transcriptome and phylogenetic analyses indicated that the regulatory mechanism of flavonol biosynthesis was perhaps different between tea flowers and leaves. However, the regulatory mechanism of catechin biosynthesis was perhaps similar between tea flowers and leaves. This study not only provides a global vision of metabolism and transcriptome in tea flowers but also uncovered the different mechanisms of biosynthesis and transcriptional regulation of those important compounds.
Collapse
Affiliation(s)
- Dingkun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yihua Shen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Fangdong Li
- College of Science, Anhui Agricultural University, Hefei, China
| | - Rui Yue
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianwei Duan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhili Ye
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ying Lin
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yilin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lixiao Chen
- Municipal Research Institute for Processing of Agricultural and Featured Products, Shiyan Academy of Agricultural Science, Shiyan, China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
26
|
Shao D, Liang Q, Wang X, Zhu QH, Liu F, Li Y, Zhang X, Yang Y, Sun J, Xue F. Comparative Metabolome and Transcriptome Analysis of Anthocyanin Biosynthesis in White and Pink Petals of Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231710137. [PMID: 36077538 PMCID: PMC9456042 DOI: 10.3390/ijms231710137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.) is one of the important fiber crops. Cotton flowers usually appear white (or cream-colored) without colored spots at the petal base, and turn pink on the next day after flowering. In this study, using a mutant showing pink petals with crimson spots at their base, we conducted comparative metabolome and transcriptome analyses to investigate the molecular mechanism of coloration in cotton flowers. Metabolic profiling showed that cyanidin-3-O-glucoside and glycosidic derivatives of pelargonidins and peonidins are the main pigments responsible for the coloration of the pink petals of the mutant. A total of 2443 genes differentially expressed (DEGs) between the white and pink petals were identified by RNA-sequencing. Many DEGs are structural genes and regulatory genes of the anthocyanin biosynthesis pathway. Among them, MYB21, UGT88F3, GSTF12, and VPS32.3 showed significant association with the accumulation of cyanidin-3-O-glucoside in the pink petals. Taken together, our study preliminarily revealed the metabolites responsible for the pink petals and the key genes regulating the biosynthesis and accumulation of anthocyanins in the pink petals. The results provide new insights into the biochemical and molecular mechanism underlying anthocyanin biosynthesis in upland cotton.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| |
Collapse
|
27
|
Light and Potassium Improve the Quality of Dendrobium officinale through Optimizing Transcriptomic and Metabolomic Alteration. Molecules 2022; 27:molecules27154866. [PMID: 35956813 PMCID: PMC9369990 DOI: 10.3390/molecules27154866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as light, temperature, water, and nutrition supply are the major influencing factors. This study aims to unveil the mechanisms beneath the cultivation-induced variation by analyzing the changes of the metabolome and transcriptome of D. officinale seedlings treated with red- blue LED light and potassium fertilizer. Results: After light- and K-treatment, the D. officinale pseudobulbs turned purple and the anthocyanin content increased significantly. Through wide-target metabolome analysis, compared with pseudobulbs in the control group (P), the proportion of flavonoids in differentially-accumulated metabolites (DAMs) was 22.4% and 33.5% post light- and K-treatment, respectively. The gene modules coupled to flavonoids were obtained through the coexpression analysis of the light- and K-treated D. officinale transcriptome by WGCNA. The KEGG enrichment results of the key modules showed that the DEGs of the D. officinale pseudobulb were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and jasmonic acid (JA) synthesis post-light- and K-treatment. In addition, anthocyanin accumulation was the main contribution to the purple color of pseudobulbs, and the plant hormone JA induced the accumulation of anthocyanins in D. officinale. Conclusions: These results suggested that light and potassium affected the accumulation of active compounds in D. officinale, and the gene-flavone network analysis emphasizes the key functional genes and regulatory factors for quality improvement in the cultivation of this medicinal plant.
