1
|
Ugochi UJ, Obinna AC, Emeka EA, Oluchi AE, Makeri D, Theophilus P, Agwu E. Therapeutic potential of Chromolaena odorata, Vernonia amygdalina, and Cymbopogon citratus against pathogenic Bacteria. Sci Rep 2025; 15:217. [PMID: 39747504 PMCID: PMC11696516 DOI: 10.1038/s41598-024-84696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial resistance poses a global public health threat, compelling the search for alternative treatments, especially in resource-limited settings. The increasing ineffectiveness of traditional antibiotics has intensified the need to explore medicinal plants as viable therapeutic options. This study sought to compare the efficacy of certain medicinal plants used in Owerri, Nigeria, for treating pathogenic bacteria against traditional commercial antibiotics. We tested graded concentrations (25 mg/ml, 50 mg/ml, 75 mg/ml, and 100 mg/ml) of ethanolic extracts of Awolowo leaf (Chromolaena odorata), Bitter leaf (Vernonia amygdalina), and Lemon grass leaf (Cymbopogon citratus) against Salmonella spp, Klebsiella spp, Escherichia coli, and Staphylococcus aureus employing the agar well diffusion method to measure zones of inhibition. Commercial antibiotics studied included: Pefloxacin, Gentamycin, Ampiclox, Zinnacef, Amoxicillin, Rocephin, Ciprofloxacin, Streptomycin, Septrin and Erythromycin, Sparfloxacin Amoxicillin, Augmentin, and Tarivid. Each experiment was conducted in triplicate to ensure accuracy and reproducibility. Results were analyzed descriptively and presented as mean zones of inhibition and standard deviations. One to three plant species exhibited antibacterial activities (zones of inhibition) across 25-100 mg/ml concentrations. In contrast, some or all antibiotics only exhibited antibacterial activities at 100 mg/ml concentration (none at 25-75 mg/ml concentrations). Zones of inhibition (10.3-14.1 mm) of all three plant species against E.coli and Klebsiella at 100 mg/ml concentration were higher than those of 8-10 antibiotics. C. odorata had shown high zones of inhibition of 11.8 and 11.0 mm against Salmonella spp. and S. aureus at 100 mg/ml concentration, which were higher than those of eight antibiotics. The other two plant species (C. citratus and V. amygdalina) had exhibited low zones of inhibition against Salmonella spp. and S. aureus, which were higher than those of 3 or 4 antibiotics at 100 mg/ml concentration. In general, the antibacterial activities of the three plant species across 25-100 mg/ml concentrations were higher than those of many antibiotics. To a large extent, the efficacy of medicinal plant extracts across different concentrations against bacterial strains was higher than that of many antibiotics. Those plant species have therefore shown some potential to be used as alternative or complementary therapeutics to antibiotics in addressing antibiotic resistance. Since the promising findings were based on an in vitro study, we recommend clinical trials to establish safe and effective doses of those plant extracts in humans.
Collapse
Affiliation(s)
- Udensi Justina Ugochi
- Department of Environmental Health Science, Federal University of Technology, Owerri, Nigeria
| | | | - Emedoh Andrew Emeka
- Department of Chemical Pathology, Imo State Teaching Hospital, Orlu, Nigeria
| | - Anyanwu Emilia Oluchi
- Department of Environmental Health Science, Federal University of Technology, Owerri, Nigeria
| | - Danladi Makeri
- Departmment of Microbiology and Immunology, Kampala International University, Ishaka, Uganda.
| | - Pius Theophilus
- Department of Medical Laboratory Science, Kampala International University, Ishaka, Uganda
| | - Ezera Agwu
- Departmment of Microbiology and Immunology, Kampala International University, Ishaka, Uganda
- Department of Microbiology and Parasitology, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Peng HB, Liu Y, Hou F, Zhao S, Zhang YZ, He ZY, Liu JY, Xiong HF, Sun LY. Clinical Application of Metagenomic Next-Generation Sequencing (mNGS) in Patients with Early Pulmonary Infection After Liver Transplantation. Infect Drug Resist 2024; 17:5685-5698. [PMID: 39717063 PMCID: PMC11665138 DOI: 10.2147/idr.s483684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To examine the clinical utility of metagenomic next-generation sequencing (mNGS) in individuals with early pulmonary infection following liver transplantation. Patients and Methods mNGS and traditional detection results were retrospectively collected from 99 patients with pulmonary infection within one week following liver transplantation. These patients were admitted to the Department of Critical Liver Diseases at Beijing Friendship Hospital from February 2022 to February 2024, along with their general clinical data. Results mNGS exhibited a significantly higher detection rate than traditional methods (92.93% vs 54.55%, P < 0.05) and was more effective in identifying mixed infections (67.68% vs 14.81%, P < 0.05). mNGS identified 303 pathogens in 92 patients, with Enterococcus faecium, Pneumocystis jirovecii, and human herpesvirus types 5 and 7 being the most prevalent bacteria, fungi, and viruses. A total of 26 positive cases were identified through traditional culture methods (sputum and bronchoalveolar lavage fluid), with 18 cases consistent with mNGS detection results, representing 69.23% consistency. Among the three drug-resistant bacteria that showed positivity in mNGS and traditional culture, the presence of drug-resistance genes-mecA in Staphylococcus aureus; KPC-2, KPC-9, KPC-18, KPC-26, OXA27, OXA423 in Klebsiella pneumoniae; and OXA488 and NDM6 in Pseudomonas aeruginosa-reliably predicted drug-resistance phenotype. The treatment regimen for 76 of the 92 patients with positive mNGS relied on these results; 74 exhibited significant symptom improvement, yielding a 97.37% recovery rate. The overall prognosis was favorable. Conclusion mNGS offers rapid detection, a high positivity rate, insensitivity to antibiotics, and a superior ability to detect mixed infections in patients with early post-transplant pulmonary infections. Additionally, mNGS shows good consistency with traditional culture and can predict drug-resistant phenotypes to guide targeted antibiotic therapy for early-stage post-transplant pulmonary infection after liver transplantation. Patients whose antibiotic therapy is based on mNGS results have experienced decreased mortality rates and overall improved prognosis.
Collapse
Affiliation(s)
- Hua-Bin Peng
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ying Liu
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Fei Hou
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shuang Zhao
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi-Zhi Zhang
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhi-Ying He
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing-Yi Liu
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hao-Feng Xiong
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Laliwala A, Pant A, Svechkarev D, Sadykov MR, Mohs AM. Advancements of paper-based sensors for antibiotic-resistant bacterial species identification. NPJ BIOSENSING 2024; 1:17. [PMID: 39678719 PMCID: PMC11645268 DOI: 10.1038/s44328-024-00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Present Address: Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ashruti Pant
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| | - Denis Svechkarev
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109 USA
| | - Marat R. Sadykov
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| |
Collapse
|
4
|
Mirzaei A, Esfahani BN, Ghanadian M, Wagemans J, Lavigne R, Moghim S. Alhagi maurorum extract in combination with lytic phage cocktails: a promising therapeutic approach against biofilms of multi-drug resistant P. mirabilis. Front Pharmacol 2024; 15:1483055. [PMID: 39734413 PMCID: PMC11671267 DOI: 10.3389/fphar.2024.1483055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global threat to public health systems, rendering antibiotics ineffective in treating infectious diseases. Combined use of bio compounds, including bacteriophages and plant extracts, is an attractive approach to controlling antibiotic resistance. In this study, the combination of phage cocktail (Isf-Pm1 and Isf-Pm2) and Alhagi maurorum crude extract (AME) was investigated in controlling biofilm-forming multi-drug resistant P. mirabilis isolates, in vitro and a phantom bladder model. The combination of AME and phage cocktails demonstrated no significant disparity in its ability to inhibit quorum sensing (QS) when compared to the individual control of AME alone. Following treatment with the combination of phage cocktail and AME at a 125 μg/mL concentration, the MDR P. mirabilis biofilm biomass was notably reduced by 73% compared to the control (P< 0.0001). The anti-biofilm effect was confirmed by Scanning Electron Microscopy (SEM). Moreover, in a bladder phantom model, there was a considerable decrease in encrustation levels compared to the control. The combined treatment resulted in a 1.85 logarithmic reduction in bacterial adhesion to Vero cells compared to the control. The real-time PCR results indicated significant downregulation of QS- and adhesion-related gens. The phage therapy, combined with AME, holds promising potential in reducing biofilm formation.
