1
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhao P, Wang Z, Liao S, Liao Y, Hu S, Qin J, Zhang D, Yan X. Components in SLPE Alleviate AD Model Nematodes by Up-Regulating Gene gst-5. Int J Mol Sci 2024; 25:10188. [PMID: 39337674 PMCID: PMC11432538 DOI: 10.3390/ijms251810188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Salvia leucantha is a perennial herb of the genus Salvia in the family Labiatae, which has a wide range of biological activities, mainly including inhibition of acetylcholinesterase, antibacterial, and anti-inflammatory activity. To explore the protective effects and mechanism of action of S. leucantha on Alzheimer's disease (AD), the anti-AD activity of SLE (extracts of S. leucantha) was determined by using a transgenic Caenorhabditis elegans (C. elegans) model (CL4176). Analyses included paralysis assay, phenotypic experiments, transcriptome sequencing, RNA interference (RNAi), heat shock assays, and gas chromatography-mass spectrometry (GC-MS). SLPE (S. leucantha petroleum ether extract) could significantly delay CL4176 paralysis and extend the longevity of C. elegans N2 without harmful effects. A total of 927 genes were significantly changed by SLPE treatment in C. elegans, mainly involving longevity regulatory pathways-nematodes, drug metabolism-cytochrome P450, and glutathione metabolic pathways. RNAi showed that SLPE exerted its anti-AD activity through up-regulation of the gene gst-5; the most abundant compound in SLPE analyzed by GC-MS was 2,4-Di-tert-butylphenol (2,4-DTBP), and the compound delayed nematode paralysis. The present study suggests that active components in S. leucantha may serve as new-type anti-AD candidates and provide some insights into their biological functions.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Zifu Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shimei Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Yangxin Liao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Shijun Hu
- Key Laboratory of Biodiversity Conservationin Southwest China (State Forestry Administration), Southwest Forestry University, Kunming 650224, China;
| | - Jianchun Qin
- College of Plant Science, Jilin University, Xi’an Road No. 5333, Changchun 130062, China;
| | - Donghua Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| | - Xiaohui Yan
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.Z.); (Z.W.); (S.L.); (Y.L.)
| |
Collapse
|
3
|
Wang J, Liu W, Huang Y, Wang G, Guo X, Shi D, Sun T, Xiao C, Zhang C, Jiang B, Guo Y, Li J. A Senomorphlytic Three-Drug Combination Discovered in Salsola collina for Delaying Aging Phenotypes and Extending Healthspan. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401862. [PMID: 39073681 PMCID: PMC11423240 DOI: 10.1002/advs.202401862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Indexed: 07/30/2024]
Abstract
The pursuit of pharmacological interventions in aging aims focuses on maximizing safety and efficacy, prompting an exploration of natural products endowed with inherent medicinal properties. Subsequently, this work establishes a unique library of plant extracts sourced from Yunnan Province, China. Screening of this herbal library herein revealed that Salsola collina (JM10001) notably enhances both lifespan and healthspan in C. elegans. Further analysis via network pharmacology indicates that the p53 signaling pathway plays a crucial role in mediating the anti-aging effects of JM10001. Additionally, this work identifies that a composition, designated as JM10101 and comprising three chemical constituents of JM10001, preserves the original lifespan-extending activity in C. elegans. Both JM10001 and JM10101 mitigate aging symptoms in senescence-accelerated mice treated with doxorubicin and in naturally aged mice. Notably, JM10101 exhibits a more sophisticated senomorphlytic role encompassing both senomorphic and senolytic functions than JM10001 in the modulation of senescent cells, offering a promising strategy for the discovery of combination drugs in the rational development of anti-aging therapies.
Collapse
Affiliation(s)
- Jiqun Wang
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative BiologySchool of Life SciencesCentral China Normal UniversityWuhanHubei430079China
| | - Guangwei Wang
- School of Chemical EngineeringKey Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationNorthwest UniversityXi'an710127China
| | - Xiaobo Guo
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Donglei Shi
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Chaojiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti‐pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica & College of PharmacyDali UniversityDaliYunnan671000China
| | - Chao Zhang
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti‐pathogenic Plant Resources from Western Yunnan, Institute of Materia Medica & College of PharmacyDali UniversityDaliYunnan671000China
| | - Yuan Guo
- School of Chemical EngineeringKey Laboratory of Synthetic and Natural Functional Molecule of the Ministry of EducationNorthwest UniversityXi'an710127China
| | - Jian Li
- State Key Laboratory of Bioreactor EngineeringShanghai Frontiers Science Center of Optogenetic Techniques for Cell MetabolismFrontiers Science Center for Materiobiology and Dynamic ChemistryShanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
- Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationSchool of PharmacyShihezi UniversityShihezi832003China
| |
Collapse
|
4
|
Zöngür A. Evaluation of the Effects of Di-(2-ethylhexyl) phthalate (DEHP) on Caenorhabditis elegans Survival and Fertility. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05032-z. [PMID: 39088026 DOI: 10.1007/s12010-024-05032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Di-2-ethylhexyl (DEHP), which is widely used in industrial products, is produced annually in excess of 2 million tons worldwide. DEHP is an endocrine disruptor and one of the major environmental pollutant chemicals (EDCs) in nature. There is some information about the effects of these products, which provide great advantages in every respect, on human health and the environment. In this study, C. elegans organism was used to evaluate the health and environmental risks of DEHP. The survival and fertility effects of DEHP on the C. elegans organism were examined and the results were evaluated. In the study, it was determined that DEHP not only shortened the survival time of C. elegans but also caused a decrease in fertility. DEHP (0.625 mM and 10 mM) caused a 23.2-30.6% decrease in fertility. Additionally, the LC50 (50% lethal concentration) value of DEHP was found to be 321 µg/mL.
