1
|
Zhu Q, Liu H, Pan K, Zhu W, Qiao Y, Li Q, Hu J, Zhang M, Qiu J, Yan X, Ge J, Hong Q. The novel hydrolase IpcH initiates the degradation of isoprocarb in a newly isolated strain Rhodococcus sp. D-6. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135045. [PMID: 38944990 DOI: 10.1016/j.jhazmat.2024.135045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 μM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wanhe Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yihui Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
2
|
Moussaif A, El Maliki K, Bellemjid N, El Mzibri M, Iddar A. Pesticide residues in traditional and industrial honey marketed in Morocco and potential health risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:230-240. [PMID: 38835106 DOI: 10.1080/19393210.2024.2362981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
This study evaluated the presence of the three pesticides methomyl (MET), carbendazim (CBZ) and chlorpyrifos-ethyl (CPE), as well as the degradation product of CPE (3,5,6-trichloro-2-pyridinol; TCP), in 44 honey samples from all 12 regions of Morocco. With a validated HPLC-UV method occurrence frequencies of 63.6% for MET, 54.5% for CBZ, 95.1% for CPE and 34.1% for TCP were obtained, even at concentrations higher than the maximum residue limits for MET, CPE and TCP. Based on the predominant pesticide, principal component analysis separated sampling regions into three groups. Risk assessment indicated that ingestion of these pesticides, alone or in combination, in honey did not pose a risk to consumers (HQ and HI < 1).
Collapse
Affiliation(s)
- Ahmed Moussaif
- Biotechnology and Biomolecule Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| | - Khaoula El Maliki
- Medicinal Chemistry Laboratory and Methodology of Synthesis, Euromed University of Fez, Fez, Morocco
| | - Najwa Bellemjid
- Biotechnology and Biomolecule Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| | - Mohammed El Mzibri
- Biotechnology and Biomolecule Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| | - Abdelghani Iddar
- Biotechnology and Biomolecule Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| |
Collapse
|
3
|
Chandi K, Udomkun P, Boonupara T, Kaewlom P. Enhancing soil health, microbial count, and hydrophilic methomyl and hydrophobic lambda-cyhalothrin remediation with biochar and nano-biochar. Sci Rep 2024; 14:19551. [PMID: 39174647 PMCID: PMC11341857 DOI: 10.1038/s41598-024-70515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pesticide contamination and soil degradation present significant challenges in agricultural ecosystems, driving extensive exploration of biochar (BC) and nano-biochar (NBC) as potential solutions. This study examines their effects on soil properties, microbial communities, and the fate of two key pesticides: the hydrophilic methomyl (MET) and the hydrophobic lambda-cyhalothrin (LCT), at different concentrations (1%, 3%, and 5% w w-1) in agricultural soil. Through a carefully designed seven-week black bean pot experiment, the results indicated that the addition of BC/NBC significantly influenced soil dynamics. Soil pH and moisture content (MC) notably increased, accompanied by a general rise in soil organic carbon (SOC) content. However, in BC5/NBC5 treatments, SOC declined after the 2nd or 3rd week. Microbial populations, including total plate count (TPC), phosphate-solubilizing bacteria (PSB), and nitrogen-fixing bacteria (NFB), showed dynamic responses to BC/NBC applications. BC1/NBC1 and BC3/NBC3 applications led to a significant increase in microbial populations, whereas BC5/NBC5 treatments experienced a decline after the initial surge. Furthermore, the removal efficiency of both MET and LCT increased with higher BC/NBC concentrations, with NBC demonstrating greater efficacy than BC. Degradation kinetics, modeled by a first-order equation, revealed that MET degraded faster than LCT. These findings underscore the profound impact of BC/NBC on pesticide dynamics and microbial communities, highlighting their potential to transform sustainable agricultural practices.
Collapse
Affiliation(s)
- Kanchana Chandi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Zuščíková L, Bažány D, Greifová H, Knížatová N, Kováčik A, Lukáč N, Jambor T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. TOXICS 2023; 11:598. [PMID: 37505564 PMCID: PMC10383352 DOI: 10.3390/toxics11070598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Recently, neonicotinoids have become the fastest-growing class of insecticides in conventional crop protection, with extensive usage against a wide range of sucking and chewing pests. Neonicotinoids are widely used due to their high toxicity to invertebrates, simplicity, flexibility with which they may be applied, and lengthy persistence, and their systemic nature ensures that they spread to all sections of the target crop. However, these properties raise the risk of environmental contaminations and potential toxicity to non-target organisms. Acetamiprid is a new generation insecticide, which is a safer alternative for controlling insect pests because of its low toxicity to honeybees. Acetamiprid is intended to target nicotinic acetylcholine receptors in insects, but its widespread usage has resulted in negative impacts on non-target animals such as mammals. This review summarizes in vivo and in vitro animal studies that investigated the toxicity of specific neonicotinoids. With summarized data, it can be presumed that certain concentrations of neonicotinoids in the reproductive system cause oxidative stress in the testis; spermatogenesis disruption; spermatozoa degradation; interruptions to endocrine function and Sertoli and Leydig cell function. In the female reproductive system, acetamiprid evokes pathomorphological alterations in follicles, along with metabolic changes in the ovaries.