Collapse
|
28
|
Transcriptional Comparison of New Hybrid Progenies and Clone-Cultivars of Tea (Camellia sinensis L.) Associated to Catechins Content. PLANTS 2022; 11:plants11151972. [PMID: 35956452 PMCID: PMC9370121 DOI: 10.3390/plants11151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Heterosis or hybrid vigor is the improved performance of a desirable quality in hybrid progeny. Hybridization between high-productive Assam type and high-quality Chinese type clone-cultivar is expected to develop elite tea plant progenies with high quality and productivity. Comparative transcriptomics analyses of leaves from the F1 hybrids and their parental clone-cultivars were conducted to explore molecular mechanisms related to catechin content using a high-throughput next-generation RNA-seq strategy and high-performance liquid chromatography (HPLC). The content of EGCG (epigallocatechin gallate) and C (catechin) was higher in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ than the other hybrid and clone-cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analysis found that most pathways associated with catechins content were enriched. Significant differentially expressed genes (DEGs) mainly associated with phenylpropanoid, flavonoid, drug metabolism-cytochrome P450, and transcription factor (MYB, bHLH, LOB, and C2H2) pathways appeared to be responsible for the high accumulation of secondary metabolites in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ as were detected in EGCG and catechin content. Several structural genes related to the above pathways have been obtained, which will be used as candidate genes in the screening of breeding materials.
Collapse
|
29
|
Zhang G, Yang X, Xu F, Wei D. Combined Analysis of the Transcriptome and Metabolome Revealed the Mechanism of Petal Coloration in Bauhinia variegata. FRONTIERS IN PLANT SCIENCE 2022; 13:939299. [PMID: 35903221 PMCID: PMC9315375 DOI: 10.3389/fpls.2022.939299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Bauhinia variegata petals are colorful, rich in anthocyanins, and have ornamental, nutritional, and medicinal value. However, the regulatory mechanism of anthocyanin accumulation in B. variegata remains unclear. In this study, a combined analysis of the metabolome and transcriptome was performed in red and white B. variegata cultivars in the early, middle, and blooming stages. A total of 46 different anthocyanins were identified, of which 27 showed marked differences in accumulation between the two cultivars, and contribute to their different petal colors. Malvidin 3-O-galactoside, peonidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, and malvidin 3-O-glucoside were much more abundant in the second stage of flowering. In the blooming stage, except for the anthocyanins mentioned, delphinidin 3-O-galactoside and petunidin 3-O-galactoside were the most abundant anthocyanins in the red flowers, indicating that malvidin, peonidin, cyanidin, delphinidin, and petunidin were all responsible for the red color of petals in B. variegata. RNA sequencing identified 2,431 differentially expressed genes (DEGs), of which 26 were involved in the anthocyanin synthesis pathway. Correlations between the anthocyanin biosynthesis-related DEGs and anthocyanin contents were explored, and the DEGs involved in anthocyanin accumulation in B. variegata petals were identified. Eighteen of these DEGs encoded key catalytic enzymes, such as anthocyanidin reductase (ANR) and flavonoid-3'5'-hydroxylase (F3'5'H), and 17 of them encoded transcription factors (TFs) belonging to 14 families (including MYB, NAC, SPL, ERF, and CHR28). These results improve our understanding of the roles of anthocyanins, catalytic enzymes, and TFs in B. variegata petal-color expression.
Collapse
|
30
|
Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. Extracting Total Anthocyanin from Purple Sweet Potato Using an Effective Ultrasound-Assisted Compound Enzymatic Extraction Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144344. [PMID: 35889219 PMCID: PMC9317032 DOI: 10.3390/molecules27144344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to develop an effective technique for extracting total anthocyanins from purple sweet potato (Mianzishu 9) (PSP9) by ultrasound-assisted compound enzymatic extraction (UAEE). Single-factor experiments, Plackett-Burman experimental design, and response surface methodology were utilized for optimizing extraction conditions, and the antioxidant activities were evaluated. Anthocyanins were also measured using an ultra-performance liquid chromatograph linked to a mass spectrometer (UPLC-MS). The maximum yield of total anthocyanins was 2.27 mg/g under the following conditions: the ethanol concentration was 78%, the material-to-liquid ratio was 1:15 g/mL, the enzyme ratio (cellulase: pectinase: papain) was 2:2:1 and its hydrolysis was at 41 °C, pH = 4.5, 1.5 h, the ultrasonication was at 48 °C and conducted twice for 20 min each time. In addition to higher yield, anthocyanins extracted from purple sweet potato by UAEE showed great ability to scavenge DPPH (IC50 of 0.089 μg/mL) and hydroxyl radicals (IC50 of 100.229 μg/mL). Five anthocyanins were found in the purple sweet potato extract from UAEE. Taken together, the ultrasound-assisted compound enzymatic method can rapidly and effectively extract anthocyanins with greater antioxidant capacity from purple sweet potato.