Collapse
Affiliation(s)
- Alper Zöngür
- Gemerek Vocational School, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
5
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Hernández-Cruz EY, Aparicio-Trejo OE, Eugenio-Pérez D, Juárez-Peredo E, Zurita-León M, Valdés VJ, Pedraza-Chaverri J. Sulforaphane Exposure Prevents Cadmium-Induced Toxicity and Mitochondrial Dysfunction in the Nematode Caenorhabditis elegans by Regulating the Insulin/Insulin-like Growth Factor Signaling (IIS) Pathway. Antioxidants (Basel) 2024; 13:584. [PMID: 38790689 PMCID: PMC11117759 DOI: 10.3390/antiox13050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to humans and animals. Its adverse effects have been widely associated with mitochondrial alterations. However, there are not many treatments that target mitochondria. This study aimed to evaluate the impact of sulforaphane (SFN) pre-exposure against cadmium chloride (CdCl2)-induced toxicity and mitochondrial alterations in the nematode Caenorhabditis elegans (C. elegans), by exploring the role of the insulin/insulin-like growth factor signaling pathway (IIS). The results revealed that prior exposure to SFN protected against CdCl2-induced mortality and increased lifespan, body length, and mobility while reducing lipofuscin levels. Furthermore, SFN prevented mitochondrial alterations by increasing mitochondrial membrane potential (Δψm) and restoring mitochondrial oxygen consumption rate, thereby decreasing mitochondrial reactive oxygen species (ROS) production. The improvement in mitochondrial function was associated with increased mitochondrial mass and the involvement of the daf-16 and skn-1c genes of the IIS signaling pathway. In conclusion, exposure to SFN before exposure to CdCl2 mitigates toxic effects and mitochondrial alterations, possibly by increasing mitochondrial mass, which may be related to the regulation of the IIS pathway. These discoveries open new possibilities for developing therapies to reduce the damage caused by Cd toxicity and oxidative stress in biological systems, highlighting antioxidants with mitochondrial action as promising tools.
Collapse
Affiliation(s)
- Estefani Yaquelin Hernández-Cruz
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Dianelena Eugenio-Pérez
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Biochemical Sciences, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elí Juárez-Peredo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| | - Mariana Zurita-León
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - Víctor Julián Valdés
- Departamento de Biología y Desarrollo Celular, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (M.Z.-L.); (V.J.V.)
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (E.Y.H.-C.); (D.E.-P.); (E.J.-P.)
| |
Collapse
|
7
|
Guo X, Xin Q, Wei P, Hua Y, Zhang Y, Su Z, She G, Yuan R. Antioxidant and anti-aging activities of Longan crude and purified polysaccharide (LP-A) in nematode Caenorhabditis elegans. Int J Biol Macromol 2024; 267:131634. [PMID: 38636747 DOI: 10.1016/j.ijbiomac.2024.131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.
Collapse
Affiliation(s)
- Xiuhuan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Quancheng Xin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yutong Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongchun Zhang
- Beijing R & D Center of Mudanjiang Youbo Pharmaceutical Co., Ltd., Beijing 101300, China
| | - Zhaoyuqing Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruijuan Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
8
|
Pandey T, Wang B, Wang C, Zu J, Deng H, Shen K, do Vale GD, McDonald JG, Ma DK. LPD-3 as a megaprotein brake for aging and insulin-mTOR signaling in C. elegans. Cell Rep 2024; 43:113899. [PMID: 38446666 PMCID: PMC11019932 DOI: 10.1016/j.celrep.2024.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/21/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jenny Zu
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Ayuda-Durán B, Garzón-García L, González-Manzano S, Santos-Buelga C, González-Paramás AM. Insights into the Neuroprotective Potential of Epicatechin: Effects against Aβ-Induced Toxicity in Caenorhabditis elegans. Antioxidants (Basel) 2024; 13:79. [PMID: 38247503 PMCID: PMC10812808 DOI: 10.3390/antiox13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Medical therapies to avoid the progression of Alzheimer's disease (AD) are limited to date. Certain diets have been associated with a lower incidence of neurodegenerative diseases. In particular, the regular intake of foods rich in polyphenols, such as epicatechin (EC), could help prevent or mitigate AD progression. This work aims to explore the neuroprotective effects of EC using different transgenic strains of Caenorhabditis elegans, which express human Aβ1-42 peptides and contribute to elucidating the mechanisms involved in the effects of EC in AD. The performed assays indicate that this flavan-3-ol was able to reduce the signs of β-amyloid accumulation in C. elegans, improving motility and chemotaxis and increasing survival in transgenic strain peptide producers compared to nematodes not treated with EC. The neuroprotective effects exhibited by EC in C. elegans could be explained by the modulation of inflammation and stress-associated genes, as well as autophagy, microgliosis, and heat shock signaling pathways, involving the regulation of cpr-5, epg-8, ced-7, ZC239.12, and hsp-16 genes. Overall, the results obtained in this study support the protective effects of epicatechin against Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| |
Collapse
|
10
|
Zou Y, Qin X, Wang W, Meng Q, Zhang Y. Anti-Aging Effect of Hemerocallis citrina Baroni Polysaccharide-Rich Extract on Caenorhabditis elegans. Int J Mol Sci 2024; 25:655. [PMID: 38203825 PMCID: PMC10779119 DOI: 10.3390/ijms25010655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Plant polysaccharides are important for anti-aging research. Polysaccharides from Hemerocallis citrina Baroni (H. citrina) have been reported to have antioxidant activity; however, their anti-aging roles and mechanisms are not clear. In this study, we extracted polysaccharides from H. citrina by an ultrasonic-assisted water extraction-alcohol precipitation method and chemically determined the physicochemical properties such as extraction yield, content, and in vitro antioxidant properties of H. citrina polysaccharide-rich extract (HCPRE). Using Caenorhabditis elegans (C. elegans) as a model animal, the anti-aging effect of HCPRE was investigated, and the mechanism of action of HCPRE was explored by the in vivo antioxidant level assay of C. elegans and the related gene expression assay. The extraction yield of HCPRE was 11.26%, the total polysaccharide content was 77.96%, and the main monosaccharide components were glucose and galactose. In addition, HCPRE exhibited good antioxidant activity both in vitro and in vivo. Under normal thermal stress and oxidative stress conditions, being fed 1200 µg/mL of HCPRE significantly prolonged the life span of C. elegans by 32.65%, 17.71%, and 32.59%, respectively. Our study showed that HCPRE exerted an anti-aging effect on C. elegans, and its mechanism involves increasing the activities of catalase (CAT) and superoxide dismutase (SOD), reducing the level of reactive oxygen species (ROS) and regulating the expression of related genes.