Collapse
Affiliation(s)
- Lucia Zuščíková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Denis Bažány
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
5
|
Pang S, Lin Z, Chen WJ, Chen SF, Huang Y, Lei Q, Bhatt P, Mishra S, Chen S, Wang H. High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131287. [PMID: 37003005 DOI: 10.1016/j.jhazmat.2023.131287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqiu Lin
- The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, USA
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Huishan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Borah S, Hazarika DJ, Baruah M, Bora SS, Gogoi M, Boro RC, Barooah M. Imidacloprid degrading efficiency of Pseudomonas plecoglossicida MBSB-12 isolated from pesticide contaminated tea garden soil of Assam. World J Microbiol Biotechnol 2022; 39:59. [PMID: 36572801 DOI: 10.1007/s11274-022-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Long-term use of toxic pesticides in agricultural grounds has led to adverse effects on the environment and human health. Microbe-mediated biodegradation of pollutants is considered an effective strategy for the removal of contaminants in agricultural and environmental sustainability. Imidacloprid, a neonicotinoid class of pesticides, was widely applied insecticide in the control of pests in agricultural fields including the tea gardens of Assam. Here, native bacteria from imidacloprid contaminating tea garden soils were isolated and screened for imidacloprid degradation efficiency under laboratory conditions. Out of the 30 bacterial isolates, 4 were found to tolerate high concentrations of imidacloprid (25,000 ppm), one of which isolate MBSB-12 showed the highest efficiency for imidacloprid tolerance and utilization as the sole carbon source. Morphological, biochemical, and 16 S ribosomal RNA gene sequencing-based characterization revealed the isolate as Pseudomonas plecoglossicida MBSB-12. The isolate reduced 87% of extractable imidacloprid from the treated soil in 90 days compared to the control soil (without bacterial treatment). High-Resolution Mass Spectrometry (HRMS) analysis indicated imidacloprid breakdown to comparatively less harmful products viz., imidacloprid guanidine olefin [m/z = 209.0510 (M + H)+], imidacloprid urea [m/z = 212.0502 (M + H)+] and a dechlorinated degraded product of imidacloprid with m/z value 175.0900 (M + H)+. Further investigation on the molecular machinery of P. plecoglossicida MBSB-12 involved in the degradation of imidacloprid is expected to provide a better understanding of the degradation pathway.
Collapse
Affiliation(s)
- Subangshi Borah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manjistha Baruah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Manuranjan Gogoi
- Department of Tea Husbandry and Technology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Assam Agricultural University, 785013, Jorhat, Assam, India.
| |
Collapse
|
7
|
Li G, Zhang C, Wang H, Xia W, Zhang X, Liu Z, Wang Y, Zhao H, Xu B. Characterisation of the heat shock protein Tid and its involvement in stress response regulation in Apis cerana. Front Physiol 2022; 13:1068873. [PMID: 36620206 PMCID: PMC9813389 DOI: 10.3389/fphys.2022.1068873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: The impact of various environmental stresses on native Apis cerana cerana fitness has attracted intense attention in China. However, the defence responses of A. cerana cerana to different stressors are poorly understood. Here, we aimed to elucidate the regulatory mechanism mediated by the tumorous imaginal discs (Tid) protein of A. cerana cerana (AccTid) in response to stressors. Methods: We used some bioinformatics softwares to analyse the characterisation of Tid. Then, qRT-PCR, RNA interference and heat resistance detection assays were used to explore the function of Tid in stress response in A. cerana cerana. Results: AccTid is a homologous gene of human Tid1 and Drosophila Tid56, contains a conserved J domain and belongs to the heat shock protein DnaJA subfamily. The level of AccTid induced expression was increased under temperature increases from 40°C to 43°C and 46°C, and AccTid knockdown decreased the heat resistance of A. cerana cerana, indicating that the upregulation of AccTid plays an important role when A. cerana cerana is exposed to heat stress. Interestingly, contrary to the results of heat stress treatment, the transcriptional level of AccTid was inhibited by cold, H2O2 and some agrochemical stresses and showed no significant change under ultraviolet ray and sodium arsenite stress. These results suggested that the requirement of A. cerana cerana for Tid differs markedly under different stress conditions. In addition, knockdown of AccTid increased the mRNA levels of some Hsps and antioxidant genes. The upregulation of these Hsps and antioxidant genes may be a functional complement of AccTid knockdown. Conclusion: AccTid plays a crucial role in A. cerana cerana stress responses and may mediate oxidative damage caused by various stresses. Our findings will offer fundamental knowledge for further investigations of the defence mechanism of A. cerana cerana against environmental stresses.