Collapse
Affiliation(s)
- Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Murshed IAS, Zhao L, Zhang W, Yin Y, Li Y, Peng Y, Chen H, Wu X. Bloodstream infections in pediatric hematology/oncology patients: a single-center study in Wuhan. Front Cell Infect Microbiol 2024; 14:1480952. [PMID: 39698316 PMCID: PMC11652520 DOI: 10.3389/fcimb.2024.1480952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Bloodstream infections (BSIs) are a critical concern in pediatric onco-hematological patients undergoing chemotherapy or hematopoietic stem cell transplantation (HSCT), leading to a major impact on morbidity, long-term hospitalization, and mortality. We retrospectively analyzed 202 BSIs in 145 patients, consisting of 128 with hematological malignancies, one with a solid tumor, and 16 with non-malignant hematological diseases. We collected data on patient demographics, clinical characteristics, pathogen distribution, and antimicrobial pathogen susceptibility. Gram-positive infections were the most frequent at (58.4%), followed by gram-negative (41%), and fungal infections (0.5%). Particularly, the majority of these infections occurred during the induction phase of chemotherapy, where 94 (46.5%) BSI episodes were recorded, predominantly in neutropenic patients (88.3%). The consolidation phase experienced lower BSIs (11.8%); among these patients (54.1%) were non-neutropenic. BSIs observed in (23.7%) of patients in the maintenance phase, with a higher proportion (66.6%) being neutropenic. Among the 7 patients who underwent HSCT, BSIs occurred in (4.9%) cases, mainly (70%) due to neutropenia. The most prevalent pathogens were Staphylococcus epidermidis (19.8%), Staphylococcus hominis (16.3%), and Escherichia coli (8.4%). The study highlights the critical need for vigilant monitoring and customized infection management strategies to enhance patient outcomes across chemotherapy phases and HSCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Behera SK, Huwaikem M, Jena B, Shah MP, Chakrabortty S, Tripathy SK, Mishra A. Fabrication of ZnO/Gypsum/Gelatine nanocomposites films and their antibacterial mechanism against Staphylococcus aureus. Biotechnol Genet Eng Rev 2024; 40:4713-4736. [PMID: 37243587 DOI: 10.1080/02648725.2023.2216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Staphylococcus aureus (S. aureus) has long been acknowledged as being one of the most harmful bacteria for human civilization. It is the main contributor to skin and soft tissue infections. The gram positive pathogen also contributes to bloodstream infections, pneumonia, or bone and joint infections. Hence, developing an efficient and targeted treatment for these illnesses is greatly desired. Recently, studies on nanocomposites (NCs) have significantly increased due to their potent antibacterial and antibiofilm properties. These NCs provide an intriguing way to control the growth of bacteria without causing the development of resistance strains that come from improper or excessive use of the conventional antibiotics. In this context, we have demonstrated the synthesis of a NC system by precipitation of ZnO nanoparticles (NPs) on Gypsum followed by encapsulation with Gelatine, in the present study. Fourier transform infrared (FTIR) spectroscopy was used to validate the presence of ZnO NPs and Gypsum. The film was characterized by X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The system exhibited promising antibiofilm action and was effective in combating S. aureus and MRSA in concentrations between 10 and 50 ug/ml. The bactericidal mechanism by release of reactive oxygen species (ROS) was anticipated to be induced by the NC system. Studies on cell survival and in-vitro infection support the film's notable biocompatibility and its potential for treating Staphylococcus infections in the future.
Collapse
Affiliation(s)
- Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- IMGENEX India Pvt. Ltd, Bhubaneswar, India
| | - Mashael Huwaikem
- Clinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Sankha Chakrabortty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Suraj K Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
7
|
Sharma M, Goksen G, Ali N, Janghu S, Parvez MK, Al-Dosari MS, Bhaswant M, Chawla P. Advancing antimicrobial efficacy of Cucumis momordica seeds: Nanoemulsion application in Eurotium cristatum-mediated solid-state fermentation. FOOD AND BIOPRODUCTS PROCESSING 2024; 148:507-518. [DOI: 10.1016/j.fbp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
8
|
Abavisani M, Khoshrou A, Eshaghian S, Karav S, Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. J Drug Target 2024:1-27. [PMID: 39485073 DOI: 10.1080/1061186x.2024.2424895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Since its emergence shortly after the discovery of penicillin, antibiotic resistance has escalated dramatically, posing a significant health threat and economic burden. Drug repositioning, or drug repurposing, involves identifying new therapeutic applications for existing drugs, utilising their established safety profiles and pharmacological data to swiftly provide effective treatments against resistant pathogens. Several drugs, including otilonium bromide, penfluridol, eltrombopag, ibuprofen, and ceritinib, have demonstrated potent antibacterial activity against multidrug-resistant (MDR) bacteria. These drugs can disrupt biofilms, damage bacterial membranes, and inhibit bacterial growth. The combination of repurposed drugs with conventional antibiotics can reduce the required dosage of individual drugs, mitigate side effects, and delay the development of resistance, making it a promising strategy against MDR bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli. Despite its promise, drug repurposing faces challenges such as potential off-target effects, toxicity, and regulatory and intellectual property issues, necessitating rigorous evaluations and strategic solutions. This article aims to explore the potential of drug repurposing as a strategy to combat antibiotic resistance, examining its benefits, challenges, and future prospects. We address the legal, economic, and practical challenges associated with repurposing existing drugs, highlight successful examples, and propose solutions to enhance the efficacy and viability of this approach in combating MDR bacterial infections.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souzan Eshaghian
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Qian W, Sun J, Liu T, Yang Z, Tsui SKW. sRNAdeep: a novel tool for bacterial sRNA prediction based on DistilBERT encoding mode and deep learning algorithms. BMC Genomics 2024; 25:1021. [PMID: 39482572 PMCID: PMC11526673 DOI: 10.1186/s12864-024-10951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Bacterial small regulatory RNA (sRNA) plays a crucial role in cell metabolism and could be used as a new potential drug target in the treatment of pathogen-induced disease. However, experimental methods for identifying sRNAs still require a large investment of human and material resources. METHODS In this study, we propose a novel sRNA prediction model called sRNAdeep based on the DistilBERT feature extraction and TextCNN methods. The sRNA and non-sRNA sequences of bacteria were considered as sentences and then fed into a composite model consisting of deep learning models to evaluate classification performance. RESULTS By filtering sRNAs from BSRD database, we obtained a validation dataset comprised of 2438 positive and 4730 negative samples. The benchmark experiments showed that sRNAdeep displayed better performance in the various indexes compared to previous sRNA prediction tools. By applying our tool to Mycobacterium tuberculosis (MTB) genome, we have identified 21 sRNAs within the intergenic and intron regions. A set of 272 targeted genes regulated by these sRNAs were also captured in MTB. The coding proteins of two genes (lysX and icd1) are implicated in drug response, with significant active sites related to drug resistance mechanisms of MTB. CONCLUSION In conclusion, our newly developed sRNAdeep can help researchers identify bacterial sRNAs more precisely and can be freely available from https://github.com/pyajagod/sRNAdeep.git .
Collapse
Affiliation(s)
- Weiye Qian
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China
| | - Jiawei Sun
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China
| | - Tianyi Liu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, P.R. China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Bioinformatics Centre, the Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Koh AJJ, Hussein M, Thombare V, Crawford S, Li J, Velkov T. Synergistic potential of Leu 10-teixobactin and cefepime against multidrug-resistant Staphylococcus aureus. BMC Microbiol 2024; 24:442. [PMID: 39472779 PMCID: PMC11520699 DOI: 10.1186/s12866-024-03577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant Gram-positive opportunistic pathogen behind many debilitating infections. β-lactam antibiotics are conventionally prescribed for treating S. aureus infections. However, the adaptability of S. aureus in evolving resistance to multiple β-lactams contributed to the persistence and spread of infections, exemplified in the emergence of methicillin-resistant S. aureus (MRSA). In the present study, we investigated the efficacies of the synthetic teixobactin analogue, Leu10-teixobactin, combined with the penicillinase-resistant cephalosporin cefepime against MRSA strains. The Leu10-teixobactin and cefepime combination exerted synergism against most strains tested in broth microdilution assay. Time-kill profiles showed that both Leu10-teixobactin and cefepime predominantly exhibited synergistic activity, with > 2.0-log10CFU decrease compared to monotherapy at 24 h. Moreover, biofilm assays revealed a significant inhibition of biofilm production in ATCC™43300 cells treated with sub-MICs of Leu10-teixobactin and cefepime. Subsequent electron microscopy studies showed more extensive damage with the combination therapy compared to monotherapies, including aberrant bacterial morphology, vesicle formation and substantial lysis, indicating combined damage to the cell wall. Quantitative real-time PCR revealed marked perturbation of genes mecA, sarA, atlA, and icaA, substantiating the apparent mode of combined antibacterial action of both antibiotics against peptidoglycan synthesis and initial biofilm production. Hence, the study highlights the prospective utility of the Leu10-teixobactin-cefepime combination in treating MRSA infections via β-lactam potentiation.
Collapse
Affiliation(s)
- Augustine Jing Jie Koh
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Maytham Hussein
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Varsha Thombare
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Simon Crawford
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
12
|
Liu Z, Liang X, Zhang Y, Deng W, Wang Y, Lu Z, Liu Q, Wei L. Drug Repurposing: Research Progress of Niclosamide and Its Derivatives on Antibacterial Activity. Infect Drug Resist 2024; 17:4539-4556. [PMID: 39464831 PMCID: PMC11505561 DOI: 10.2147/idr.s490998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
The development of antibiotic resistance complicates the treatment of infectious diseases and is a global public health threat. However, drug repurposing can address this resistance issue and reduce research and development costs. Niclosamide is a salicylanilide compound approved by the Food and Drug Administration (FDA), and it has been used clinically for treating parasitic infections for many years. Recent studies have shown that niclosamide can inhibit bacterial and fungus activity by affecting the quorum sensing system, biofilm formation, cell membrane potential, and other mechanisms. Here, we discuss recent advances in the antimicrobial applications of niclosamide and its derivatives to provide new perspectives in treating infectious diseases.