Collapse
Affiliation(s)
- Yunxia Zou
- School of Food Science and Nutritional Engineering, East Campus, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.Q.); (W.W.)
| | - Xiyue Qin
- School of Food Science and Nutritional Engineering, East Campus, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.Q.); (W.W.)
| | - Wenli Wang
- School of Food Science and Nutritional Engineering, East Campus, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.Q.); (W.W.)
| | - Qingyong Meng
- School of Biology, West Campus, China Agricultural University, Beijing 100193, China;
| | - Yali Zhang
- School of Food Science and Nutritional Engineering, East Campus, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.Q.); (W.W.)
| |
Collapse
|
11
|
Duran-Izquierdo M, Sierra-Marquez L, Taboada-Alquerque M, Olivero-Verbel J. Simira cordifolia protects against metal induced-toxicity in Caenorhabditis elegans. Front Pharmacol 2023; 14:1235190. [PMID: 38035022 PMCID: PMC10684763 DOI: 10.3389/fphar.2023.1235190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
Simira cordifolia (Hook.f.) Steyerm (Rubiaceae) is a vascular plant used in Northern Colombia as a source of pigments and wood. However, there is a lack of information regarding its pharmacology and toxicity. This research aimed to study the hydroalcoholic extract of Simira cordifolia as a protector against metal-induced toxicity in Caenorhabditis elegans. Preliminary phytochemical screening of the hydroalcoholic extract of S. cordifolia (HAE-Sc) was conducted using HPLC-ESI-QTOF. Wild-type N2 C. elegans larvae were exposed to different concentrations of HAE-Sc evaluating lethality (50-5000 μg/mL), growth, lifespan, resistance to heat stress, and its protective effect against Mercury (Hg)-, Lead (Pb)- and Cadmium (Cd)-induced lethality (50-1000 μg/mL). The main metabolites present in the extract were iridoids, β-carboline-alkaloids and polyphenols. Bioassays demonstrated that HAE-Sc exhibited low toxicity, with significant lethality (4.2% and 9.4%) occurring at 2500-5000 μg/mL. Growth inhibition reached up to 23.3%, while reproduction declined 13% and 17% at concentrations 500 and 1000 μg/mL, respectively. HAE-Sc enhanced the survival rate of the nematode under thermal stress by up to 79.8%, and extended the mean lifespan of worms by over 33% compared to control. The average lifespan was prolonged by 15.3% and 18.5% at 50 and 100 μg/mL HAE-Sc, respectively. The extract (1000 μg/mL) was able to reduce the death of C. elegans in the presence of heavy metals up to 65.9, 96.8% and 87% for Pb, Hg, and Cd, respectively. In summary, S. cordifolia shows potential protective effects in C. elegans against toxicity caused by heavy metals and heat.
Collapse
Affiliation(s)
| | | | | | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, Colombia
| |
Collapse
|
12
|
Zhang L, Liu J, Xu B, Wu D, Wu Y, Li G. β-Carbolines norharman and harman change neurobehavior causing neurological damage in Caenorhabditis elegans. Food Funct 2023; 14:10031-10040. [PMID: 37927231 DOI: 10.1039/d3fo03732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
β-Carbolines norharman and harman, belonging to the class of heterocyclic aromatic amines (HAAs), are typical hazardous substances produced during the thermal processing of food. Compared to other HAAs, there have been limited reports on the toxicity of β-carbolines. Nevertheless, the current studies are concerned with the neurotoxic effects of norharman and harman at high doses. It is still unknown whether the relatively low dose of β-carbolines in foods induces neurotoxicity and the mechanism of the toxicity. In this study, C. elegans was exposed to a series of gradients of norharman and harman (0, 0.05, 5, and 10 mg L-1). The survival rate and indicators of ethology (locomotor behaviors, foraging behavior, and chemotaxis ability) were assessed. The antioxidant system and the contents of neurotransmitters, as well as the activity of acetylcholinesterase (AChE), were evaluated. Additionally, the RNA-seq screening of differentially expressed genes (DEGs) revealed the potential molecular mechanisms of norharman- and harman-induced toxic effects. Our results indicated that the risk of long-term exposure to norharman and harman at low doses (food-related doses) should be emphasized. Moreover, β-carbolines might induce neurotoxicity by causing oxidative damage, regulating the content of neurotransmitters, and interfering with cytochrome P450 metabolism. This study would provide a toxicological basis for the neurotoxicity of β-carbolines and lay the foundation for the risk assessment of endogenous pollutants in food.
