1
|
AbdelMassih A, Haroun M, AbdelAziz Afifi RA, Hussein G, AbdelHameed M, Asaad MG, Tarabeh H, El Din Taha NE, Diab N, Shebl N, Fouda R, Yassa ME, Ghobashy M, Agha H. Endothelial Dysfunction Linked to Ventricular Dysfunction in Children With Sickle Cell Disease, a 3D Speckle Tracking Study. J Saudi Heart Assoc 2024; 36:27-33. [PMID: 38873326 PMCID: PMC11172668 DOI: 10.37616/2212-5043.1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Abstract
Background Sickle Cell Disease (SCD) is not a hematologic disease that occurs in isolation; it results in multi-organ complications. There is growing evidence of vascular stiffness as its underlying cause. This study aimed to investigate the relationship between endothelial stiffness and LV dysfunction in SCD patients and to explore its pathophysiology, particularly regarding the depletion of vasodilators such as Nitric Oxide (NO). Methodology 32 patients with established criteria for SCD and 40 healthy control subjects were selected for this case-control study. Comprehensive clinical assessment and assessment of endothelial function using Brachial Flow-mediated dilation (FMD) were performed, along with serum NO measurement, which was followed by diagnosis and echocardiographic assessment using 3D speckle tracking echocardiography (STE) and tissue Doppler imaging (TDI). Results Collected SCD cases showed echocardiographic features of Systo-diastolic dysfunction with reduced FMD compared to controls, denoting endothelial dysfunction in those patients. LDH showed a marked elevation, while serum NO showed a significant reduction in cases compared with controls. We also noted a positive correlation between FMD on the one hand and measures of ventricular dysfunction and level of serum NO on the other hand, the latter proving that reduction of NO is responsible for reduced endothelial function. Conclusion We present the first report to date to outline the role of vascular stiffness as measured by brachial FMD in the induction of left ventricular dysfunction in SCD. We recommend that more research be conducted regarding possible strategies to replenish serum NO stores to delay microvascular injury and, in turn, ventricular dysfunction in SCD.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Mervat Haroun
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | | | - Gehan Hussein
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Manal AbdelHameed
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Marina G. Asaad
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Heba Tarabeh
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Nourhan E. El Din Taha
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| | - Nourine Diab
- Residency Program, Faculty of Medicine, New Giza University, New Giza,
Egypt
| | - Noura Shebl
- Residency Program, Faculty of Medicine, New Giza University, New Giza,
Egypt
| | - Raghda Fouda
- Department of Hematology, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Marianne E. Yassa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Mohamed Ghobashy
- Radiology Department, Faculty of Medicine, Cairo University, Cairo,
Egypt
| | - Hala Agha
- Pediatric Cardiology Unit, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo,
Egypt
| |
Collapse
|
2
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
4
|
Tomaselli S, Pasini M, Kozma E, Giovanella U, Scavia G, Pagano K, Molinari H, Iannace S, Ragona L. Bacteria as sensors: Real-time NMR analysis of extracellular metabolites detects sub-lethal amounts of bactericidal molecules released from functionalized materials. Biochim Biophys Acta Gen Subj 2023; 1867:130253. [PMID: 36228877 DOI: 10.1016/j.bbagen.2022.130253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cells exposed to stress factors experience time-dependent variations of metabolite concentration, acting as reliable sensors of the effective concentration of drugs in solution. NMR can detect and quantify changes in metabolite concentration, thus providing an indirect estimate of drug concentration. The quantification of bactericidal molecules released from antimicrobial-treated biomedical materials is crucial to determine their biocompatibility and the potential onset of drug resistance. METHODS Real-time NMR measurements of extracellular metabolites produced by bacteria grown in the presence of known concentrations of an antibacterial molecule (irgasan) are employed to quantify the bactericidal molecule released from antimicrobial-treated biomedical devices. Viability tests assess their activity against E. coli and S. aureus planktonic and sessile cells. AFM and contact angle measurements assisted in the determination of the mechanism of antibacterial action. RESULTS NMR-derived concentration kinetics of metabolites produced by bacteria grown in contact with functionalized materials allows for indirectly evaluating the effective concentration of toxic substances released from the device, lowering the detection limit to the nanomolar range. NMR, AFM and contact angle measurements support a surface-killing mechanism of action against bacteria. CONCLUSIONS The NMR based approach provides a reliable tool to estimate bactericidal molecule release from antimicrobial materials. GENERAL SIGNIFICANCE The novelty of the proposed NMR-based strategy is that it i) exploits bacteria as sensors of the presence of bactericidal molecules in solution; ii) is independent of the chemo-physical properties of the analyte; iii) establishes the detection limit to nanomolar concentrations.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy.