Collapse
Affiliation(s)
- Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Shuo Zhang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Guowei Deng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
- Correspondence: (G.D.); (J.L.)
| | - Kun Xu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China; (F.W.); (S.Z.); (K.X.)
| | - Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China;
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
31
|
Zhong H, Liu Z, Zhang F, Zhou X, Sun X, Li Y, Liu W, Xiao H, Wang N, Lu H, Pan M, Wu X, Zhou Y. Metabolomic and transcriptomic analyses reveal the effects of self- and hetero-grafting on anthocyanin biosynthesis in grapevine. HORTICULTURE RESEARCH 2022; 9:uhac103. [PMID: 35795384 PMCID: PMC9251602 DOI: 10.1093/hr/uhac103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Grafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (Vitis vinifera) grafted onto four rootstocks (three heterografts, CS/101-14, CS/SO4, and CS/110R and one self-graft, CS/CS) with own-rooted graft-free Crimson Seedless (CS) as the control. All the heterografts had a significant effect on berry reddening as early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin biosynthesis and accumulation in grape berries. The metabolomic features showed that cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, and petunidin 3-O-glucoside were the pigments responsible for the purplish-red peel color. Transcriptomic analyses revealed that anthocyanin biosynthesis-related genes, from upstream (phenylalanine ammonia-lyase) to downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase), were upregulated with the accumulation of anthocyanins in the heterografted plants. At the same time, all these genes were also highly expressed and more anthocyanin was accumulated in self-grafted CS/CS samples compared with own-rooted graft-free CS samples, suggesting that self-grafting may also have promoted berry reddening in grapevine. Our results reveal global transcriptomic and metabolomic features in berry color regulation under different grafting conditions that may be useful for improving berry quality in viticulture.
Collapse
Affiliation(s)
- Haixia Zhong
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Zhongjie Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xiaoxia Sun
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Yongyao Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hua Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong Lu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
32
|
Qiu L, Zheng T, Liu W, Zhuo X, Li P, Wang J, Cheng T, Zhang Q. Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:884883. [PMID: 35599903 PMCID: PMC9120947 DOI: 10.3389/fpls.2022.884883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Prunus mume var. purpurea, commonly known as "Red Bone", is a special variety with pink or purple-red xylem. It is famous due to gorgeous petals and delightful aromas, playing important roles in urban landscaping. The regulation mechanism of color formation in P. mume var. purpurea stem development is unclear. Here, we conducted a comprehensive analysis of transcriptome and metabolome in WYY ('Wuyuyu' accession, red stem) and FLE ('Fei Lve' accession, green stem), and found a total of 256 differential metabolites. At least 14 anthocyanins were detected in WYY, wherein cyanidin 3,5-O-diglucoside and peonidin3-O-glucoside were significantly accumulated through LC-MS/MS analysis. Transcriptome data showed that the genes related to flavonoid-anthocyanin biosynthesis pathways were significantly enriched in WYY. The ratio of dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) expression levels may affect metabolic balance in WYY, suggesting a vital role in xylem color formation. In addition, several transcription factors were up-regulated, which may be the key factors contributing to transcriptional changes in anthocyanin synthesis. Overall, the results provide a reference for further research on the molecular mechanism of xylem color regulation in P. mume and lay a theoretical foundation for cultivating new varieties.
Collapse
Affiliation(s)
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
33
|
Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Gupta S, Singh R, Sharma A, Rather GA, Lattoo SK, Dhar MK. Comparative transcriptome mining for terpenoid biosynthetic pathway genes in wild and cultivated species of Plantago. PROTOPLASMA 2022; 259:439-452. [PMID: 34191123 DOI: 10.1007/s00709-021-01663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plantagos are important economical and medicinal plants that possess several bioactive secondary metabolites, such as phenolics, iridoids, triterpenes, and alkaloids. Triterpenoids are the ubiquitous and dynamic secondary metabolites that are deployed by plants for chemical interactions and protection under biotic/abiotic stress. Plantago ovata, a cultivated species, is the source of psyllium, while Plantago major, a wild species, has significant therapeutic potential. Wild species are considered more tolerant to stressful conditions in comparison to their cultivated allies. In view of this, the present study aimed to decipher the terpenoid biosynthetic pathway operative in P. ovata and P. major using a comparative transcriptomics approach. Majority of terpenoid biosynthetic genes were observed as upregulated in P. major including rate limiting genes of MVA (HMGR) and MEP (DXR) pathways and genes (α-AS, BAS, SM, and CYP716) involved in ursolic acid biosynthesis, an important triterpenoid prevalent in Plantago species. The HPLC output further confirmed the higher concentration of ursolic acid in P. major as compared to P. ovata leaf samples, respectively. In addition to terpenoid biosynthesis, KEGG annotation revealed the involvement of differentially expressed unigenes in several metabolic pathways, aminoacyl-tRNA biosynthesis, biosynthesis of antibiotics, and biosynthesis of secondary metabolites. MYB was found as the most abundant transcription factor family in Plantago transcriptome. We have been able to generate valuable information which can help in improving terpenoid production in Plantago. Additionally, the present study has laid a strong foundation for deciphering other important metabolic pathways in Plantago.