Collapse
Affiliation(s)
- Luyao Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jialu Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Bufan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
13
|
Liu H, Liu B, Zhang S, Fan M, Ji X, Zhang S, Wang Z, Qiao K. Lentinan protects Caenorhabditis elegans against fluopyram-induced toxicity through DAF-16 and SKN-1 pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115510. [PMID: 37742572 DOI: 10.1016/j.ecoenv.2023.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Fluopyram, a SDH inhibitor fungicide, is widely used in agriculture to control fungi and nematodes. However, fluopyram has been proved toxic that caused damage to organs through oxidative stress. The development of natural extracts that can reduce oxidative damage is a promising method. Lentinan is isolated from Lentinus edodes and has been verified its antioxidant activity. In this study, Caenorhabditis elegans was used to evaluate the protective effects of lentinan against fluopyram-induced toxicity and the possible mechanisms. Results showed that lentinan pretreatment notably increased the survival rate of N2 nematodes by 15.0 % and extended the lifespan by 91.5 %, compared with the fluopyram treatment. Lentinan pretreatment reverted the inhibition of the locomotion and reproduction of C. elegans under the fluopyram stress. In addition, lentinan pretreatment significantly decreased the contents of ROS and MDA in N2 nematodes. Moreover, pretreated with lentinan significantly recovered the decreased activities of CAT, SOD, GST and SDH induced by fluopyram. Lentinan pretreatment enhanced the mRNA levels of daf-16 and skn-1 and their downstream genes in the nematodes compared with the fluopyram group. In daf-16 and skn-1 mutants, the lifespan, ROS and related genes expression were not significantly changed in lentinan pretreatment. Pretreated with lentinan significantly enhanced the fluorescence intensity of SOD-3::GFP and GST-4::GFP, and promoted the nuclear translocation of DAF-16 and SKN-1 under the fluopyram stress. In summary, these findings indicated that lentinan protected C. elegans from fluopyram-induced toxicity via DAF-16 and SKN-1.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bingjie Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Siqi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Miao Fan
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, USA
| | - Zhongtang Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China.
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
14
|
Gao X, Yang Z, Huang L, Zuo S, Li X, Yao J, Jiang W, Wang S, Zhang Y. Protective effects of pumpkin polysaccharide hydrolysates on oxidative stress injury and its potential mechanism - Antioxidant mechanism of pumpkin polysaccharide hydrolysates. Int J Biol Macromol 2023; 241:124423. [PMID: 37062385 DOI: 10.1016/j.ijbiomac.2023.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Pumpkin polysaccharides (PPe) exhibit multiple bioactive properties, including the ability to reduce blood sugar and lipids. Our prior investigation discovered that hydrolysates (PPe-s) derived from PPe demonstrated stronger antioxidant capabilities than PPe. The objective of the current study was to explore the potential mechanism of PPe-s, utilizing Caenorhabditis elegans and MIN6 cells as models. The results of this investigation revealed that PPe-s exhibited strong scavenging ability towards ABTS+ and OH·in vitro. Additionally, PPe-s extended the lifespan of C. elegans under hydrogen peroxide stress (p < 0.05) by upregulating the mRNA expression of daf-16, sod-1, sod-3, and skn-1 (all >1.43-fold, p < 0.05). Furthermore, PPe-s enhanced the proliferation activity of MIN6 cells, induced by alloxan, increased insulin secretion and cAMP levels, and excreted intracellular excessive Ca2+ in a concentration-dependent manner. Our study demonstrated that PPe-s upregulated the expression levels of antioxidative-related genes and augmented the antioxidant defense system.
Collapse
Affiliation(s)
- Xiaofeng Gao
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zeen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Lingte Huang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Siying Zuo
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xinghan Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Wen Jiang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Shuang Wang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
15
|
Tang Y, Zhang X, Lin Y, Sun J, Chen S, Wang W, Li J. Insights into the Oxidative Stress Alleviation Potential of Enzymatically Prepared Dendrobium officinale Polysaccharides. Molecules 2023; 28:molecules28073071. [PMID: 37049834 PMCID: PMC10095697 DOI: 10.3390/molecules28073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: The extraction parameters can dramatically alter the extraction rate and biological activity of polysaccharides. (2) Methods: Here, an enzyme-assisted extraction (EAE) was employed to extract D. officinale polysaccharides (DOPs), and its optimal extraction conditions were established by single-factor and Box-Behnken design (BBD) experiments. Further, on the basis of in vitro antioxidant capacity, the paraquat (PQ)-induced oxidative stress of Caenorhabditis elegans (C. elegans) was chosen as a research model to explore the antioxidant activity of DOPs. (3) Results: The results showed that the extraction yield of DOPs reached 48.66% ± 1.04% under the optimal condition. In vitro experiments had shown that DOPs have considerable ABTS+ radical scavenging capacity (EC50 = 7.27 mg/mL), hydroxyl radical scavenging capacity (EC50 = 1.61 mg/mL), and metal chelating power (EC50 = 8.31 mg/mL). Furthermore, in vivo experiments indicated that DOPs (0.25 mg/mL) significantly prolonged the lifespan, increased antioxidant enzyme activity, and upregulated the expression of daf-16 (>5.6-fold), skn-1 (>5.2-fold), and sir-2.1 (>2.3-fold) of C. elegans. (4) Conclusions: DOPs can be efficiently extracted by EAE and are effective in the reduction of oxidative stress levels in C. elegans.