Collapse
Affiliation(s)
- Zhihong Liu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Xiaofang Liang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yu Zhang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Wenbo Deng
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yulin Wang
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
13
|
Irshad A, Jawad R, Sharif S, Joly N, Ishtiaq U, Martin P, Mushtaq Q. Bioengineering of glucan coated silver nanoparticles as dynamic biomedical compound; in vitro and in vivo studies. Microb Pathog 2024; 197:107005. [PMID: 39426635 DOI: 10.1016/j.micpath.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The use of silver nanoparticles (AgNPs) gaining importance for the treatment of microbial infections and are in great demand due to their efficient broad antibacterial action but there is only one problem that silver nanoparticles can cause tissue damage. Therefore, the present study evaluated antimicrobial potential and intricacy of glucan coated silver nanoparticles in comparison with free silver nanoparticles. In this study, glucan coated silver nanoparticles (Glucan-AgNPs) by using Pleurotus spps. were characterized for their antimicrobial, minimum inhibitory concentration (MIC), biofilm inhibition, mutagenicity potential, hemolytic activities and histological examination through in vitro and in vivo analysis. The liver, kidney, intestine, and skin tissues were examined to gauge the adverse effects of the treatment method's toxicity by silver deposition. The results of this study have shown that mushroom's glucan extracted from Pleurotus spps. are excellent reducing agent and due to their best capping ability they reduce the toxicity of AgNPs and enhance their antimicrobial activities. The highest zone of inhibition was observed by Glucan-AgNPs from P. ostreatus (24 mm) against S. aureus while least zone of inhibition was resulted from Glucan-AgNPs from P. sapidus (14 mm) against B. subtilis. The results for biofilm inhibition showed excellent biofilm inhibition ability of Glucan-AgNPs. In results, maximum inhibition 95.2 % was observed by Glucan-AgNPs from P. ostreatus against S. aureus, while minimum inhibition 79.2 % by Glucan-AgNPs of P. sapidus against E. coli. Furthermore, Glucan-AgNPs treated mice showed no deposition and damage in the organs. Glucan-AgNPs has a higher efficacy in treating microbial infection.
Collapse
Affiliation(s)
- Asma Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.
| | - Rabbia Jawad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, University of Lahore, Pakistan.
| | - Nicolas Joly
- Univ. Artois, Unilasalle, ULR7519 - Unite Transformations & Agroresources, F-62408, Bethune, France.
| | - Uzair Ishtiaq
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan; Department of Research and Development, Paktex Industries, 2.5 KM Tatlay Road, Kamoke, Gujranwala, 52470, Pakistan.
| | - Patrick Martin
- Univ. Artois, Unilasalle, ULR7519 - Unite Transformations & Agroresources, F-62408, Bethune, France.
| | - Qudsia Mushtaq
- Microbial Biotechnology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
14
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
15
|
Mondal RK, Karmakar D, Pal O, Samanta SK. AVR/I/SSAPDB: a comprehensive & specialised knowledgebase of antimicrobial peptides to combat VRSA, VISA, and VSSA. World J Microbiol Biotechnol 2024; 40:348. [PMID: 39402285 DOI: 10.1007/s11274-024-04162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024]
Abstract
The rise of multi-drug resistant (MDR) bacteria, especially strains of Staphylococcus aureus like Vancomycin-resistant S. aureus (VRSA), Vancomycin-intermediate S. aureus (VISA), and Vancomycin-susceptible S. aureus (VSSA), poses a severe threat to global health. This situation underscores the urgent need for novel antimicrobial agents to combat these resistant strains effectively. Here, we are introducing the Anti-Vancomycin-Resistant/Intermediate/Susceptible Staphylococcus aureus Peptide Database (AVR/I/SSAPDB), a manually curated comprehensive and specialised knowledgebase dedicated to antimicrobial peptides (AMPs) that target VRSA, VISA, and VSSA with clinical and non-clinical significance. Our database sources data from PubMed, cataloging 491 experimentally validated AMPs with detailed annotations on peptides, activity, and cross-references to external databases like PubMed, UniProt, PDB, and DrugBank. AVR/I/SSAPDB offers a user-friendly interface with simple to advanced and list-based search capabilities, enabling researchers to explore AMPs against VRSA, VISA, and VSSA. We are hoping that this resource will be helpful to the scientific community in developing targeted peptide-based therapeutics, providing a crucial tool for combating VRSA, VISA, and VSSA, and addressing a major public health concern. AVR/I/SSAPDB is freely accessible via any web-browser at URL: https://bblserver.org.in/avrissa/ .
Collapse
Affiliation(s)
- Rajat Kumar Mondal
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, (IIIT-A), Devghat, Jhalwa, Prayagraj, Uttar Pradesh, 211012, India
| | - Debayan Karmakar
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, (IIIT-A), Devghat, Jhalwa, Prayagraj, Uttar Pradesh, 211012, India
| | - Oshin Pal
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, (IIIT-A), Devghat, Jhalwa, Prayagraj, Uttar Pradesh, 211012, India
| | - Sintu Kumar Samanta
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, (IIIT-A), Devghat, Jhalwa, Prayagraj, Uttar Pradesh, 211012, India.
| |
Collapse
|
16
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
17
|
El-Sheekh M, Alwaleed EA, Kassem WMA, Saber H. Optimizing the fucoidan extraction using Box-Behnken Design and its potential bioactivity. Int J Biol Macromol 2024; 277:134490. [PMID: 39111494 DOI: 10.1016/j.ijbiomac.2024.134490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.
Collapse
Affiliation(s)
- Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Eman A Alwaleed
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Wafaa M A Kassem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
18
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
19
|
Sörstedt E, Ahlbeck G, Snygg-Martin U. Trends in Enterococcus faecium Bacteremia: Exploring Risk Factors with Emphasis on Prior Antibiotic Exposure. Microorganisms 2024; 12:1932. [PMID: 39458242 PMCID: PMC11509189 DOI: 10.3390/microorganisms12101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Enterococcal bacteremia (EB) is on the rise both in Sweden and globally. While Enterococcus faecalis (E. faecalis) is susceptible to ampicillin and piperacillin/tazobactam (pip/taz), Enterococcus faecium (E. faecium) is not. Historically, most enterococcal infections have been caused by E. faecalis, but the epidemiology is changing with increasing recognition of enterococci as nosocomial pathogens and the emergence of resistance to commonly used antimicrobial agents. The use of pip/taz has increased dramatically in Sweden, but it is unknown if this has affected the relative incidence of E. faecalis/E. faecium bacteremia. Here, we investigate whether the number and proportion of E. faecium bacteremia (EfmB) cases have increased. Additionally, risk factors associated with EfmB with a focus on prior antibiotic exposure are analyzed. Medical journals of 360 patients with EB admitted to Sahlgrenska University Hospital are reviewed. The proportion of EfmB cases increased from 41% in 2015 to 51% in 2021. Hospital-acquired infection, previous exposure to pip/taz, and carbapenems are identified as independent risk factors for EfmB. There are considerable patient-related differences between the EfmB and EfsB groups, but there is no difference in mortality rates. In conclusion, the increasing proportion of EfmB cases is concerning and is seen parallel to the expanding use of pip/taz, one possible contributing factor. Our findings suggest that a cautious approach to antibiotic use is essential to prevent the spread of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Erik Sörstedt
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (E.S.)
- Region Västra Götaland, Department of Infectious Diseases, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
| | - Gustaf Ahlbeck
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (E.S.)
- Centre for Clinical Research, Västmanland Hospital Västeras, 721 89 Västerås, Sweden
| | - Ulrika Snygg-Martin
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (E.S.)
- Region Västra Götaland, Department of Infectious Diseases, Sahlgrenska University Hospital, 416 50 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
20
|
Barrera Patiño CP, Soares JM, Blanco KC, Bagnato VS. Machine Learning in FTIR Spectrum for the Identification of Antibiotic Resistance: A Demonstration with Different Species of Microorganisms. Antibiotics (Basel) 2024; 13:821. [PMID: 39334995 PMCID: PMC11428736 DOI: 10.3390/antibiotics13090821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Recent studies introduced the importance of using machine learning algorithms in research focused on the identification of antibiotic resistance. In this study, we highlight the importance of building solid machine learning foundations to differentiate antimicrobial resistance among microorganisms. Using advanced machine learning algorithms, we established a methodology capable of analyzing the FTIR structural profile of the samples of Streptococcus pyogenes and Streptococcus mutans (Gram-positive), as well as Escherichia coli and Klebsiella pneumoniae (Gram-negative), demonstrating cross-sectional applicability in this focus on different microorganisms. The analysis focuses on specific biomolecules-Carbohydrates, Fatty Acids, and Proteins-in FTIR spectra, providing a multidimensional database that transcends microbial variability. The results highlight the ability of the method to consistently identify resistance patterns, regardless of the Gram classification of the bacteria and the species involved, reinforcing the premise that the structural characteristics identified are universal among the microorganisms tested. By validating this approach in four distinct species, our study proves the versatility and precision of the methodology used, in addition to bringing support to the development of an innovative protocol for the rapid and safe identification of antimicrobial resistance. This advance is crucial for optimizing treatment strategies and avoiding the spread of resistance. This emphasizes the relevance of specialized machine learning bases in effectively differentiating between resistance profiles in Gram-negative and Gram-positive bacteria to be implemented in the identification of antibiotic resistance. The obtained result has a high potential to be applied to clinical procedures.