Collapse
Affiliation(s)
- Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Chenghao Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Wenli Xia
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Xinyi Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hang Zhao, ; Baohua Xu,
| |
Collapse
|
8
|
Exposure of Pisum sativum L. Seeds to Methomyl and Imidacloprid Cause Genotoxic Effects in Pollen-Mother Cells. BIOLOGY 2022; 11:biology11111549. [PMID: 36358252 PMCID: PMC9687955 DOI: 10.3390/biology11111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Pesticides are commonly used in modern agricultural systems to protect the plants from pests. Even though they potentially increase the crop yield, they have undesirable toxic effects on the consumers of plant products and nontarget host plants. However, there are limited studies to demonstrate the cytological changes induced by pesticides on plant cells. In the present study, we assess the cytological changes induced by two most commonly used insecticides, methomyl (ME) and imidacloprid (IM), using Pisum sativum L. as model plant system. P. sativum seeds were exposed to various concentrations of ME and IM (0.1, 0.2, 0.3, 0.4 and 0.5%) for 1, 3, and 6 h, and their effects on seed germination (SG), radicle length (RL), mitotic index (MI), chromosomal aberrations frequency (CAF), and micronucleus frequency (MNF) were studied. The results indicate that these insecticides decrease MI in root-tip cells, and increase in the MNF in pollen-mother cells in a dose-dependent manner. Additionally, insecticide-treated groups showed a dose- and time-dependent increase in the percentage of aberrant meiotic cells. Clumped nuclei (CNU), stickiness (STC), bridges (BRs), laggards (LGs), secondary association (SA), and precocious separation (PS) were among the frequently observed anomalies. The findings of this study indicate that commonly used insecticides ME and IM have substantial genotoxic effects on the root-tip and pollen-mother cells of P. sativum L.
Collapse
|
9
|
Jing X, Liu T, Fateh B, Chen J, Zheng Y, Xu G. Effect of methomyl on water quality, growth performance and antioxidant system in liver of GIFT ( Oreochromis niloticus) in the presence of peppermint ( Mentha haplocalyx Briq.) as a floating bed. Sci Prog 2022; 105:368504221124047. [PMID: 36113148 PMCID: PMC10450472 DOI: 10.1177/00368504221124047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to investigate the effect of methomyl (MET) on water quality, growth and antioxidant system of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) in the presence of peppermint as a floating bed. The concentration of NH3-N, NO2--N, NO3--N and TP in T3 (with 200 g wet peppermint) was significantly lower (P < 0.05) than that in T2 (100 g), T1 (50 g) and control, and the nutrient removal rates were 61.90%, 31.59%, 59.86% and 45.92% in 20 days, respectively. Juveniles GIFT (5.1 ± 0.2 g) were exposed to sub-lethal concentrations of 0.2, 2.0, 20 and 200 µg/L of MET for 45 days. After 6 weeks of a feeding trial, percentage weight gain (PWG), specific growth rate (SGR) and feed conversion ratio (FCR) were significantly decreased in 0.2, 2.0, 20 µg/L MET groups respectively and increased in the 200 µg/L MET group. Compared with the control, no significant changes in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were detected in the 0.2 µg/L group. The significant increase in activities of SOD, CAT and GPx was accompanied by a diminution in reduced glutathione (GSH) levels resulting with tilapia exposed to 2.0, 20, or 200 µg/L for 45 days. The highest rates observed in SOD, CAT, GPx were 157.63%, 164.05% and 167.46% of the control respectively, and the lowest inhibition rate in GSH was 66.42% of the control. Peppermint as a floating bed can alleviate the adverse effects of MET, such as growth retardation and oxidative stress.