Collapse
Affiliation(s)
- Yingqi Tang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiong Zhang
- Hangzhou Zaoxianyibu Food Technology Co., Ltd., Hangzhou 310018, China
| | - Yudan Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiehan Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shihao Chen
- Hangzhou Jiuxian Biotechnology Co., Ltd., Hangzhou 311618, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jia Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
16
|
Xu HY, Li QC, Zhou WJ, Zhang HB, Chen ZX, Peng N, Gong SY, Liu B, Zeng F. Anti-Oxidative and Anti-Aging Effects of Probiotic Fermented Ginseng by Modulating Gut Microbiota and Metabolites in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01055-9. [PMID: 36947370 DOI: 10.1007/s11130-023-01055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Antioxidative and antiaging abilities of probiotic fermented ginseng (PG) were evaluated in Caenorhabditis elegans (C. elegans). Lifespan and effect on heat stress and acute oxidative stress in C. elegans were significantly enhanced by PG. Antioxidative enzymes such as T-SOD, GSH-PX, CAT were significantly up-regulated, and MDA, ROS and apoptosis levels were significantly down-regulated. At the same time, PG exerted antioxidant and anti-aging activities by reducing the expression of DAF-2 mRNA and increasing the expression of SKN-1 and SOD-3 mRNA in C. elegans. In addition, the mechanism of antioxidative and antiaging activities of PG was explored through gut microbiota sequencing and untargeted metabolomics. The results of gut microbiota indicated that PG could significantly improve the composition and structure of microbes in the gut of C. elegans, and the relative abundance of beneficial bacteria was up-regulated. Untargeted metabolomic results elucidated that PG modulated antioxidant and antiaging activities through neuroactive ligand-receptor interaction, Citrate cycle (TCA cycle), pyruvate metabolism, ascorbate and aldarate metabolism and D-Arginine and D-ornithine metabolism of C. elegans. These results indicated that PG had excellent antioxidant and anti-aging activities, providing research value for the development of functional foods and improvement of aging-related diseases.
Collapse
Affiliation(s)
- Huan-Yi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quan-Cen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wen-Jie Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hai-Bo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhi-Xian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Ning Peng
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Shi-Yu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
17
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
18
|
Liu C, Chen G, Rao H, Xiao X, Chen Y, Wu C, Bian F, He H. Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas sp. JS4-1 Extracellular Protease. Mar Drugs 2023; 21:md21020133. [PMID: 36827174 PMCID: PMC9966703 DOI: 10.3390/md21020133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Crude enzymes produced by a marine bacterium Pseudoalteromonas sp. JS4-1 were used to hydrolyze phycobiliprotein. Enzymatic productions showed good performance on DPPH radical and hydroxyl radical scavenging activities (45.14 ± 0.43% and 65.11 ± 2.64%, respectively), especially small peptides with MWCO <3 kDa. Small peptides were fractioned to four fractions using size-exclusion chromatography and the second fraction (F2) had the highest activity in hydroxyl radical scavenging ability (62.61 ± 5.80%). The fraction F1 and F2 both exhibited good antioxidant activities in oxidative stress models in HUVECs and HaCaT cells. Among them, F2 could upregulate the activities of SOD and GSH-Px and reduce the lipid peroxidation degree to scavenge the ROS to protect Caenorhabditis elegans under adversity. Then, 25 peptides total were identified from F2 by LC-MS/MS, and the peptide with the new sequence of INSSDVQGKY as the most significant component was synthetized and the ORAC assay and cellular ROS scavenging assay both illustrated its excellent antioxidant property.
Collapse
Affiliation(s)
- Congling Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Gong Chen
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailian Rao
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xun Xiao
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Yidan Chen
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Cuiling Wu
- Department of Biochemistry, Changzhi Medical College, Changzhi 046000, China
| | - Fei Bian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (F.B.); (H.H.); Tel.: +86-531-6665-9499 (F.B.); +86-0731-8265-0230 (H.H.)
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (F.B.); (H.H.); Tel.: +86-531-6665-9499 (F.B.); +86-0731-8265-0230 (H.H.)
| |
Collapse
|
19
|
Dobosz R, Flis Ł, Bocianowski J, Malewski T. Effect of Vicia sativa L. on Motility, Mortality and Expression Levels of hsp Genes in J2 Stage of Meloidogyne hapla. J Nematol 2023; 55:20230009. [PMID: 37082220 PMCID: PMC10111211 DOI: 10.2478/jofnem-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 04/22/2023] Open
Abstract
Assuming that the seeds of Vicia sativa L. have a stressful effect on J2 stage Meloidogyne hapla, we undertook research on the effect of these seeds on the motility and mortality of J2 and determined the expression levels of selected hsp genes in J2. The assessment of the effect of V. sativa seeds on the motility of M. hapla specimens consisted of observing the movement of J2 immersed in a seed diffusate or in a tomato root filtrate at temperatures of 10, 17, and 21°C. In J2 treated with V. sativa (cv. Ina) seed diffusates, the expression level of hsp genes was determined by qPCR. J2 exposed to V. sativa diffusates were found to lose their motility, while their mortality did not exceed 30%. J2 in the seed diffusate were characterized by an increase in the expression levels of the Mh-hsp90, Mh-hsp1, and Mh-hsp43 genes. It is suggested that the hsp90 gene may be a potential bioindicator of the environmental impact on Meloidogyne nematodes. The impaired ability to move in J2 of M. hapla is attributable to the occurrence of V. sativa seeds in their habitat. These studies may contribute to developing methods of reducing crop damage caused by M. hapla.