Collapse
Affiliation(s)
- Claudia Patricia Barrera Patiño
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense No. 400, Parque Arnold Schimidt, São Carlos CEP 13566-590, SP, Brazil
| | - Jennifer Machado Soares
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense No. 400, Parque Arnold Schimidt, São Carlos CEP 13566-590, SP, Brazil
| | - Kate Cristina Blanco
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense No. 400, Parque Arnold Schimidt, São Carlos CEP 13566-590, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense No. 400, Parque Arnold Schimidt, São Carlos CEP 13566-590, SP, Brazil
- Biomedical Engineering, Texas A&M University, 400 Bizzell St., College Station, TX 77843, USA
| |
Collapse
|
21
|
Pazla R, Yanti G, Jamarun N, Zain M, Triani HD, Putri EM, Srifani A. Identification of phytase producing bacteria from acidifying Tithonia diversifolia: Potential for ruminant feed development. Saudi J Biol Sci 2024; 31:104006. [PMID: 38813263 PMCID: PMC11134870 DOI: 10.1016/j.sjbs.2024.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Phytate content in feed ingredients can negatively impact digestibility and palatability. To address this issue, it is necessary to study microbes capable of breaking down phytate content. This study aimed to isolate and characterize phytase-producing bacteria from decaying materials rich in phytic acid. The research was conducted in several stages. The first stage involved isolating phytase-producing bacteria from the acidification of Tithonia diversifolia using growth media containing Na-phytate. Bacterial isolates that produced clear zones were then tested for their activity and ability to produce several enzymes, specifically phytase, cellulase, and protease. The next step was to test the morphological characteristics of the bacterial isolate. The final stage of bacterial identification consisted of DNA isolation, followed by PCR amplification of the 16S rRNA gene, DNA sequence homology analysis, and construction of a phylogenetic tree. Based on research, three isolates were found to produce clear phytase zones: isolates R5 (20.3 mm), R7 (16.1 mm) and R8 (31.7 mm). All isolates were able to produce the enzymes phytase (5.45-6.54 U/ml), cellulase (2.60-2.92 U/ml), and protease (22.2-23.4 U/ml). Metagenomic testing identified isolate R7 and R8 as Alcaligenes faecalis and isolate R5 as Achromobacter xylosoxidans. The isolation and characterization of phytase-producing bacteria from Tithonia diversifolia acidification resulted in the identification of two promising candidates that can be applied as sources of phytase producers. Phytase-producing bacteria can be utilized to improve digestibility and palatability in animal feed.
Collapse
Affiliation(s)
- Roni Pazla
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
| | - Gusri Yanti
- Department of Agricultural Extension, Faculty of Social, Science and Education, Prima Nusantara Bukittinggi University, Bukittinggi 26122, Indonesia
| | - Novirman Jamarun
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
| | - Mardiati Zain
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
| | - Hera Dwi Triani
- Department of Agricultural Extension, Faculty of Social, Science and Education, Prima Nusantara Bukittinggi University, Bukittinggi 26122, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN) Indonesia, Jl. Raya Jakarta-Bogor, Cibinong 16915, Indonesia
| | - Anifah Srifani
- Doctoral Student of Animal Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Limau Manis, Padang 25163, Indonesia
| |
Collapse
|
22
|
Lekshmi M, Ortiz-Alegria A, Kumar S, Varela MF. Major facilitator superfamily efflux pumps in human pathogens: Role in multidrug resistance and beyond. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100248. [PMID: 38974671 PMCID: PMC11225705 DOI: 10.1016/j.crmicr.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
The major facilitator superfamily (MFS) of proteins constitutes a large group of related solute transporters found across all known living taxa of organisms. The transporters of the MFS contain an extremely diverse array of substrates, including ions, molecules of intermediary metabolism, and structurally different antimicrobial agents. First discovered over 30 years ago, the MFS represents an important collection of integral membrane transporters. Bacterial microorganisms expressing multidrug efflux pumps belonging to the MFS are considered serious pathogens, accounting for alarming morbidity and mortality numbers annually. This review article considers recent advances in the structure-function relationships, the transport mechanism, and modulation of MFS multidrug efflux pumps within the context of drug resistance mechanisms of bacterial pathogens of public health concerns.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| | - Sanath Kumar
- QC Laboratory, Post Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States
| |
Collapse
|
23
|
Barreto Pinilla CM, Brandelli A, Ataíde Isaia H, Guzman F, Sundfeld da Gama MA, Spadoti LM, Torres Silva E Alves A. Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Curr Microbiol 2024; 81:202. [PMID: 38829392 DOI: 10.1007/s00284-024-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.
Collapse
Affiliation(s)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrique Ataíde Isaia
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Guzman
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Perú
| | | | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | |
Collapse
|
24
|
Maria C, de Matos AM, Rauter AP. Antibacterial Prodrugs to Overcome Bacterial Antimicrobial Resistance. Pharmaceuticals (Basel) 2024; 17:718. [PMID: 38931385 PMCID: PMC11206681 DOI: 10.3390/ph17060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasingly concerning phenomenon that requires urgent attention because it poses a threat to human and animal health. Bacteria undergo continuous evolution, acquiring novel resistance mechanisms in addition to their intrinsic ones. Multidrug-resistant and extensively drug-resistant bacterial strains are rapidly emerging, and it is expected that bacterial AMR will claim the lives of 10 million people annually by 2050. Consequently, the urgent need for the development of new therapeutic agents with new modes of action is evident. The antibacterial prodrug approach, a strategy that includes drug repurposing and derivatization, integration of nanotechnology, and exploration of natural products, is highlighted in this review. Thus, this publication aims at compiling the most pertinent research in the field, spanning from 2021 to 2023, offering the reader a comprehensive insight into the AMR phenomenon and new strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (C.M.); (A.M.d.M.)
| |
Collapse
|
25
|
Mohamad NA, Al-Emerieen AF, Irekeola AA, Shueb RH. Antibacterial Effects of Various Types of Bee Products in Malaysia: A Systematic Review. Malays J Med Sci 2024; 31:32-51. [PMID: 38984254 PMCID: PMC11229564 DOI: 10.21315/mjms2024.31.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 07/11/2024] Open
Abstract
Antibiotics are widely used to treat bacterial infections. The effectiveness of antibiotics is very important, but unfortunately, prolonged exposure leads to the development of antibiotic resistance in some bacteria. Hence, using natural products as antibacterial agents is an attractive alternative, given that they have been used as traditional medicine since the existence of humanity. This study systematically reviewed the antibacterial activity of Malaysian bee products such as honey, propolis and bee bread. Five electronic databases: i) PubMed; ii) ScienceDirect; iii) Scopus; iv) Web of Science Core Collection and v) Google Scholar, were searched for relevant articles. A total of 153 articles were obtained from the initial search. Of these, 32 articles, including 24 on honey, eight on propolis and one on bee bread, were selected based on inclusion and exclusion criteria. Most studies reported that honey, propolis and bee bread demonstrated antibacterial properties against Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Nur Aliah Mohamad
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alaa' Fahed Al-Emerieen
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
26
|
Park SY, Sivakumar R, Lee NY. D-Glucose-Mediated Gold Nanoparticle Fabrication for Colorimetric Detection of Foodborne Pathogens. BIOSENSORS 2024; 14:284. [PMID: 38920588 PMCID: PMC11202049 DOI: 10.3390/bios14060284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Gold nanoparticle (AuNP) fabrication via the oxidation of D-glucose is applied for detecting two foodborne pathogens, Enterococcus faecium (E. faecium) and Staphylococcus aureus (S. aureus). D-glucose is used as a reducing agent due to its oxidation to gluconic acid by sodium hydroxide (NaOH), resulting in the formation of AuNPs. Based on this mechanism, we develop AuNP-based colorimetric detection in conjunction with loop-mediated isothermal amplification (LAMP) for accurately identifying the infectious bacteria. Here, Au+ ions bind to the base of double-stranded DNA. In the presence of D-glucose and NaOH, the LAMP amplicon-Au+ complex maintains its bound state at 65 °C for 10 min while it is reduced to AuNPs in a dispersed form, exhibiting a red color. We aimed to pre-mix D-glucose with LAMP reagents before amplification and induce successful colorimetry without inhibiting amplification to simplify the experimental process and decrease the reaction time. Therefore, the entire process, including LAMP and colorimetric detection, is accomplished in approximately 1 h. The limit of detection of E. faecium and S. aureus is confirmed using the introduced method as 101 CFU/mL and 100 fg/μL, respectively. We expect that colorimetric detection using D-glucose-mediated AuNP synthesis offers an application for simple and immediate molecular diagnosis.