| | - Mariacecilia Pasini
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Erika Kozma
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Umberto Giovanella
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Guido Scavia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Salvatore Iannace
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche - CNR, Milan, Italy
| |
Collapse
|
5
|
Das RP, Gandhi VV, Verma G, Ajish JK, Singh BG, Kunwar A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int J Biol Macromol 2022; 210:403-414. [PMID: 35526768 DOI: 10.1016/j.ijbiomac.2022.04.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/23/2022]
Abstract
Curcumin, a principal component of Curcuma longa, has a long history of being used topically for wound healing. However, poor aqueous solubility of curcumin leads to poor topical absorption. Recently, gelatin based gel has been reported to overcome this issue. However, the release of curcumin from gelatin gel in the bioavailable or easily absorbable form is still a challenge. The present study reports the development of a composite gel prepared from gelatin, F127 and lecithin using temperature dependant gelation and loading of curcumin within it. Notably, the composite gel facilitated the release of curcumin entrapped within vesicles of ~400 nm size. Further, the composite gel exhibited increase in the storage modulus or gel strength, stability, pore size and hydrophobicity as compared to only gelatin gel. Finally, wound healing assay in murine model indicated that curcumin delivered through composite gel showed a significantly faster healing as compared to that delivered through organic solvent. This was also validated by histopathological and biochemical analysis showing better epithelization and collagen synthesis in the group dressed with curcumin containing composite gel. In conclusion, composite gel facilitated the release of bioavailable or easily absorbable curcumin which in turn enhanced the wound healing.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Vishwa V Gandhi
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Juby K Ajish
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Amit Kunwar
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
6
|
Multi-Omic Profiling of Macrophages Treated with Phospholipids Containing Omega-3 and Omega-6 Fatty Acids Reveals Complex Immunomodulatory Adaptations at Protein, Lipid and Metabolic Levels. Int J Mol Sci 2022; 23:ijms23042139. [PMID: 35216253 PMCID: PMC8879791 DOI: 10.3390/ijms23042139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.
Collapse
|
7
|
van de Wouw J, Sorop O, van Drie RWA, Joles JA, Danser AHJ, Verhaar MC, Merkus D, Duncker DJ. Reduced nitric oxide bioavailability impairs myocardial oxygen balance during exercise in swine with multiple risk factors. Basic Res Cardiol 2021; 116:50. [PMID: 34435256 PMCID: PMC8387273 DOI: 10.1007/s00395-021-00890-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2021] [Indexed: 10/28/2022]
Abstract
In the present study, we tested the hypothesis that multiple risk factors, including diabetes mellitus (DM), dyslipidaemia and chronic kidney disease (CKD) result in a loss of nitric oxide (NO) signalling, thereby contributing to coronary microvascular dysfunction. Risk factors were induced in 12 female swine by intravenous streptozotocin injections (DM), a high fat diet (HFD) and renal artery embolization (CKD). Female healthy swine (n = 13) on normal diet served as controls (Normal). After 5 months, swine were chronically instrumented and studied at rest and during exercise. DM + HFD + CKD swine demonstrated significant hyperglycaemia, dyslipidaemia and impaired kidney function compared to Normal swine. These risk factors were accompanied by coronary microvascular endothelial dysfunction both in vivo and in isolated small arteries, due to a reduced NO bioavailability, associated with perturbations in myocardial oxygen balance at rest and during exercise. NO synthase inhibition caused coronary microvascular constriction in exercising Normal swine, but had no effect in DM + HFD + CKD animals, while inhibition of phosphodiesterase 5 produced similar vasodilator responses in both groups, indicating that loss of NO bioavailability was principally responsible for the observed coronary microvascular dysfunction. This was associated with an increase in myocardial 8-isoprostane levels and a decrease in antioxidant capacity, while antioxidants restored the vasodilation to bradykinin in isolated coronary small arteries, suggesting that oxidative stress was principally responsible for the reduced NO bioavailability. In conclusion, five months of combined exposure to DM + HFD + CKD produces coronary endothelial dysfunction due to impaired NO bioavailability, resulting in impaired myocardial perfusion at rest and during exercise.
Collapse
Affiliation(s)
- Jens van de Wouw
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Oana Sorop
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Ruben W A van Drie
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377, LMU Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.
| |
Collapse
|
8
|
Cui H, Wang F, Huang Q, Yan J, Cen K. Sensitive detection of NO using a compact portable CW DFB-QCL-based WMS sensor. APPLIED OPTICS 2020; 59:9491-9498. [PMID: 33104669 DOI: 10.1364/ao.402484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
This paper introduces a compact and portable sensor based on mid-infrared absorption spectroscopy for NO detection employing a room-temperature continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) emitting at 1900.08cm-1. A software-based digital signal generator and lock-in amplifier, in combination with the wavelength modulation spectroscopy (WMS) technique, were used for the concentration measurement of NO. In addition, a Gabor filter denoising method was developed to improve the performance of the measurement system. As a result, a minimum detection limit of 42 ppbv can be achieved at 3 s integration time, and a measurement precision of 450 ppbv can be reached with a time resolution of 0.1 s. The performance of the compact portable sensor was verified by a series of experiments, denoting great potential of field application for sensitive NO sensing.
Collapse
|