Collapse
Affiliation(s)
- Xiaojun Jing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Tingyan Liu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Benkhelifa Fateh
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Jiazhang Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
11
|
Hubbard LE, Kolpin DW, Givens CE, Blackwell BR, Bradley PM, Gray JL, Lane RF, Masoner JR, McCleskey RB, Romanok KM, Sandstrom MW, Smalling KL, Villeneuve DL. Food, Beverage, and Feedstock Processing Facility Wastewater: a Unique and Underappreciated Source of Contaminants to U.S. Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1028-1040. [PMID: 34967600 PMCID: PMC9219000 DOI: 10.1021/acs.est.1c06821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 μg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 μg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 μg L-1; clothianidin TMG, 2.02 μg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Collapse
Affiliation(s)
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Duluth, Minnesota 55084, United States
| | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| | - James L. Gray
- U.S. Geological Survey, Lakewood, Colorado 80225, United States
| | - Rachael F. Lane
- U.S. Geological Survey, Lawrence, Kansas 66049, United States
| | - Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | | | | | | | - Kelly L. Smalling
- U.S. Geological Survey, Lawrenceville, New Jersey 08648, United States
| | | |
Collapse
|
12
|
Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S. Insights into the microbial degradation and biochemical mechanisms of carbamates. CHEMOSPHERE 2021; 279:130500. [PMID: 33892453 DOI: 10.1016/j.chemosphere.2021.130500] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Carbamate compounds are commonly applied in agricultural sectors as alternative options to the recalcitrant organochlorine pesticides due to their easier breakdown and less persistent nature. However, the large-scale use of carbamates also leads to toxic environmental residues, causing severe toxicity in various living systems. The toxic effects of carbamates are due to their inhibitor activity against the acetylchlolinesterase enzyme. This enzyme is crucial for neurotransmission signaling in living beings. Hence, from the environmental point of view, the elimination of carbamates is a worldwide concern and priority. Microbial technology can be deliberated as a potential tool that can work efficiently and as an ecofriendly option for the dissipation of carbamate insecticides from contaminated environments by improving biodegradation processes via metabolic activities of microorganisms. A variety of bacterial and fungal species have been isolated and characterized and are capable of degrading a broad range of carbamates in soil and water environments. In addition, microbial carbamate hydrolase genes (mcd, cehA, cahA, cfdJ, and mcbA) were strongly implicated in the evolution of new metabolic functions and carbamate hydrolase enzymes. However, the accurate localization and appropriate functions of carbamate hydrolase enzymes/genes are very limited. To explore the information on the degradation routes of carbamates and promote the application of biodegradation, a study of molecular techniques is required to unlock insights regarding the degradation specific genes and enzymes. Hence, this review discusses the deep understanding of carbamate degradation mechanisms with microbial strains, metabolic pathways, molecular mechanisms, and their genetic basis in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
14
|
Bhatt P, Zhou X, Huang Y, Zhang W, Chen S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125026. [PMID: 33461010 DOI: 10.1016/j.jhazmat.2020.125026] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Ester-containing organophosphate, carbamate, and pyrethroid (OCP) pesticides are used worldwide to minimize the impact of pests and increase agricultural production. The toxicity of these chemicals to humans and other organisms has been widely reported. Chemically, these pesticides share an ester bond in their parent structures. A particular group of hydrolases, known as esterases, can catalyze the first step in ester-bond hydrolysis, and this initial regulatory metabolic reaction accelerates the degradation of OCP pesticides. Esterases can be naturally found in plants, animals, and microorganisms. Previous research on the esterase enzyme mechanisms revealed that the active sites of esterases contain serine residues that catalyze reactions via a nucleophilic attack on the substrates. In this review, we have compiled the previous research on esterases from different sources to determine and summarize the current knowledge of their properties, classifications, structures, mechanisms, and their applications in the removal of pesticides from the environment. This review will enhance the understanding of the scientific community when studying esterases and their applications for the degradation of broad-spectrum ester-containing pesticides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
15