Collapse
Affiliation(s)
- Renata Dobosz
- Institute of Plant Protection-National Research Institute, Department of Entomology and Animal Pests, Węgorka 20, 60-318Poznan, Poland
| | - Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679Warsaw, Poland
| |
Collapse
|
20
|
Lozada-Ramírez JD, Guerrero-Moras MC, González-Peña MA, Silva-Pereira TS, Anaya de Parrodi C, Ortega-Regules AE. Stabilization of Anthocyanins from Coffee ( Coffea arabica L.) Husks and In Vivo Evaluation of Their Antioxidant Activity. Molecules 2023; 28:molecules28031353. [PMID: 36771019 PMCID: PMC9921765 DOI: 10.3390/molecules28031353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Coffee (Coffea arabica L.) is one of the most popular and widely consumed products throughout the world, mainly due to its taste, aroma, caffeine content, and natural antioxidants. Among those antioxidants, anthocyanins are one of the most important natural pigments, which can be found in coffee husks. It is widely known that anthocyanins have multiple health benefits partially linked to their antioxidant properties. However, anthocyanins have low stability and are sensitive to all types of changes. In order to prevent its degradation, anthocyanins can be stabilized with nanoparticles. Thus, the main objective of this study was to evaluate the stability of the anthocyanins extracted from coffee husks, using three different extracting agents (ethanol, methanol, and water) and stabilizing them through conjugation with zinc oxide nanoparticles. The anthocyanins extracts were mainly composed of cyanidin-3-rutinoside (97%) and the total phenolic compounds of the fresh extracts were 458.97 ± 11.32 (methanol), 373.53 ± 12.74 (ethanol), and 369.85 ± 15.93 (water) mg GAE/g. On the other hand, the total phenolic compounds of the nanoparticle-anthocyanin conjugates underwent no significant changes after stabilization as the major loss was less than 3%. Furthermore, the percentage of anthocyanins' degradation was less than 5% after 12 weeks of storage. On top of that, fresh anthocyanin extracts and anthocyanin-nanoparticle conjugates exhibited a strong protective effect against oxidative stress and increased the survival rate of Caenorhabditis elegans.
Collapse
Affiliation(s)
- José Daniel Lozada-Ramírez
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| | | | - Marco Antonio González-Peña
- Department of Chemical, Food and Environmental Engineering, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
| | | | - Cecilia Anaya de Parrodi
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| | - Ana E. Ortega-Regules
- Department of Health Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| |
Collapse
|
21
|
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16. Mar Drugs 2022; 21:md21010001. [PMID: 36662174 PMCID: PMC9866299 DOI: 10.3390/md21010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.
Collapse
|
22
|
Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Raquel Ferreira Paulo I, Basílio de Oliveira Caland R, Orlando Muñoz Cadavid C, Martins Melo G, Soares De Castro Bezerra L, Pons E, Peña L, de Paula Oliveira R. β-carotene genetically-enriched lyophilized orange juice increases antioxidant capacity and reduces β-amyloid proteotoxicity and fat accumulation in Caenorhabditis elegans. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100141. [PMID: 36304081 PMCID: PMC9593878 DOI: 10.1016/j.fochms.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
β-carotene content of genetically modified orange was 33-fold higher. β-carotene-enriched LOJ provided greater antioxidant capacity and stress resistance. β-carotene-enriched LOJ reduced β-amyloid proteotoxicity. β-carotene-enriched LOJ showed higher hypolipidemic activity in glucose rich diet.
Citrus sinensis orange juice is an excellent dietary source of β-carotene, a well-known antioxidant. However, β-carotene concentrations are relatively low in most cultivars. We developed a new orange through metabolic engineering strategy (GS) with 33.72-fold increase in β-carotene content compared to its conventional counterpart (CV). Using Caenorhabditis elegans, we found that animals treated with GS showed a greater reduction in intracellular reactive oxygen species (ROS) which is associated with a greater resistance to oxidative stress and induction of the expression of antioxidant genes. Moreover, animals treated with GS orange showed a more effective protection against β-amyloid proteotoxicity and greater hypolipidemic effect under high glucose diet compared to animals treated with CV. These data demonstrate that the increased amount of β-carotene in orange actually provides a greater beneficial effect in C. elegans and a valuable proof of principle to support further studies in mammals and humans.
Collapse
Affiliation(s)
| | - Ricardo Basílio de Oliveira Caland
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí-IFPI, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Giovanna Martins Melo
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Elsa Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Leandro Peña
- Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, SP, Brazil,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain
| | - Riva de Paula Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,Corresponding author at: Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
24
|
Faskhutdinova E, Sukhikh A, Le V, Minina V, Khelef MEA, Loseva A. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants are sources of natural antioxidants. Acting as reducing agents, these substances protect the human body against oxidative stress and slow down the aging process. We aimed to study the effects of bioactive substances isolated from medicinal plants on the lifespan of Caenorhabditis elegans L. used as a model organism.
High-performance liquid chromatography was applied to isolate bioactive substances from the extracts of callus, suspension, and root cultures of meadowsweet (Filipendula ulmaria L.), ginkgo (Ginkgo biloba L.), Baikal skullcap (Scutellaria baicalensis L.), red clover (Trifolium pretense L.), alfalfa (Medicágo sativa L.), and thyme (Thymus vulgaris L.). Their effect on the lifespan of C. elegans nematodes was determined by counting live nematodes treated with their concentrations of 10, 50, 100, and 200 µmol/L after 61 days of the experiment. The results were recorded using IR spectrometry.
The isolated bioactive substances were at least 95% pure. We found that the studied concentrations of trans-cinnamic acid, baicalin, rutin, ursolic acid, and magniferin did not significantly increase the lifespan of the nematodes. Naringenin increased their lifespan by an average of 27.3% during days 8–26. Chlorogenic acid at a concentration of 100 µmol/L increased the lifespan of C. elegans by 27.7%. Ginkgo-based kaempferol and quercetin, as well as red clover-based biochanin A at the concentrations of 200, 10, and 100 µmol/L, respectively, increased the lifespan of the nematodes by 30.6, 41.9, and 45.2%, respectively.
The bioactive substances produced from callus, root, and suspension cultures of the above medicinal plants had a positive effect on the lifespan of C. elegans nematodes. This confirms their geroprotective properties and allows them to be used as anti-aging agents.