Collapse
Affiliation(s)
| | | | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.Y.P.); (R.S.)
| |
Collapse
|
27
|
Sanches AW, Santos RRCD, Oliveira FFD, Carvalho LDD, Conceição AOD, Oliveira RAD. Flavonoids isolated from Vismia macrophylla Kunth against resistant bacteria. Nat Prod Res 2024:1-7. [PMID: 38808597 DOI: 10.1080/14786419.2024.2360159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
The antimicrobial activity of Vismia macrophylla extract is reported in the literature; however, little is known about the presence of phenolic compounds and their antimicrobial activity in this species. This study aimed to isolate phenolic compounds with antimicrobial action from the leaves of V. macrophylla. The ethanolic extract (VmL-Et) was submitted to sephadex column separation, and some fractions were submitted to derivatization with BSTFA and analysed by GC-MS. This study indicated the presence of the catechin, osajaxanthone, quercetin, quercitrin, and glucodistylin. Of these, osajaxanthone, quercetin, quercitrin, and glucodistylin were isolated and identified by spectroscopic techniques. VmL-Et, quercetin, quercitrin, glucodistylin, and maslinic acid, were tested against the Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis. The results showed broad spectrum action of the extract Vm-Et, glucodistylin and quercitrin. The species V. macrophylla occurring in the Brazilian biome showed potential for obtaining phenolic compounds that can help combat microbial resistance.
Collapse
Affiliation(s)
- Alex-William Sanches
- Department of Exact Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Patel B, Yadav VK, Desai R, Patel S, Amari A, Choudhary N, Osman H, Patel R, Balram D, Lian KY, Sahoo DK, Patel A. Bacteriogenic synthesis of morphologically diverse silver nanoparticles and their assessment for methyl orange dye removal and antimicrobial activity. PeerJ 2024; 12:e17328. [PMID: 38770094 PMCID: PMC11104345 DOI: 10.7717/peerj.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.
Collapse
Affiliation(s)
- Bhakti Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Reema Desai
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Shreya Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Haitham Osman
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Rajat Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
29
|
El-Sheekh MM, Yousuf WE, Mohamed TM, Kenawy ER. Synergistic antimicrobial action of nanocellulose, nanoselenium, and nanocomposite against pathogenic microorganisms. Int J Biol Macromol 2024; 268:131737. [PMID: 38657940 DOI: 10.1016/j.ijbiomac.2024.131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Recently, there has been a surge in curiosity regarding the application of biopolymer-derived nanomaterials, primarily attributable to their extensive array of potential applications. In this study, nanocellulose was extracted from algae, biomolecule substances synthesized selenium nanoparticles, and a simple nanocomposite of nanocellulose and nanoselenium was elaborated using nanocellulose as a reducing agent under hydrothermal conditions. These nanocomposite materials have markedly improved properties at low concentrations. Our obtained polymers were characterized using techniques including Fourier-transform infrared spectroscopy, X-ray powder diffraction, Thermo gravimetric analysis (TGA), Scanning electron microscopic (SEM), Energy Dispersive X-ray analysis (EDX), Transmission electron microscopic (TEM), Zeta Potential and Dynamic Light Scattering (DLS). The size of nanocellulose, nanoselenium, and nanocomposite ranged from 35 to 85 nm. Antimicrobial investigation of the prepared nanopolymers was tested against Gram-negative bacteria such as Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538, Gram-positive bacteria such as Escherichia coli ATCC8739 and Pseudomonas aeruginosa ATCC 90274 and fungi such as Candida albicans ATCC 10221 besides Aspergillus fumigatus. In antibacterial action tests, nanoselenium showed significant efficacy against Bacillus subtilis with a 12 mm zone of inhibition, while the nanocomposite eclipsed all microorganisms. Nanocellulose and the nanocomposite were potent against Staphylococcus aureus (14 mm and 16 mm zones of inhibition, respectively). The nanocomposite showed potential against Escherichia coli and Pseudomonas aeruginosa (17 mm and 15 mm zones of inhibition, respectively). All polymers effectively inhibited Candida albicans growth (18 mm for the nanocomposite). The minimum inhibitory concentrations (MIC) for three polymers have also been established. While nanocellulose displayed a MIC of 62.5 μg/ml in contradiction to Staphylococcus aureus, nanoselenium demonstrated a significant MIC of 3.95 μg/ml against Bacillus subtilis. These findings highlight the potential of the nanocomposite (nanocellulose-nanoselenium) as a broad-spectrum antimicrobial polymer.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Wesam E Yousuf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Refaie Kenawy
- Polymer Research Group Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
30
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
31
|
You L, Zhang B, Zhang F, Wang J. Pathogenic spectrum and risk factors of peritoneal dialysis-associated peritonitis: a single-center retrospective study. BMC Infect Dis 2024; 24:440. [PMID: 38658811 PMCID: PMC11044422 DOI: 10.1186/s12879-024-09334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The present study aimed to explore the pathogenic spectrum and risk factors of peritoneal dialysis-associated peritonitis (Peritoneal dialysis associated peritonitis, PDAP) in Yongzhou, Hunan, China. The clinical and epidemiological data on regular peritoneal dialysis (Peritoneal dialysis, PD) between January 2016 and December 2020 in Yongzhou were collected for retrospective analysis. The related factors of peritonitis were evaluated by single-factor analysis, while risk factors of refractory PDAP were evaluated by multivariate logistic regression analysis.172/331 172 (51.9%) patients developed peritonitis. The risk factors of PDAP in PD patients included high C-reactive protein (C-reactive protein, CRP), low albumin(Albumin, ALB), low hemoglobin (Hemoglobin, Hb), low educational level (junior high school or lower), preference of spicy food, irregular diet, low annual household income, unfavorable fluid exchange conditions, unstable employment (including working as a farmer), and unfavorable humidity conditions (P < 0.05). 63/172 (36.6%) PDAP patients were intractable cases with a pathogenic bacteria positive rate of 74.60% in the peritoneal dialysate cultures, and 109/172 patients were non-intractable cases with a pathogenic bacteria positive rate of 53.21%. Gram-positive bacteria (G+) were detected in most of the dialysate cultures, with Staphylococcus epidermidis (S. epidermidis) as the most common type, while Escherichia coli (E. coli) was the most common Gram-negative bacteria (G-). Gram-positive bacteria were sensitive to vancomycin and linezolid, while G- bacteria were sensitive to imipenem and amikacin. Lifestyle, educational level, and environmental factors are the major contributors to PDAP in PD patients. Fungal and multi-bacterial infections are the major causes of death; PD is stopped for such patients.
Collapse
Affiliation(s)
- Linshuang You
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Baoguo Zhang
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Fan Zhang
- Department of Nephropathy, The Central Hospital of Yongzhou, Yongzhou, China
| | - Jianwen Wang
- Department of Nephropathy, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China.
- Department of Critical Kidney Disease Research Center, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
32
|
Gao S, Tang L, Ma J, Wang K, Yao H, Tong J, Zhang H. Evaluation of the mechanism of Gong Ying San activity on dairy cows mastitis by network pharmacology and metabolomics analysis. PLoS One 2024; 19:e0299234. [PMID: 38630770 PMCID: PMC11023200 DOI: 10.1371/journal.pone.0299234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVES The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1β, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.
Collapse
Affiliation(s)
- Shuang Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Liyun Tang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jiayi Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Kaiming Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, P.R. China
| |
Collapse
|
33
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
34
|
Yu J, Lu H, Zhu L. Mutation-driven resistance development in wastewater E. coli upon low-level cephalosporins: Pharmacophore contribution and novel mechanism. WATER RESEARCH 2024; 252:121235. [PMID: 38310801 DOI: 10.1016/j.watres.2024.121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Cephalosporins have been widely applied in clinical and veterinary settings and detected at increasing concentrations in water environments. They potentially induce high-level antibiotic resistance at environmental concentrations. This study characterized how typical wastewater bacteria developed heritable antibiotic resistance under exposure to different cephalosporins, including pharmacophore-resistance correlation, resistance mechanism, and occurrence of resistance-relevant mutations in different water environments. Wastewater-isolated E. coli JX1 was exposed to eight cephalosporins individually at 25 µg/L for 60 days. Multidrug resistance developed and diverse mutations arose in selected mutants, where a single mutation in ATP phosphoribosyltransferase encoding gene (hisG) resulted in up to 128-fold increase in resistance to meropenem. Molprint2D pharma RQSAR analysis revealed that hydrogen-bond acceptors and hydrophobic groups in the R1 and R2 substituents of cephalosporins contributed positively to antibiotic resistance. Some of these pharmacophores may persist during bio- or photo-degradation in the environment. hisG mutation confers a novel resistance mechanism by inhibiting fatty acid degradation, and its variants were more abundant in water-related E. coli (especially in the effluent of wastewater treatment plants) compared with those in non-water environments. These results suggest that specific degradation of particular pharmacophores in cephalosporins could be useful for controlling resistance development, and mutations in previously unreported resistance genes (e.g., hisG) can lead to overlooked antibiotic resistance risks in water environments.