Collapse
Affiliation(s)
- Suruchi Gupta
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Ravail Singh
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Gulzar A Rather
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
35
|
Gan S, Zheng G, Zhu S, Qian J, Liang L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022; 12:metabo12020144. [PMID: 35208218 PMCID: PMC8879266 DOI: 10.3390/metabo12020144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Liriope spicata is an important ornamental ground cover plant, with a fruit color that turns from green to black during the development and ripening stages. However, the material basis and regulatory mechanism of the color variation remains unclear. In this study, a total of 31 anthocyanins and 2 flavonols were identified from the skin of L. spicata fruit via integrative analysis on the metabolome and transcriptome of three developmental stages. The pigments of black/mature fruits are composed of five common anthocyanin compounds, of which Peonidin 3–O–rutinoside and Delphinidin 3–O–glucoside are the most differential metabolites for color conversion. Using dual-omics joint analysis, the mechanism of color formation was obtained as follows. The expression of structural genes including 4CL, F3H, F3′H, F3′5′H and UFGT were activated due to the upregulation of transcription factor genes MYB and bHLH. As a result, a large amount of precursor substances for the synthesis of flavonoids accumulated. After glycosylation, stable pigments were generated which promoted the accumulation of anthocyanins and the formation of black skin.
Collapse
|
36
|
Yuan Y, Zuo J, Zhang H, Li R, Yu M, Liu S. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:850090. [PMID: 35360302 PMCID: PMC8964182 DOI: 10.3389/fpls.2022.850090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium huoshanense is both a traditional herbal medicine and a plant of high ornamental and medicinal value. We used transcriptomics and metabolomics to investigate the effects of growth year on the secondary metabolites of D. huoshanense stems obtained from four different years of cultivation. In this study, a total of 428 differentially accumulated metabolites (DAMs) and 1802 differentially expressed genes (DEGs) were identified. The KEGG enrichment analysis of DEGs and DAMs revealed significant differences in "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis" and "Flavone and flavonol biosynthesis". We summarize the biosynthesis pathway of flavonoids in D. huoshanense, providing new insights into the biosynthesis and regulation mechanisms of flavonoids in D. huoshanense. Additionally, we identified two candidate genes, FLS (LOC110107557) and F3'H (LOC110095936), which are highly involved in flavonoid biosynthesis pathway, by WGCNA analysis. The aim of this study is to investigate the effects of growth year on secondarily metabolites in the plant and provide a theoretical basis for determining a reasonable harvesting period for D. huoshanense.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Yingdan Yuan,
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Runze Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu’an, China
- Maoyun Yu,
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Wang N, Shu X, Zhang F, Zhuang W, Wang T, Wang Z. Comparative Transcriptome Analysis Identifies Key Regulatory Genes Involved in Anthocyanin Metabolism During Flower Development in Lycoris radiata. FRONTIERS IN PLANT SCIENCE 2021; 12:761862. [PMID: 34975946 PMCID: PMC8715008 DOI: 10.3389/fpls.2021.761862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Lycoris is used as a garden flower due to the colorful and its special flowers. Floral coloration of Lycoris is a vital trait that is mainly regulated via the anthocyanin biosynthetic pathway. In this study, we performed a comparative transcriptome analysis of Lycoris radiata petals at four different flower development stages. A total of 38,798 differentially expressed genes (DEGs) were identified by RNA sequencing, and the correlation between the expression level of the DEGs and the anthocyanin content was explored. The identified DEGs are significantly categorized into 'flavonoid biosynthesis,' 'phenylpropanoid biosynthesis,' 'Tropane, piperidine and pyridine alkaloid biosynthesis,' 'terpenoid backbone biosynthesis' and 'plant hormone signal transduction' by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate genes involved in anthocyanin accumulation in L. radiata petals during flower development stages were also identified, which included 56 structural genes (especially LrDFR1 