Collapse
|
25
|
Voia A, Poupart V, Labbé JC. The pentacyclic triterpenoid phytosterol lupeol promotes antioxidant response in the nematode C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000581. [PMID: 35663413 PMCID: PMC9157243 DOI: 10.17912/micropub.biology.000581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Plants of the Mimosa genus are studied and used for their bioactive properties. Among bioactive phytochemicals are quercetin and myricetin, which have been demonstrated to act as antioxidants in many contexts (Taheri et al. 2020; Xu et al. 2019), including in C. elegans (Buchter et al. 2013; Grünz et al. 2012; Sugawara and Sakamoto 2020). Other phytochemicals from these plants, such as the triterpenoid phytosterol lupeol, have been shown to have antioxidant properties but have not been as extensively characterized in model organisms (Liu et al. 2021; Shai et al. 2009). Here we employed the nematode C. elegans to assess whether lupeol elicits antioxidant response in vivo . Using reporter assays for oxidative stress, we find that treatment of animals with lupeol rescues some of the effects resulting from treatment with the prooxidant paraquat. Our results demonstrate that lupeol displays antioxidant properties in vivo in C. elegans .
Collapse
Affiliation(s)
- Anna Voia
- Collège Jean-de-Brébeuf, 3200, chemin de la Côte-Sainte-Catherine, Montréal (Québec) H3T 1C1, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
,
Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
,
Correspondence to: Jean-Claude Labbé (
)
| |
Collapse
|
26
|
Alterations in Bacterial Metabolism Contribute to the Lifespan Extension Exerted by Guarana in Caenorhabditis elegans. Nutrients 2022; 14:nu14091986. [PMID: 35565952 PMCID: PMC9105138 DOI: 10.3390/nu14091986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
Guarana (Paullinia cupana) is a widely consumed nutraceutical with various health benefits supported by scientific evidence. However, its indirect health impacts through the gut microbiota have not been studied. Caenorhabditis elegans is a useful model to study both the direct and indirect effects of nutraceuticals, as the intimate association of the worm with the metabolites produced by Escherichia coli is a prototypic simplified model of our gut microbiota. We prepared an ethanoic extract of guarana seeds and assessed its antioxidant capacity in vitro, with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and in vivo, utilizing C. elegans. Additionally, we studied the impact of this extract on C. elegans lifespan, utilizing both viable and non-viable E. coli, and assessed the impact of guarana on E. coli folate production. The extract showed high antioxidant capacity, and it extended worm lifespan. However, the antioxidant and life-extending effects did not correlate in terms of the extract concentration. The extract-induced life extension was also less significant when utilizing dead E. coli, which may indicate that the effects of guarana on the worms work partly through modifications on E. coli metabolism. Following this observation, guarana was found to decrease E. coli folate production, revealing one possible route for its beneficial effects.
Collapse
|
27
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
28
|
Youssef FS, Sobeh M, Dmirieh M, Bogari HA, Koshak AE, Wink M, Ashour ML, Elhady SS. Metabolomics-Based Profiling of Clerodendrum speciosum (Lamiaceae) Leaves Using LC/ESI/MS-MS and In Vivo Evaluation of Its Antioxidant Activity Using Caenorhabditis elegans Model. Antioxidants (Basel) 2022; 11:antiox11020330. [PMID: 35204212 PMCID: PMC8868248 DOI: 10.3390/antiox11020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the antioxidant activity of the total methanol extract of C. speciosum leaves (CST), the ethyl acetate (CSE), and the remaining aqueous (CSR) fractions in vitro, in vivo using Caenorhabditis elegans model, and in silico. LC-ESI-MS/MS analysis was employed for metabolic profiling of CST. ADME/TOPAKT prediction was performed to determine the potential pharmacokinetic, pharmacodynamic, and toxicity properties of the major identified phytoconstituents. All examined samples showed considerable antioxidant activity where CST, CSE, and CSR displayed EC50 values of 27.1, 16.2, and 21.3 µg/mL, respectively, in 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay, whereas they showed 11.44, 16.27, and 12.16 Fe2+ equivalents/mg of sample, respectively, in ferric reducing antioxidant power (FRAP) assay. CST, CSE, and CSR displayed total phenolic content of 262, 326, and 289 mg GAE/g sample, respectively. In vivo antioxidant study revealed that CST at 150 μg/mL increased the survival rate of C. elegans by 71.88% compared to untreated group. Regarding intracellular reactive oxygen species (ROS), worms treated with 150 μg/mL of CSE exhibited 60.42% reduction of ROS compared to the untreated group. Quantitation of hsp-16.2/GFP expression in Caenorhabditis elegans showed that worms treated with 150 μg/mL of CSR exerted 40.43% reduction in fluorescence with respect to the untreated group. LC-ESI-MS/MS of CST revealed the presence of sixteen secondary metabolites belonging mainly to polyphenolics with phenyl propanoids constituting the major detected class. The in silico study showed that rosmarinic acid displayed the best fitting within the active sites of Daf-2 protein with considerable safety profile and limited pharmacokinetic and pharmacodynamic that could be slightly enhanced by certain treatment.
Collapse
Affiliation(s)
- Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Correspondence: (F.S.Y.); (M.L.A.)
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco; (M.S.); (M.W.)
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Malak Dmirieh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulrahman E. Koshak
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.E.K.); (S.S.E.)
| | - Michael Wink
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben-Guerir 43150, Morocco; (M.S.); (M.W.)