Collapse
Affiliation(s)
- Jinxian Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Aktas O, Akbaba O, Uyanik MH, Uslu H. Evaluation of Blood Culture Results in Patients with Malignancy in Erzurum Province, Turkey. Acta Med Litu 2024; 31:128-139. [PMID: 38978849 PMCID: PMC11227679 DOI: 10.15388/amed.2024.31.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 07/10/2024] Open
Abstract
Background Bloodstream infections are a serious public health problem that requires follow-up with blood culture; this negatively affects the course of the disease and patient healthcare costs in patients with malignancy. This study aimed to determine the growth frequency of pathogens and their antibiotic resistance profiles in the blood cultures of patients with hematological and oncogenic malignancies. Materials and methods The results of 7451 blood cultures, obtained from 2926 patients between January 2017 and January 2022, were evaluated retrospectively. Of these cultures, 3969 were obtained from patients with malignancy (diagnostic codes C00-D48 in ICD-10) and 3482 from patients without malignancy. The hospital information management system modules were used to acquire patient data and blood culture results. Results Various microorganisms grew in 10.1% of blood cultures. Of these organisms, 64.1% were isolated from cases of malignancy. Of the pathogens, 49.2% were gram-negative bacteria, 47.7% were gram-positive bacteria, and 3.1% were fungi. The most frequently isolated bacteria were methicillin-resistant coagulase-negative staphylococci (3.2%), Escherichia coli (2.3%), Klebsiella pneumoniae (1.0%), methicillin-sensitive coagulase-negative staphylococci (0.7%), and Staphylococcus aureus (0.6%). Pathogen positivity was highest in the patient cultures with urinary system cancer (23.9%), thyroid and other endocrine gland cancers (20.6%), female and male genital organ cancers (18.2%/16.9%), and digestive organ cancer (14.2%). Gram-negative bacteria to ampicillin, piperacillin, and sulfamethoxazole-trimethoprim and Gram-positive bacteria to penicillin, erythromycin, and sulfamethoxazole-trimethoprim were highly resistant. Combined resistance to imipenem and meropenem was observed in 25 Gram-negative bacteria. Twelve (48%) of the carbapenem-resistant bacteria were isolated from patients with lymphoid, hematopoietic, and related tissue malignant neoplasia. Conclusion This study reported microorganisms and their antimicrobial resistance in the blood cultures of malignant patients, a special patient group. It pointed out that the antibiotic resistance of Staphylococcus, Klebsiella pneumoniae, and E. coli is high enough to cause problems in the treatment of patients with malignancy.
Collapse
Affiliation(s)
- Osman Aktas
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozgür Akbaba
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | | | - Hakan Uslu
- Department of Medical Microbiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
36
|
Ordóñez YF, Miranda E, López MF, Ordóñez PE. Antibacterial activity of plant extracts against Streptococcus equi subsp. zooepidemicus isolates from guinea pigs with lymphadenitis in Ecuador. Heliyon 2024; 10:e25226. [PMID: 38352743 PMCID: PMC10862515 DOI: 10.1016/j.heliyon.2024.e25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Lymphadenitis is a commonly occurring and contagious disease in guinea pigs caused by different pathogens, including Streptococcus sp., Staphylococcus sp., and Corynebacterium sp. This study aimed to characterize the bacteria isolated from pus extracted from abscessed mandibular lymph nodes of diseased guinea pigs in Ecuador in 2019 and evaluate the in vitro antibacterial activity of the total extracts of three plant species. Isolates were recovered from three diseased guinea pigs with Lymphadenitis on a farm in Imbabura, Ecuador province. The bacteria were characterized through microbiological, biochemical, and molecular tests as Streptococcus equi subsp. zooepidemicus. Furthermore, the susceptibility of S. equi subsp. zooepidemicus to three plant extracts belonging to the Asteraceae family, Acmella ciliata, Bidens andicola, and Gazania splendens collected in Ecuador, were assessed in vitro by the microdilution method. Our data indicate that all the evaluated extracts showed activity, with a Minimum Inhibitory Concentration (MIC) of 22.50 mg/mL for Acmella ciliata, 11.25 mg/mL for Bidens andicola, and 5.60 mg/mL for Gazania splendens. Bidens andicola extract showed the highest efficacy with a % inhibition of 63.90 at the highest tested concentration (45 mg/mL). This is the first report on the bioactivity of these plant species against S. equi subsp. zooepidemicus.
Collapse
Affiliation(s)
- Yadira F. Ordóñez
- Grupo de Investigación Productos Naturales Bioactivos, Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - Estefanía Miranda
- Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - María Fernanda López
- Escuela de Ciencias Agrícolas y Ambientales, Pontificia Universidad Católica del Ecuador-Ibarra, Av. Jorge Guzmán Rueda y Av. Padre Aurelio Espinosa Polit, 100112, Ibarra, Ecuador
| | - Paola E. Ordóñez
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119, Urcuquí, Ecuador
| |
Collapse
|
37
|
Bedair HM, Samir TM, Mansour FR. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl Microbiol Biotechnol 2024; 108:198. [PMID: 38324052 PMCID: PMC10850035 DOI: 10.1007/s00253-024-13044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
The increasing antibiotic resistance towards a panel of microorganisms is one of the public health concerns. For this reason, the search for alternatives to the widely used antibiotic has been undertaken. In the era of sustainable chemistry, deep eutectic solvents (DESs) have emerged as promising antimicrobial agents. These solvents possess several advantages such as low volatility, low flammability, ease of preparation, and typically low cost of production. These properties make DES suitable for various applications, including extraction of biomolecules and preparation of cosmetics. Natural DESs (NADESs) are special category of DESs prepared from natural sources, which matched the recent trends of leaning back to nature, and decreasing dependence on synthetic precursors. NADES can be prepared by heating and stirring, freeze-drying, evaporation, grinding, and ultrasound-assisted and microwave-assisted synthesis. Utilizing NADESs as an alternative to traditional antibiotics, which become ineffective over time due to bacterial resistance, holds great promise for these reasons. This review aims to discuss the antimicrobial properties of multiple NADESs, including antibacterial and antifungal activities. To the best of our knowledge, this review is the first literature survey of the antimicrobial activities of NADESs. KEY POINTS: • Natural deep eutectic solvents are promising antimicrobial alternative to antibiotics • NADES holds high potential for their activity against bacterial resistance • NADES have also substantial antifungal activities.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
38
|
Saini A, Kumar A, Jangid K, Kumar V, Jaitak V. Identification of terpenoids as dihydropteroate synthase and dihydrofolate reductase inhibitors through structure-based virtual screening and molecular dynamic simulations. J Biomol Struct Dyn 2024; 42:1966-1984. [PMID: 37173829 DOI: 10.1080/07391102.2023.2203249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Bacterial infections are rising, and antimicrobial resistance (AMR) in bacteria has worsened the scenario, requiring extensive research to find alternative therapeutic agents. Terpenoids play an essential role in protecting plants from herbivores and pathogens. The present study was designed to focus on in silico evaluation of terpenoids for their affinity towards two necessary enzymes, i.e. DHFR and DHPS, which are involved in forming 5, 6, 7, 8-tetrahydrofolate, a key component in bacterial DNA synthesis proteins. Additionally, to account for activity against resistant bacteria, their affinity towards the L28R mutant of DHFR was also assessed in the study. The structure-based drug design approach was used to screen the compound library of terpenes for their interaction with active sites of DHFR and DHPS. Further, compounds were screened based on their dock score, pharmacokinetic properties, and binding affinities. A total of five compounds for each target protein were screened, having dock scores better than their respective standard drug molecules. CNP0169378 (-8.4 kcal/mol) and CNP0309455 (-6.5 kcal/mol) have been identified as molecules with a higher affinity toward the targets of DHFR and DHPS, respectively. At the same time, one molecule CNP0298407 (-5.8 kcal/mol for DHPS, -7.6 kcal/mol for DHFR, -6.1 kcal/mol for the L28R variant), has affinity for both proteins (6XG5 and 6XG4). All the molecules have good pharmacokinetic properties. We further validated the docking study by binding free energy calculations using the MM/GBSA approach and molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Saini
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Kumar
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
39
|
Maria C, de Matos AM, Rauter AP. Recent antibacterial carbohydrate-based prodrugs, drugs and delivery systems to overcome antimicrobial resistance. Curr Opin Chem Biol 2024; 78:102419. [PMID: 38219399 DOI: 10.1016/j.cbpa.2023.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Antimicrobial resistance is an increasing phenomenon that is threatening global health. Tuberculosis causative bacteria and several resistant and multidrug-resistant bacteria are widely spread and listed by the World Health Organization as global priorities for research and development. Hence, new antibacterial agents with new modes of action are urgently required. In this context, carbohydrate-based drugs have been extensively studied and used, presenting several benefits for therapeutical purposes. In this review, the latest efforts done in the carbohydrate-based antibacterial agents research field, reported from 2021 to 2023, are summarized. Carbohydrate-based prodrugs, drugs, and delivery systems are covered, highlighting derivatization of existing antibiotics, use of nanotechnology, and repurposing of available therapeutical agents as the most popular strategies used in antibacterial agents' development.