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Artuso I, Turrini P, Pirolo M, Lucidi M, Tescari M, Visaggio D, Mansi A, Lugli GA, Ventura M, Visca P. Phylogenomic analysis and characterization of carbon monoxide utilization genes in the family Phyllobacteriaceae with reclassification of Aminobacter carboxidus (Meyer et al. 1993, Hördt et al. 2020) as Aminobacter lissarensis comb. nov. (McDonald et al. 2005). Syst Appl Microbiol 2021; 44:126199. [PMID: 33848814 DOI: 10.1016/j.syapm.2021.126199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The monotypic carboxydophilic genus Carbophilus has recently been transferred to the genus Aminobacter within the family Phyllobacteriaceae, and Carbophilus carboxidus was renamed Aminobacter carboxidus (comb. nov.) [Hördt et al. 2020]. Due to the poor resolution of the 16S rRNA gene-based phylogeny, an extensive phylogenomic analysis of the family Phyllobacteriaceae was conducted, with particular focus on the genus Aminobacter. Whole genome-based analyses of Phyllobacteriaceae type strains provided evidenced that the genus Aminobacter forms a monophyletic cluster, clearly demarcated from all other members of the family. Close relatedness between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T was inferred from core proteome phylogeny, shared gene content, and multilocus sequence analyses. ANI and GGDC provided genetic similarity values above the species demarcating threshold for these two type strains. Metabolic profiling and cell morphology analysis corroborated the phenotypic identity between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Search for the presence of carbon monoxide dehydrogenase (CODH) genes in Phyllobacteriaceae genomes revealed that the form II CODH is widespread in the family, whereas form I CODH was detected in few Mesorhizobium type strains, and in both A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Results of phylogenomic, chemotaxonomic, and morphological investigations, combined with the presence of similarly arranged CODH genes, indicate that A. carboxidus DSM 1086T and A. lissarensis DSM 17454T are distinct strains of the same species. Hence A. carboxidus is a later subjective heterotypic synonym of A. lissarensis.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Paolo Turrini
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Mattia Pirolo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Marco Tescari
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Antonella Mansi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
17
|
Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 2021; 41:317-338. [PMID: 33730938 DOI: 10.1080/07388551.2020.1853032] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The application of microbial strains as axenic cultures has frequently been employed in a diverse range of sectors. In the natural environment, microbes exist as multispecies and perform better than monocultures. Cell signaling and communication pathways play a key role in engineering microbial consortia, because in a consortium, the microorganisms communicate via diffusible signal molecules. Mixed microbial cultures have gained little attention due to the lack of proper knowledge about their interactions with each other. Some ideas have been proposed to deal with and study various microbes when they live together as a community, for biotechnological application purposes. In natural environments, microbes can possess unique metabolic features. Therefore, microbial consortia divide the metabolic burden among strains in the group and robustly perform pesticide degradation. Synthetic microbial consortia can perform the desired functions at naturally contaminated sites. Therefore, in this article, special attention is paid to the microbial consortia and their function in the natural environment. This review comprehensively discusses the recent applications of microbial consortia in pesticide degradation and environmental bioremediation. Moreover, the future directions of synthetic consortia have been explored. The review also explores the future perspectives and new platforms for these approaches, besides highlighting the practical understanding of the scientific information behind consortia.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Anita Sharma
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H. Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci (China) 2021; 99:175-186. [PMID: 33183695 DOI: 10.1016/j.jes.2020.06.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/11/2023]
Abstract
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
19
|
Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S. Carbofuran toxicity and its microbial degradation in contaminated environments. CHEMOSPHERE 2020; 259:127419. [PMID: 32593003 DOI: 10.1016/j.chemosphere.2020.127419] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 05/12/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum and systemic N-methyl carbamate pesticide, which is extensively applied as insecticide, nematicide and acaricide for agricultural, domestic and industrial purposes. It is extremely lethal to mammals, birds, fish and wildlife due to its anticholinesterase activity, which inhibits acetyl-cholinesterase and butyrylcholinesterse activity. In humans, carbofuran is associated with endocrine disrupting activity, reproductive disorders, cytotoxic and genotoxic abnormalities. Therefore, cleanup of carbofuran-contaminated environments is of utmost concern and urgently needs an adequate, advanced and effective remedial technology. Microbial technology (bacterial, fugal and algal species) is a very potent, pragmatic and ecofriendly approach for the removal of carbofuran. Microbial enzymes and their catabolic genes exhibit an exceptional potential for bioremediation strategies. To understand the specific mechanism of carbofuran degradation and involvement of carbofuran hydrolase enzymes and genes, highly efficient genomic approaches are required to provide reliable information and unfold metabolic pathways. This review briefly discusses the carbofuran toxicity and its toxicological impact into the environment, in-depth understanding of carbofuran degradation mechanism with microbial strains, metabolic