and LrFLS) as well as 27 key transcription factor DEGs (such as C3H, GATA, MYB, and NAC). In addition, a key structural gene namely LrDFR1 of anthocyanin biosynthesis pathway was identified as a hub gene in anthocyanin metabolism network. During flower development stages, the expression level of LrDFR1 was positively correlated with the anthocyanin content. Subcellular localization revealed that LrDFR1 is majorly localized in the nucleus, cytoplasm and cell membrane. Overexpression of LrDFR1 increased the anthocyanin accumulation in tobacco leaves and Lycoris petals, suggesting that LrDFR1 acts as a positively regulator of anthocyanin biosynthesis. Our results provide new insights for elucidating the function of anthocyanins in L. radiata petal coloring during flower development.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
38
|
Mei X, Lin C, Wan S, Chen B, Wu H, Zhang L. A Comparative Metabolomic Analysis Reveals Difference Manufacture Suitability in "Yinghong 9" and "Huangyu" Teas ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:767724. [PMID: 34970283 PMCID: PMC8712721 DOI: 10.3389/fpls.2021.767724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
"Yinghong 9" is a widely cultivated large-leaf variety in South China, and the black tea made from it has a high aroma and strong sweet flavor. "Huangyu" is a light-sensitive tea variety with yellow leaves. It was cultivated from the bud-mutation of "Yinghong 9" and has a very low level of chlorophyll during young shoot development. Due to chlorophyll being involved in carbon fixation and assimilation, the changes in photosynthesis might potentially affect the accumulation of flavor metabolites, as well as the quality of "Huangyu" tea. Although "Huangyu" has a golden yellow color and high amino acid content, the mechanism underlying the formation of leaf color and drinking value remains unclear. The widely targeted metabolomics and GC-MS analysis were performed to reveal the differences of key metabolites in fresh and fermented leaves between "Yinghong 9" and "Huangyu." The results showed that tea polyphenols, total chlorophyll, and carotenoids were more abundant in "Yinghong 9." Targeted metabolomics analysis indicated that kaempferol-3-glycoside was more abundant in "Yinghong 9," while "Huangyu" had a higher ratio of kaempferol-3-glucoside to kaempferol-3-galactoside. Compared with "Yinghong 9" fresh leaves, the contents of zeaxanthin and zeaxanthin palmitate were significantly higher in "Huangyu." The contents of α-farnesene, β-cyclocitral, nerolidol, and trans-geranylacetone, which were from carotenoid degradation and involved in flowery-fruity-like flavor in "Huangyu" fermented leaves, were higher than those of "Yinghong 9." Our results indicated that "Huangyu" was suitable for manufacturing non-fermented tea because of its yellow leaf and flowery-fruity-like compounds from carotenoid degradation.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shihua Wan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoyi Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Zheng Y, Chen Y, Liu Z, Wu H, Jiao F, Xin H, Zhang L, Yang L. Important Roles of Key Genes and Transcription Factors in Flower Color Differences of Nicotianaalata. Genes (Basel) 2021; 12:1976. [PMID: 34946925 PMCID: PMC8701347 DOI: 10.3390/genes12121976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotiana alata is an ornamental horticultural plant with a variety of flower colors and a long flowering period. The genes in four different colored N. alata (white, purple, red, and lemon green) were analyzed to explain the differences in flower color using transcriptomes. A total of 32 differential expression genes in the chlorophyll biosynthesis pathway and 41 in the anthocyanin biosynthesis pathway were identified. The enrichment analysis showed that the chlorophyll biosynthesis pathway and anthocyanin biosynthesis pathway play critical roles in the color differences of N. alata. The HEMA of the chlorophyll biosynthesis pathway was up-regulated in lemon green flowers. Compared with white flowers, in the red and purple flowers, F3H, F3'5'H and DFR were significantly up-regulated, while FLS was significantly down-regulated. Seventeen differential expression genes homologous to transcription factor coding genes were obtained, and the homologues of HY5, MYB12, AN1 and AN4 were also involved in flower color differences. The discovery of these candidate genes related to flower color differences is significant for further research on the flower colors formation mechanism and color improvements of N. alata.