Collapse
Affiliation(s)
- Catarina Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana M de Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
40
|
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, Zhao R, Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1336821. [PMID: 38357445 PMCID: PMC10864608 DOI: 10.3389/fcimb.2024.1336821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kaixin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Zhou
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Bint-E-Naser SF, Mohamed ZJ, Chao Z, Bali K, Owens RM, Daniel S. Gram-Positive Bacterial Membrane-Based Biosensor for Multimodal Investigation of Membrane-Antibiotic Interactions. BIOSENSORS 2024; 14:45. [PMID: 38248423 PMCID: PMC10813107 DOI: 10.3390/bios14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes. In this work, we report the development of a planar bacterial cytoplasmic membrane-based biosensor using MVs isolated from the Bacillus subtilis WT strain that can be coated on multiple surface types such as glass, quartz crystals, and polymeric electrodes, fostering the multimodal assessment of drug-membrane interactions. Retention of native membrane components such as lipoteichoic acids, lipids, and proteins is verified. This biosensor replicates known interaction patterns of the antimicrobial compound, daptomycin, with the Gram-positive bacterial membrane, establishing the applicability of this platform for carrying out biophysical characterization of the interactions of membrane-acting antibiotic compounds with the bacterial cytoplasmic membrane. We report changes in membrane viscoelasticity and permeability that correspond to partial membrane disruption when calcium ions are present with daptomycin but not when these ions are chelated. This biomembrane biosensing platform enables an assessment of membrane biophysical characteristics during exposure to antibiotic drug candidates to aid in identifying compounds that target membrane disruption as a mechanism of action.
Collapse
Affiliation(s)
- Samavi Farnush Bint-E-Naser
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | | | - Zhongmou Chao
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| | - Karan Bali
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (K.B.); (R.M.O.)
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; (S.F.B.-E.-N.); (Z.C.)
| |
Collapse
|
42
|
Cruz-Martínez YR, Hernández-Delgado T, Valencia I, Nieto-Camacho A, Ramírez-Apan MT, Espinosa-García FJ, Delgado G. Evaluation of selected natural sesquiterpenes as sensitizing agents of β-lactam-resistant bacterial strains. J Appl Microbiol 2024; 135:lxad315. [PMID: 38140942 DOI: 10.1093/jambio/lxad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
AIMS To evaluate the capacity of fourteen sesquiterpenes to enhance the action of known antibiotics against two β-lactam resistant strains, and to determine a possible mechanism of antibiotic sensitization by assessing their ability to inhibit a β-lactamase enzyme. METHODS AND RESULTS The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of β-lactams cefuroxime (CEFM) and cefepime (CPM) against Staphylococcus aureus 23MR and Escherichia coli 82MR strains in the absence and presence of subinhibitory concentrations of fourteen natural sesquiterpenes. (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (5), xerantolide (8), estafiatin (11), and ambrosin (12) exhibited the best sensitizing effects in both strains. These compounds were able to reduce the MIC of CEFM by 2-fold (from 15.0 to 7.5 µg/mL) and CPM by 15-fold (from 0.9 to 0.06 µg/mL) in S. aureus 23MR. For E. coli 82MR, the MIC of CEFM was reduced up to 8-fold (from 120.0 to 15.0 µg/mL). In this strain, the activity of 8 and 11 surpassed that of clavulanic acid (positive reference), which reduced the MIC of CEFM from 120.0 to 60.0 µg/mL. To elucidate a possible mechanism of antibiotic sensitization, molecular docking studies were conducted with β-lactamases. These studies revealed an affinity with the enzymes (energies > -4.93 kcal/mol) by the formation of hydrogen bonds with certain conserved amino acid residues within the active sites. However, the in vitro results indicated only marginal inhibition, with percentages <50%. CONCLUSIONS The bioevaluations indicate that nine of fourteen sesquiterpenes enhance the action of CEFM and CPM against the β-lactam resistant strains, and these compounds displayed moderate activity as inhibitors of β-lactamase.
Collapse
Affiliation(s)
- Yesica R Cruz-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria,, Ciudad de México, Coyoacán 04510, México
| | - Tzasna Hernández-Delgado
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, México
| | - Israel Valencia
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de México, México
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria,, Ciudad de México, Coyoacán 04510, México
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria,, Ciudad de México, Coyoacán 04510, México
| | - Francisco Javier Espinosa-García
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México., Ex Hacienda de San José de la Huerta, Morelia 58190, Michoacán, México
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria,, Ciudad de México, Coyoacán 04510, México
| |
Collapse
|
43
|
Heidarian S, Guliaev A, Nicoloff H, Hjort K, Andersson DI. High prevalence of heteroresistance in Staphylococcus aureus is caused by a multitude of mutations in core genes. PLoS Biol 2024; 22:e3002457. [PMID: 38175839 PMCID: PMC10766187 DOI: 10.1371/journal.pbio.3002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Heteroresistance (HR) is an enigmatic phenotype where, in a main population of susceptible cells, small subpopulations of resistant cells exist. This is a cause for concern, as this small subpopulation is difficult to detect by standard antibiotic susceptibility tests, and upon antibiotic exposure the resistant subpopulation may increase in frequency and potentially lead to treatment complications or failure. Here, we determined the prevalence and mechanisms of HR for 40 clinical Staphylococcus aureus isolates, against 6 clinically important antibiotics: daptomycin, gentamicin, linezolid, oxacillin, teicoplanin, and vancomycin. High frequencies of HR were observed for gentamicin (69.2%), oxacillin (27%), daptomycin (25.6%), and teicoplanin (15.4%) while none of the isolates showed HR toward linezolid or vancomycin. Point mutations in various chromosomal core genes, including those involved in membrane and peptidoglycan/teichoic acid biosynthesis and transport, tRNA charging, menaquinone and chorismite biosynthesis and cyclic-di-AMP biosynthesis, were the mechanisms responsible for generating the resistant subpopulations. This finding is in contrast to gram-negative bacteria, where increased copy number of bona fide resistance genes via tandem gene amplification is the most prevalent mechanism. This difference can be explained by the observation that S. aureus has a low content of resistance genes and absence of the repeat sequences that allow tandem gene amplification of these genes as compared to gram-negative species.