pathways, molecular mechanisms and genetic basis involved in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Bhatt P, Rene ER, Kumar AJ, Zhang W, Chen S. Binding interaction of allethrin with esterase: Bioremediation potential and mechanism. BIORESOURCE TECHNOLOGY 2020; 315:123845. [PMID: 32707504 DOI: 10.1016/j.biortech.2020.123845] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The main aim of this work was to study the allethrin binding interactions with esterase and its bioremediation potential using an isolated bacterial strain CW7, identified as Pseudomonas nitroreducens. The degradation conditions with strain CW7 were optimized using response surface methodology at pH 7.0, a temperature of 32 °C, and an inocula concentration of 150 mg·L-1, with 96% allethrin degradation observed over 7 days. The kinetic parameters qmax, Ks, and Ki were calculated to be 0.512 day-1, 4.97 mg·L-1, and 317.13 mg·L-1, respectively. Nine intermediate metabolites were identified after analysing the degradation products by gas chromatography-mass spectrometry. Strain CW7 effectively degraded a wide variety of pyrethroids as a carbon source. Molecular modeling, docking, and enzyme kinetics were used to investigate the binding pocket of the esterase containing amino acids such as alanine, arginine, valine, proline, cysteine, glycine, isoleucine, phenylalanine, serine, asparagine, and threonine, which play active roles in allethrin degradation.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | | | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
21
|
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. TOXICS 2020; 8:toxics8030065. [PMID: 32882955 PMCID: PMC7560415 DOI: 10.3390/toxics8030065] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229
| |
Collapse
|
22
|
Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Front Microbiol 2020; 11:2045. [PMID: 33013750 PMCID: PMC7461891 DOI: 10.3389/fmicb.2020.02045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Acephate is an organophosphate pesticide that has been widely used to control insect pests in agricultural fields for decades. However, its use has been partially restricted in many countries due to its toxic intermediate product methamidophos. Long term exposure to acephate and methamidophos in non-target organisms results in severe poisonous effects, which has raised public concern and demand for the removal of these pollutants from the environment. In this paper, the toxicological effects of acephate and/or methamidophos on aquatic and land animals, including humans are reviewed, as these effects promote the necessity of removing acephate from the environment. Physicochemical degradation mechanisms of acephate and/or methamidophos are explored and explained, such as photo-Fenton, ultraviolet/titanium dioxide (UV/TiO2) photocatalysis, and ultrasonic ozonation. Compared with physicochemical methods, the microbial degradation of acephate and methamidophos is emerging as an eco-friendly method that can be used for large-scale treatment. In recent years, microorganisms capable of degrading methamidophos or acephate have been isolated, including Hyphomicrobium sp., Penicillium oxalicum, Luteibacter jiangsuensis, Pseudomonas aeruginosa, and Bacillus subtilis. Enzymes related to acephate and/or methamidophos biodegradation include phosphotriesterase, paraoxonase 1, and carboxylesterase. Furthermore, several genes encoding organophosphorus degrading enzymes have been identified, such as opd, mpd, and ophc2. However, few reviews have focused on the biochemical pathways and molecular mechanisms of acephate and methamidophos. In this review, the mechanisms and degradation pathways of acephate and methamidophos are summarized in order to provide a new way of thinking for the study of the degradation of acephate and methamidophos.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Understanding Phytomicrobiome: A Potential Reservoir for Better Crop Management. SUSTAINABILITY 2020. [DOI: 10.3390/su12135446] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent crop production studies have aimed at an increase in the biotic and abiotic tolerance of plant communities, along with increased nutrient availability and crop yields. This can be achieved in various ways, but one of the emerging approaches is to understand the phytomicrobiome structure and associated chemical communications. The phytomicrobiome was characterized with the advent of high-throughput techniques. Its composition and chemical signaling phenomena have been revealed, leading the way for “rhizosphere engineering”. In addition to the above, phytomicrobiome studies have paved the way to best tackling soil contamination with various anthropogenic activities. Agricultural lands have been found to be unbalanced for crop production. Due to the intense application of agricultural chemicals such as herbicides, fungicides, insecticides, fertilizers, etc., which can only be rejuvenated efficiently through detailed studies on the phytomicrobiome component, the phytomicrobiome has recently emerged as a primary plant trait that affects crop production. The phytomicrobiome also acts as an essential modifying factor in plant root exudation and vice versa, resulting in better plant health and crop yield both in terms of quantity and quality. Not only supporting better plant growth, phytomicrobiome members are involved in the degradation of toxic materials, alleviating the stress conditions that adversely affect plant development. Thus, the present review compiles the progress in understanding phytomicrobiome relationships and their application in achieving the goal of sustainable agriculture.