Collapse
Affiliation(s)
- Yalin Zheng
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Yudong Chen
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Zhiguo Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Hui Wu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China;
| | - Haiping Xin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Li Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (Y.C.); (Z.L.); (H.W.); (L.Z.)
| |
Collapse
|
40
|
Integrated Analysis of the Metabolome and Transcriptome on Anthocyanin Biosynthesis in Four Developmental Stages of Cerasus humilis Peel Coloration. Int J Mol Sci 2021; 22:ijms222111880. [PMID: 34769311 PMCID: PMC8585068 DOI: 10.3390/ijms222111880] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/23/2022] Open
Abstract
Cerasus humilis is a unique dwarf shrub and fruit color is an important trait in the species. In this study, we evaluated the transcriptomic and metabolomic profiles of the plant at different developmental stages to elucidate the mechanism underlying color formation. In a metabolomics analysis, 16 anthocyanin components were identified at four developmental stages, and high levels of cyanidin O-syringic acid and pelargonidin 3-O-beta-d-glucoside (callitephin chloride) were correlated with the reddening of the fruit peel. A co-expression analysis revealed that ANS and UFGT play key roles in pigmentation (PCC > 0.82). Additionally, transcriptome data showed that most anthocyanin biosynthetic genes and two MYB transcription factors were significantly up-regulated. QRT-PCR results for these differentially expressed genes were generally consistent with the high-throughput sequencing. Moreover, the overexpression of ChMYB1 (TRINITY_DN21536_c0_g1) in apple calli could contribute to the accumulation of anthocyanin. It was also found that UFGT (TRINITY_DN19893_c1_g5) and ChMYB1 (TRINITY_DN21536_c0_g1) have similar expression patterns. These findings provide insight into the mechanisms underlying anthocyanin accumulation and coloration during fruit peel development, providing a basis for the breeding of anthocyanin-rich C. humilis cultivars.
Collapse
|
41
|
Fu M, Yang X, Zheng J, Wang L, Yang X, Tu Y, Ye J, Zhang W, Liao Y, Cheng S, Xu F. Unraveling the Regulatory Mechanism of Color Diversity in Camellia japonica Petals by Integrative Transcriptome and Metabolome Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:685136. [PMID: 34178004 PMCID: PMC8226227 DOI: 10.3389/fpls.2021.685136] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 05/03/2023]
Abstract
Camellia japonica petals are colorful, rich in anthocyanins, and possess important ornamental, edible, and medicinal value. However, the regulatory mechanism of anthocyanin accumulation in C. japonica is still unclear. In this study, an integrative analysis of the metabolome and transcriptome was conducted in five C. japonica cultivars with different petal colors. Overall, a total of 187 flavonoids were identified (including 25 anthocyanins), and 11 anthocyanins were markedly differentially accumulated among these petals, contributing to the different petal colors in C. japonica. Moreover, cyanidin-3-O-(6″-O-malonyl) glucoside was confirmed as the main contributor to the red petal phenotype, while cyanidin-3-O-rutinoside, peonidin-3-O-glucoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for the deep coloration of the C. japonica petals. Furthermore, a total of 12,531 differentially expressed genes (DEGs) and overlapping DEGs (634 DEGs) were identified by RNA sequencing, and the correlation between the expression level of the DEGs and the anthocyanin content was explored. The candidate genes regulating anthocyanin accumulation in the C. japonica petals were identified and included 37 structural genes (especially CjANS and Cj4CL), 18 keys differentially expressed transcription factors (such as GATA, MYB, bHLH, WRKY, and NAC), and 16 other regulators (mainly including transporter proteins, zinc-finger proteins, and others). Our results provide new insights for elucidating the function of anthocyanins in C. japonica petal color expression.
Collapse
Affiliation(s)
- Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xu Yang
- Department of Forestry Ecology, Hubei Ecology Polytechnic College, Wuhan, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yi Tu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
42
|
Lu J, Zhang Q, Lang L, Jiang C, Wang X, Sun H. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. BMC PLANT BIOLOGY 2021; 21:257. [PMID: 34088264 PMCID: PMC8176584 DOI: 10.1186/s12870-021-03063-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qing Zhang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Lixin Lang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chuang Jiang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiaofeng Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
43
|
Optimization of an Ultrasound-Assisted Extraction Method for the Analysis of Major Anthocyanin Content in Erica australis Flowers. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102884. [PMID: 34068086 PMCID: PMC8152736 DOI: 10.3390/molecules26102884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.