Collapse
Affiliation(s)
- Sheida Heidarian
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Prabha S, Chauhan P, Warkare S, Pandey KM. A computational investigation of potential plant-based bioactive compounds against drug-resistant Staphylococcus aureus of multiple target proteins. J Biomol Struct Dyn 2023:1-19. [PMID: 38133950 DOI: 10.1080/07391102.2023.2297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Drug-resistant Staphylococcus aureus (DRSA) poses a significant global health threat, like bacteremia, endocarditis, skin, soft tissue, bone, and joint infections. Nowadays, the resistance against conventional drugs has been a prompt and focused medical concern. The present study aimed to explore the inhibitory potential of plant-based bioactive compounds (PBBCs) against effective target proteins using a computational approach. We retrieved and verified 22 target proteins associated with DRSA and conducted a screening process that involved testing 87 PBBCs. Molecular docking was performed between screened PBBCs and reference drugs with selected target proteins via AutoDock. Subsequently, we filtered the target proteins and top PBBCs based on their binding affinity scores. Furthermore, molecular dynamic simulation was carried out through GROMACS for a duration of 100 ns, and the binding free energy was calculated using the gmx_MMPBSA. The result showed consistent hydrogen bonding interactions among the amino acid residues Ser 149, Arg 151, Thr 165, Thr 216, Glu 239, Ser 240, Ile 14, as well as Asn 18, Gln 19, Lys 45, Thr 46, Tyr 109, with their respective target proteins of the penicillin-binding protein and dihydrofolate reductase complex. Additionally, we assessed the pharmacokinetic properties of screened PBBCs via SwissADME and AdmetSAR. The findings suggest that β-amyrin, oleanolic acid, kaempferol, quercetin, and friedelin have the potential to inhibit the selected target proteins. In future research, both in vitro and in vivo, experiments will be needed to establish these PBBCs as potent antimicrobial drugs for DRSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarit Prabha
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | | | - Sudeesh Warkare
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Khushhali M Pandey
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
45
|
Borandeh S, Laurén I, Teotia A, Niskanen J, Seppälä J. Dual functional quaternary chitosans with thermoresponsive behavior: structure-activity relationships in antibacterial activity and biocompatibility. J Mater Chem B 2023; 11:11300-11309. [PMID: 37953644 DOI: 10.1039/d3tb02066e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Cationically modified chitosan derivatives exhibit a range of appealing characteristics, with a particular emphasis on their antimicrobial potential across a broad spectrum of biomedical applications. This study aimed to delve deeper into quaternary chitosan (QC) derivatives. Through the synthesis of both homogeneously and heterogeneously dual-quaternized chitosan (DQC), utilizing AETMAC ([2-(acryloyloxy)ethyl]-trimethylammonium chloride) and GTMAC (glycidyl trimethylammonium chloride), a permanent charge was established, spanning a wide pH range. We assessed structural differences, the type of quaternary functional group, molecular weight (Mw), and charge density. Intriguingly, an upper critical solution temperature (UCST) behavior was observed in AETMAC-functionalized QC. To our knowledge, it is a novel discovery in cationically functionalized chitosan. These materials demonstrated excellent antimicrobial efficacy against model test organisms E. coli and P. syringae. Furthermore, we detected concentration-dependent cytotoxicity in NIH-3T3 fibroblasts. Striking a balance between antimicrobial activity and cytotoxicity becomes a crucial factor in application feasibility. AETMAC-functionalized chitosan emerges as the top performer in terms of overall antibacterial effectiveness, possibly owing to factors like molecular weight, charge characteristics, and variations in the quaternary linker. Quaternary chitosan derivatives, with their excellent antibacterial attributes, hold significant promise as antibacterial or sanitizing agents, as well as across a broad spectrum of biomedical and environmental contexts.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Isabella Laurén
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
46
|
Wagdy RA, Abutaleb NS, Fathalla RK, Elgammal Y, Weck S, Pal R, Fischer PD, Ducho C, Abadi AH, N Seleem M, Engel M, Abdel-Halim M. Discovery of 1,2-diaryl-3-oxopyrazolidin-4-carboxamides as a new class of MurA enzyme inhibitors and characterization of their antibacterial activity. Eur J Med Chem 2023; 261:115789. [PMID: 37717380 DOI: 10.1016/j.ejmech.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC50 values of 9.8-12.2 μM. Compounds 15, 16 and 21 showed equipotent inhibition of the C115D MurA mutant developed by fosfomycin-resistant Escherichia coli. NMR binding studies revealed that some of the MurA residues targeted by 15 also interacted with fosfomycin, but not all, indicating an overlapping but not identical binding site. The antibacterial activity of the compounds against E. coli ΔtolC suggests that inhibition of MurA accounts for the observed effect on bacterial growth, considering that a few potent MurA inhibitors could not penetrate the bacterial outer membrane and were therefore inactive as proven by the bacterial cell uptake assay. The most promising compounds were also evaluated against a panel of Gram-positive bacteria. Remarkably, compounds 21 and 31 (MurA IC50 = 9.8 and 10.2 μM respectively) exhibited a potent activity against Clostridioides difficile strains with MIC values ranging from 0.125 to 1 μg/mL, and were also shown to be bactericidal with MBC values between 0.25 and 1 μg/mL. Furthermore, both compounds were shown to have a limited activity against human normal intestinal flora and showed high safety towards human colon cells (Caco-2) in vitro. The thiolactone derivative (compound 5) exhibited an interesting broad spectrum antibacterial activity despite its weak MurA inhibition. Altogether, the presented series provides a promising class of antibiotics that merits further investigation.
Collapse
Affiliation(s)
- Reem A Wagdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Stefanie Weck
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Patrick D Fischer
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Ducho
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
47
|
Khalifa Z, Upadhyay R, Patel AB. Arylidene and amino spacer-linked rhodanine-quinoline hybrids as upgraded antimicrobial agents. Chem Biol Drug Des 2023; 102:1632-1642. [PMID: 37697906 DOI: 10.1111/cbdd.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Antibiotic resistance associated with various microorganisms such as Gram-positive, Gram-negative, fungal strains, and multidrug-resistant tuberculosis increases the risk of healthcare survival. Preliminary therapeutics becoming ineffective that might lead to noteworthy mortality presents a crucial challenge for the scientific community. Hence, there is an urgent need to develop hybrid compounds as antimicrobial agents by combining two or more bioactive heterocyclic moieties into a single molecular framework with fewer side effects and a unique mode of action. This review highlights the recent advances (2013-2023) in the pharmacology of rhodanine-linked quinoline hybrids as more effective antimicrobial agents. In the drug development process, linker hybrids acquire the top position due to their excellent π-stacking and Van der Waals interaction with the DNA active sites of pathogens. A molecular hybridization strategy has been optimized, indicating that combining these two bioactive moieties with an arylidene and an amino spacer linker increases the antimicrobial potential and reduces drug resistance. Moreover, the structure-activity relationship study is discussed to express the role of various functional groups in improving and decrementing antimicrobial activities for rational drug design. Also, a linker approach may accelerate the development of dynamic antimicrobial agents through molecular hybridization.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
48
|
Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res 2023; 44:1095-1114. [PMID: 37914524 PMCID: PMC10802102 DOI: 10.24272/j.issn.2095-8137.2023.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Peter Muiruri Kamau
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
49
|
Faustova MO, Chumak YV, Loban’ GA, Ananieva MM, Havryliev VM. Decamethoxin and chlorhexidine bigluconate effect on the adhesive and biofilm-forming properties of Streptococcus mitis. FRONTIERS IN ORAL HEALTH 2023; 4:1268676. [PMID: 38024149 PMCID: PMC10664242 DOI: 10.3389/froh.2023.1268676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of the study Was to investigate the effect of antiseptics on the adhesive and biofilm-forming properties of clinical S.mitis isolates isolated from the oral cavity of patients with an infectious and inflammatory post-extraction complication. Materials and methods Twenty four clinical isolates of S.mitis isolated from patients were studied. The studied antiseptics included 0.02% aqueous solution of decamethoxin and 0.05% solution of chlorhexidine bigluconate. Adhesion of clinical isolates under the action of decamethoxin and chlorhexidine bigluconate was determined by the method of V.I. Brillis. The biofilm-forming properties of clinical isolates were studied using the "microtiter plate test" according to G.D. Christensen. Results The studied clinical isolates of S.mitis are classified as highly adherent microorganisms. Action of decamethoxin on clinical isolates decreases the adhesion index of the studied isolates in comparison with the adhesion index of the control culture. Action of chlorhexidine bigluconate on S.mitis isolates increases of adhession of the studied clinical isolates in comparison with the control. After the effect of decamethoxin, the optical density of clinical isolates decreased considering the optical density results of the control. The clinical isolates left an average film-forming capacity even after chlorhexidine bigluconate action. Conclusions Clinical isolates of S.mitis are highly adherent microorganisms. The antiseptic decamethoxin decreases the adhesion index of these bacteria, while chlorhexidine bigluconate increases the adhesion index of clinical S.mitis isolates. Clinical S. mitis isolates have an average biofilm formation capacity index. The antiseptic decamethoxin inhibits the biofilm formation capacity of S.mitis from medium to low.
Collapse
Affiliation(s)
- Mariia O. Faustova
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Yuliia V. Chumak
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Galina A. Loban’
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Maiia M. Ananieva
- Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine
| | - Viktor M. Havryliev
- Department of Surgical Dentistry and Maxillo-Facial Surgery, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
50
|
Virzì NF, Fallica AN, Romeo G, Greish K, Alghamdi MA, Patanè S, Mazzaglia A, Shahid M, Pittalà V. Curcumin I-SMA nanomicelles as promising therapeutic tool to tackle bacterial infections. RSC Adv 2023; 13:31059-31066. [PMID: 37881762 PMCID: PMC10594152 DOI: 10.1039/d3ra04885c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Renewed interest towards natural substances has been pushed by the widespread diffusion of antibiotic resistance. Curcumin I is the most active and effective constituent of curcuminoids extracted from Curcuma longa and, among other beneficial effects, attracted attention for its antimicrobial potential. Since the poor pharmacokinetic profile hinders its efficient utilization, in the present paper, we report encapsulation of curcumin I in poly(styrene-co-maleic acid) (SMA-CUR) providing a nanomicellar system with improved aqueous solubility and bioavailability. SMA-CUR was characterized by means of size, zeta potential, polydispersity index, atomic force microscopy (AFM), drug release studies, spectroscopic properties and stability. SMA-CUR nanoformulation displayed exciting antimicrobial properties compared to free curcumin I towards Gram-positive and Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Nicola F Virzì
- Department of Drug and Health Science, University of Catania Viale A. Doria 6 95125 Catania Italy
| | - Antonino N Fallica
- Department of Drug and Health Science, University of Catania Viale A. Doria 6 95125 Catania Italy
| | - Giuseppe Romeo
- Department of Drug and Health Science, University of Catania Viale A. Doria 6 95125 Catania Italy
| | - Khaled Greish
- Department of Molecular Medicine, Arabian Gulf University Manama 329 Bahrain
| | - Maha Ali Alghamdi
- Department of Molecular Medicine, Arabian Gulf University Manama 329 Bahrain
| | - Salvatore Patanè
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina V.le F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Mohammad Shahid
- Department of Microbiology & Immunology, Arabian Gulf University Manama 329 Bahrain
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania Viale A. Doria 6 95125 Catania Italy
- Department of Molecular Medicine, Arabian Gulf University Manama 329 Bahrain
| |
Collapse
|