Collapse
|
24
|
Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front Microbiol 2020; 11:868. [PMID: 32508767 PMCID: PMC7248232 DOI: 10.3389/fmicb.2020.00868] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. More and more neonicotinoids remain in the environment and pose severe toxicity to humans and animals. An increase in toxicological and hazardous pollution due to the introduction of neonicotinoids into the environment causes problems; thus, the systematic remediation of neonicotinoids is essential and in demand. Various technologies have been developed to remove insecticidal residues from soil and water environments. Compared with non-bioremediation methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These microbes can degrade neonicotinoids under laboratory and field conditions. The microbial degradation pathways of neonicotinoids and the fate of several metabolites have been investigated in the literature. In addition, the neonicotinoid-degrading enzymes and the correlated genes in organisms have been explored. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aimed to summarize the microbial degradation and biochemical mechanisms of neonicotinoids. The potentials of neonicotinoid-degrading microbes for the bioremediation of contaminated sites were also discussed.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Feng Y, Zhang W, Pang S, Lin Z, Zhang Y, Huang Y, Bhatt P, Chen S. Kinetics and New Mechanism of Azoxystrobin Biodegradation by an Ochrobactrum anthropi Strain SH14. Microorganisms 2020; 8:E625. [PMID: 32357564 PMCID: PMC7284741 DOI: 10.3390/microorganisms8050625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
Azoxystrobin is one of the most popular strobilurin fungicides, widely used in agricultural fields for decades.Extensive use of azoxystrobin poses a major threat to ecosystems. However, little is known about the kinetics and mechanism of azoxystrobin biodegradation. The present study reports a newly isolated bacterial strain, Ochrobactrum anthropi SH14, utilizing azoxystrobin as a sole carbon source, was isolated from contaminated soils. Strain SH14 degraded 86.3% of azoxystrobin (50 μg·mL-1) in a mineral salt medium within five days. Maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were noted as 0.6122 d-1, 6.8291 μg·mL-1, and 188.4680 μg·mL-1, respectively.Conditions for strain SH14 based azoxystrobin degradation were optimized by response surface methodology. Optimum degradation was determined to be 30.2 °C, pH 7.9, and 1.1 × 107 CFU·mL-1 of inoculum. Strain SH14 degraded azoxystrobin via a novel metabolic pathway with the formation of N-(4,6-dimethoxypyrimidin-2-yl)-acetamide,2-amino-4-(4-chlorophenyl)-3-cyano-5,6-dimethyl-pyridine, and 3-quinolinecarboxylic acid,6,8-difluoro-4-hydroxy-ethyl ester as the main intermediate products, which were further transformed without any persistent accumulative product. This is the first report of azoxystrobin degradation pathway in a microorganism. Strain SH14 also degraded other strobilurin fungicides, including kresoxim-methyl (89.4%), pyraclostrobin (88.5%), trifloxystrobin (78.7%), picoxystrobin (76.6%), and fluoxastrobin (57.2%) by following first-order kinetic model. Bioaugmentation of azoxystrobin-contaminated soils with strain SH14 remarkably enhanced the degradation of azoxystrobin, and its half-life was substantially reduced by 95.7 and 65.6 days in sterile and non-sterile soils, respectively, in comparison with the controls without strain SH14. The study presents O. anthropi SH14 for enhanced biodegradation of azoxystrobin and elaborates on the metabolic pathways to eliminate its residual toxicity from the environment.