Collapse
|
44
|
Mei X, Wan S, Lin C, Zhou C, Hu L, Deng C, Zhang L. Integration of Metabolome and Transcriptome Reveals the Relationship of Benzenoid-Phenylpropanoid Pigment and Aroma in Purple Tea Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:762330. [PMID: 34887890 PMCID: PMC8649654 DOI: 10.3389/fpls.2021.762330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 05/10/2023]
Abstract
Tea (Camellia sinensis) flowers are normally white, even though the leaves could be purple. We previously discovered a specific variety with purple leaves and flowers. In the face of such a phenomenon, researchers usually focus on the mechanism of color formation but ignore the change of aroma. The purple tea flowers contain more anthocyanins, which belong to flavonoids. Meanwhile, phenylalanine (Phe), derived from the shikimate pathway, is a precursor for both flavonoids and volatile benzenoid-phenylpropanoids (BPs). Thus, it is not clear whether the BP aroma was attenuated for the appearance of purple color. In this study, we integrated metabolome and transcriptome of petals of two tea varieties, namely, Zijuan (ZJ) with white flowers and Baitang (BT) with purple flowers, to reveal the relationship between color (anthocyanins) and aroma (volatile BPs). The results indicated that in purple petals, the upstream shikimate pathway promoted for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) was elevated. Among the increased anthocyanins, delphinidin-3-O-glucoside (DpG) was extremely higher; volatile BPs, including benzyl aldehyde, benzyl alcohol, acetophenone (AP), 1-phenylethanol, and 2-phenylethanol, were also enhanced, and AP was largely elevated. The structural genes related to the biosynthesis of volatile BPs were induced, while the whole flavonoid biosynthesis pathway was downregulated, except for the genes flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), which were highly expressed to shift the carbon flux to delphinidin, which was then conjugated to glucoside by increased bronze-1 (BZ1) (UDP-glucose: flavonoid 3-O-glucosyltransferase) to form DpG. Transcription factors (TFs) highly related to AP and DpG were selected to investigate their correlation with the differentially expressed structural genes. TFs, such as MYB, AP2/ERF, bZIP, TCP, and GATA, were dramatically expressed and focused on the regulation of genes in the upstream synthesis of Phe (DAHPS; arogenate dehydratase/prephenate dehydratase) and the synthesis of AP (phenylacetaldehyde reductase; short-chain dehydrogenase/reductase), Dp (F3'H; F3'5'H), and DpG (BZ1), but inhibited the formation of flavones (flavonol synthase) and catechins (leucoanthocyanidin reductase). These results discovered an unexpected promotion of volatile BPs in purple tea flowers and extended our understanding of the relationship between the BP-type color and aroma in the tea plant.
Collapse
Affiliation(s)
- Xin Mei
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Shihua Wan
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chuyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Chan Deng
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Lingyun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- *Correspondence: Lingyun Zhang,
| |
Collapse
|
45
|
Qiu W, Su W, Cai Z, Dong L, Li C, Xin M, Fang W, Liu Y, Wang X, Huang Z, Ren H, Wu Z. Combined Analysis of Transcriptome and Metabolome Reveals the Potential Mechanism of Coloration and Fruit Quality in Yellow and Purple Passiflora edulis Sims. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12096-12106. [PMID: 32936632 DOI: 10.1021/acs.jafc.0c03619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passion fruit (Passiflora edulis Sims) can be divided into yellow and purple varieties. However, information about coloration and fruit quality between the two varieties is limited. To reveal the underlying mechanism of color formation in this fruit, a combined analysis of the metabolome and transcriptome was conducted in this study. The results showed that most of the evaluated flavonols, anthocyanins, and flavanols were significantly upregulated in purple fruit compared to their levels in yellow fruit. Flavonoid and flavonoid carbonoside accumulation was markedly higher in yellow fruit than in purple fruit. The accumulation of organic acids, phenolic acids, lipids, sugars, and lignans was significantly different in the yellow and purple varieties. These results were consistent with the results from the RNA-Seq profile. This study will enable us to identify genes for targeted genetic engineering to improve the nutritional and market value of passion fruit. In addition, the peel and pulp of passion fruit contained certain health-promoting compounds, highlighting the potential application of passion fruit as a functional food and providing direction for future breeding programs and production.
Collapse
Affiliation(s)
- Wenwu Qiu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhaoyan Cai
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Long Dong
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Ming Xin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weikuan Fang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhangbao Huang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhijiang Wu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
46
|
Differential Regulation of Anthocyanins in Cerasus humilis Fruit Color Revealed by Combined Transcriptome and Metabolome Analysis. FORESTS 2020. [DOI: 10.3390/f11101065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coloring is an important appearance quality of fruit. In order to evaluate the relationship between metabolites and fruit color, we analyzed the metabolites and transcriptional profiles of two different Cerasus humilis cultivars: “RF” (cv. Zhangwu, red fruit) and “YF” (cv. Nongda No.5, yellow fruit). The results of identification and quantification of metabolites showed that there were significant differences in the contents of 11 metabolites between RF and YF. Transcriptomics was used to analyze the expression patterns of genes related to the anthocyanin biosynthesis pathway, and subsequently, the regulation network of anthocyanin biosynthesis was established to explore their relationship with color formation. QRT-PCR, performed for 12 key genes, showed that the expression profiles of the differentially expressed genes were consistent with the results of the transcriptome data. A co-expression analysis revealed that the late genes were significantly positively correlated with most of the different metabolites. The results of the study provide a new reference for improving the fruit color of Cerasus humilis in the future.
Collapse
|
47
|
Wang X, Zhang X, Hou H, Ma X, Sun S, Wang H, Kong L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res Int 2020; 138:109711. [PMID: 33292960 DOI: 10.1016/j.foodres.2020.109711] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Colored-grain wheats have received increasing attention owing to their high nutritional values. In this study, we compared the metabolomes of four pigmented wheat cultivars with conventional yellow wheat using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics approach. A total of 711 metabolites were identified, and considerable differences were observed in the flavonoid and phenylpropanoid metabolites among five samples by orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA) analysis. These differential metabolites were significantly enriched in the "anthocyanin biosynthesis", "flavones and flavonols biosynthesis", and "flavonoids biosynthesis" pathways. Furthermore, the expression of 9 structural genes and 2 regulatory genes involved in flavonoid biosynthesis pathway were investigated by quantitative real-time PCR (qRT-PCR). Results suggested that blue, red, purple, and black wheat cultivars showed higher transcription levels of structural and regulatory genes in the flavonoid pathway than that of conventional yellow wheat, possibly accounting for the abundant anthocyanin accumulation in the grains of these four cultivars. This study laid a foundation for understanding the accumulation of flavonoids and coloration mechanisms in colored-grain wheats, and provides a theoretical basis for their sufficient utilization.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Xiaocun Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China.
| |
Collapse
|
48
|
Chen D, Chen G, Sun Y, Zeng X, Ye H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res Int 2020; 137:109584. [PMID: 33233193 DOI: 10.1016/j.foodres.2020.109584] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
The flower of tea (Camellia sinensis L.) plant has been paid an increasing attention in the last twenty years, since it was found that tea flowers contained representative constituents similar to those of tea leaves, such as catechins, caffeine and amino acids. Tea flower is theoretically valuable although it has been considered as an industrial waste over a long period of time. This review summarizes the research findings conducted until now on physiological genetics, chemical composition, health benefits and toxicology of tea flowers, aiming to foresee their future applications. A lot of genes are involved in flower development and the synthesis and transmission of various chemicals in tea flowers. The chemical composition of tea flower consists mainly of catechins, polysaccharides, proteins, amino acids and saponins and thus tea flower possesses various health benefits such as antioxidant, anti-inflammatory, immunostimulating, antitumor, hypoglycemic, anti-obesity and anti-allergic activities. Moreover, tea flower contains a protease that can elevate the free amino acids content in the tea infusion by almost two folds. More importantly, the enzymatic activity of the protease is much higher than that of the commercially available proteases. Additionally, aqueous extracts of tea flower are demonstrated to safe to animals. Thus, the potential uses of tea flowers in food and medical fields are warranted.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
49
|
Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis Pathway in a Purple-Leaf Tea Germplasm Jinmingzao and a Green-Leaf Tea Germplasm Huangdan reveals Their Relationship with Genetic Mechanisms of Color Formation. Int J Mol Sci 2020; 21:ijms21114167. [PMID: 32545190 PMCID: PMC7312240 DOI: 10.3390/ijms21114167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
Purple-leaf tea is a phenotype with unique color because of its high anthocyanin content. The special flavor of purple-leaf tea is highly different from that of green-leaf tea, and its main ingredient is also of economic value. To probe the genetic mechanism of the phenotypic characteristics of tea leaf color, we conducted widely targeted metabolic and transcriptomic profiling. The metabolites in the flavonoid biosynthetic pathway of purple- and green-leaf tea were compared, and results showed that phenolic compounds, including phenolic acids, flavonoids, and tannins, accumulated in purple-leaf tea. The high expression of genes related to flavonoid biosynthesis (e.g., PAL and LAR) exhibits the specific expression of biosynthesis and the accumulation of these metabolites. Our result also shows that two CsUFGTs were positively related to the accumulation of anthocyanin. Moreover, genes encoding transcription factors that regulate flavonoids were identified by coexpression analysis. These results may help to identify the metabolic factors that influence leaf color differentiation and provide reference for future research on leaf color biology and the genetic improvement of tea.
Collapse
|