Collapse
Affiliation(s)
- Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
26
|
Bhatt P, Zhang W, Lin Z, Pang S, Huang Y, Chen S. Biodegradation of Allethrin by a Novel Fungus Fusarium proliferatum Strain CF2, Isolated from Contaminated Soils. Microorganisms 2020; 8:E593. [PMID: 32325934 PMCID: PMC7232317 DOI: 10.3390/microorganisms8040593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Continuous use of allethrin has resulted in heavy environmental contamination and has raised public concern about its impact on human health, yet little is known about the kinetics and microbial degradation of this pesticide. This study reported the degradation kinetics in a novel fungal strain, Fusarium proliferatum CF2, isolated from contaminated agricultural fields. Strain CF2 utilized 50 mg·L-1 of allethrin as the sole carbon source for growth in minimal salt medium and tolerated high concentrations of allethrin of up to 1000 mg·L-1. The optimum degradation conditions for strain CF2 were determined to be a temperature of 26 °C and pH 6.0 using response surface methodology. Under optimum conditions, strain CF2 completely degraded allethrin within 144 hours. The degradation kinetics of allethrin followed first order reaction kinetics. Kinetics analysis showed that its half-life was substantially reduced by 507.1 hours, as compared to the uninoculated control. This study provides new insights into the microbial degradation of allethrin with fungal F. proliferatum CF2.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (P.B.); (W.Z.); (Z.L.); (S.P.); (Y.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
27
|
Zhang W, Lin Z, Pang S, Bhatt P, Chen S. Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Front Microbiol 2020; 11:522. [PMID: 32292398 PMCID: PMC7119470 DOI: 10.3389/fmicb.2020.00522] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
28
|
Huang Y, Lin Z, Zhang W, Pang S, Bhatt P, Rene ER, Kumar AJ, Chen S. New Insights into the Microbial Degradation of D-Cyphenothrin in Contaminated Water/Soil Environments. Microorganisms 2020; 8:microorganisms8040473. [PMID: 32225056 PMCID: PMC7232362 DOI: 10.3390/microorganisms8040473] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
Persistent use of the insecticide D-cyphenothrin has resulted in heavy environmental contamination and public concern. However, microbial degradation of D-cyphenothrin has never been investigated and the mechanism remains unknown. During this study, for the first time, an efficient D-cyphenothrin-degrading bacterial strain Staphylococcus succinus HLJ-10 was identified. Response surface methodology was successfully employed by using Box-Behnken design to optimize the culture conditions. At optimized conditions, over 90% degradation of D-cyphenothrin (50 mg·L−1) was achieved in a mineral salt medium within 7 d. Kinetics analysis revealed that its half-life was reduced by 61.2 d, in comparison with the uninoculated control. Eight intermediate metabolites were detected in the biodegradation pathway of D-cyphenothrin including cis-D-cyphenothrin, trans-D-cyphenothrin, 3-phenoxybenzaldehyde, α-hydroxy-3-phenoxy-benzeneacetonitrile, trans-2,2-dimethyl-3-propenyl-cyclopropanol, 2,2-dimethyl-3-propenyl-cyclopropionic acid, trans-2,2-dimethyl-3-propenyl-cyclopropionaldehyde, and 1,2-benzenedicarboxylic acid, dipropyl ester. This is the first report about the degradation of D-cyphenothrin through cleavage of carboxylester linkage and diaryl bond. In addition to degradation of D-cyphenothrin, strain HLJ-10 effectively degraded a wide range of synthetic pyrethroids including permethrin, tetramethrin, bifenthrin, allethrin, and chlorempenthrin, which are also widely used insecticides with environmental contamination problems. Bioaugmentation of D-cyphenothrin-contaminated soils with strain HLJ-10 substantially enhanced its degradation and over 72% of D-cyphenothrin was removed from soils within 40 d. These findings unveil the biochemical basis of a highly efficient D-cyphenothrin-degrading bacterial isolate and provide potent agents for eliminating environmental residues of pyrethroids.
Collapse
Affiliation(s)
- Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Eldon R. Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, 2601DA Delft, The Netherlands;
| | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.L.); (W.Z.); (S.P.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229; Fax: +86-20-8528-0292
| |
Collapse
|
29
|
Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. An Overview of Strobilurin Fungicide Degradation:Current Status and Future Perspective. Front Microbiol 2020; 11:389. [PMID: 32226423 PMCID: PMC7081128 DOI: 10.3389/fmicb.2020.00389] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/25/2020] [Indexed: 01/24/2023] Open
Abstract
Strobilurin fungicides have been widely used in agricultural fields for decades. These pesticides are designed to manage fungal pathogens, although their broad-spectrum mode of action also produces non-target impacts. Therefore, the removal of strobilurins from ecosystems has received much attention. Different remediation technologies have been developed to eliminate pesticide residues from soil/water environments, such as photodecomposition, ozonation, adsorption, incineration, and biodegradation. Compared with conventional methods, bioremediation is considered a cost-effective and ecofriendly approach for the removal of pesticide residues. Several strobilurin-degrading microbes and microbial communities have been reported to effectively utilize pesticide residues as a carbon and nitrogen source. The degradation pathways of strobilurins and the fate of several metabolites have been reported. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of strobilurins. The present review summarizes recent progress in strobilurin degradation and comprehensively discusses the potential of strobilurin-degrading microorganisms in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| |
Collapse
|
30
|
Biodegradation of Conventional and Emerging Pollutants. Molecules 2020; 25:molecules25051186. [PMID: 32155694 PMCID: PMC7179394 DOI: 10.3390/molecules25051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022] Open
|