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Correspondence: (F.S.Y.); (M.L.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.E.K.); (S.S.E.)
| |
Collapse
|
29
|
Brazilin: Biological activities and therapeutic potential in chronic degenerative diseases and cancer. Pharmacol Res 2021; 175:106023. [PMID: 34883212 DOI: 10.1016/j.phrs.2021.106023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Caesalpinia sappan and Haematoxylum brasiletto belong to the Fabaceae family, predominantly distributed in Southeast Asia and America. The isoflavonoid brazilin has been identified from the bark and heartwood of these plants. This review summarizes the studies describing the biological activities of these plants and brazilin. Mainly, brazilin protects cells from oxidative stress, shows anti-inflammatory and antibacterial properties, and hypoglycemic effect. In addition, it has a biological impact on various pathologies such as Alzheimer's disease, Parkinson's disease, fibrillogenesis, and osteoarthritis. Interestingly, most of the antecedents are related to the anticancer effect of brazilin. In several cancers such as osteosarcoma, neuroblastoma, multiple myeloma, glioblastoma, bladder, melanoma, breast, tongue, colon, cervical, head, and neck squamous cell carcinoma, brazilin induces autophagy by increasing the levels of the LC3-II protein. Furthermore, it inhibits cell proliferation and induces apoptosis through increased expression of Bcl-2, Bcl-XL, p21, p27, activation of caspase-3 and -7, and the cleavage of PARP and inhibiting the expression of Bax. In addition, it blocks the expression of JNK and regulates the nuclear translocation of Nrf2. Together, these data positions brazilin as a compound of natural origin with multiple bioactivities and therapeutic potential in various chronic degenerative diseases and cancer.
Collapse
|
30
|
Ge Y, Chen H, Wang J, Liu G, Cui SW, Kang J, Jiang Y, Wang H. Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in Caenorhabditis elegans. Food Funct 2021; 12:12127-12141. [PMID: 34787618 DOI: 10.1039/d1fo02472h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Naringenin (NN) is one of the most abundant flavonoids in citrus and grapefruits and has been shown to have antioxidant properties in vitro. The purpose of the study is to examine the antioxidant and anti-aging activities of NN in C. elegans, and to further explore the molecular mechanism. The results showed that NN enhanced the lifespan under normal and oxidative stress induced by H2O2. After treatment with NN, locomotion capability was improved and aging pigment accumulation was suppressed. NN also delayed the paralysis and reversed the defective chemotaxis behavior induced by Aβ protein. Meanwhile, the treatment with NN enhanced the activities of antioxidant enzymes and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) content. The possible targets and pathways interacting with NN were predicted by network pharmacology. Real-time PCR analysis indicated that NN upregulated the expression levels of daf-16, sek-1 and skn-1, downregulated the expression levels of daf-2, age-1 and akt-1, and further activated sod-3, ctl-1, ctl-2, gst-4 and mtl-1. Moreover, the selected mutant strains were used and molecular docking was conducted to further suggest that IIS and MAPK pathways could be involved in the NN-mediated longevity-promoting effect.
Collapse
Affiliation(s)
- Yue Ge
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Huibin Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner Mongolia, Bayannur, China
| | - Guishan Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Yumei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China.
| |
Collapse
|
31
|
Samynathan R, Thiruvengadam M, Nile SH, Shariati MA, Rebezov M, Mishra RK, Venkidasamy B, Periyasamy S, Chung IM, Pateiro M, Lorenzo JM. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34606382 DOI: 10.1080/10408398.2021.1984871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tea manufactured from the cultivated shoots of Camellia sinensis (L.) O. Kuntze is the most commonly consumed nonalcoholic drink around the world. Tea is an agro-based, environmentally sustainable, labor-intensive, job-generating, and export-oriented industry in many countries. Tea includes phenolic compounds, flavonoids, alkaloids, vitamins, enzymes, crude fibers, protein, lipids, and carbohydrates, among other biochemical constituents. This review described the nature of tea metabolites, their biosynthesis and accumulation with response to various factors. The therapeutic application of various metabolites of tea against microbial diseases, cancer, neurological, and other metabolic disorders was also discussed in detail. The seasonal variation, cultivation practices and genetic variability influence tea metabolite synthesis. Tea biochemical constituents, especially polyphenols and its integral part catechin metabolites, are broadly focused on potential applicability for their action against various diseases. In addition to this, tea also contains bioactive flavonoids that possess health-beneficial effects. The catechin fractions, epigallocatechin 3-gallate and epicatechin 3-gallate, are the main components of tea that has strong antioxidant and medicinal properties. The synergistic function of natural tea metabolites with synthetic drugs provides effective protection against various diseases. Furthermore, the application of nanotechnologies enhanced bioavailability, enhancing the therapeutic potential of natural metabolites against numerous diseases and pathogens.
Collapse
Affiliation(s)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation.,Liaocheng University, Liaocheng, Shandong, China
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China.,V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Raghvendra Kumar Mishra
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sureshkumar Periyasamy
- Department of Biotechnology, Bharathidasan University Campus (BIT Campus), Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
32
|
Gutierrez-Zetina SM, González-Manzano S, Ayuda-Durán B, Santos-Buelga C, González-Paramás AM. Caffeic and Dihydrocaffeic Acids Promote Longevity and Increase Stress Resistance in Caenorhabditis elegans by Modulating Expression of Stress-Related Genes. Molecules 2021; 26:molecules26061517. [PMID: 33802064 PMCID: PMC8001149 DOI: 10.3390/molecules26061517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Caffeic and dihydrocaffeic acid are relevant microbial catabolites, being described as products from the degradation of different phenolic compounds i.e., hydroxycinnamoyl derivatives, anthocyanins or flavonols. Furthermore, caffeic acid is found both in free and esterified forms in many fruits and in high concentrations in coffee. These phenolic acids may be responsible for a part of the bioactivity associated with the intake of phenolic compounds. With the aim of progressing in the knowledge of the health effects and mechanisms of action of dietary phenolics, the model nematode Caenorhabditis elegans has been used to evaluate the influence of caffeic and dihydrocaffeic acids on lifespan and the oxidative stress resistance. The involvement of different genes and transcription factors related to longevity and stress resistance in the response to these phenolic acids has also been explored. Caffeic acid (CA, 200 μM) and dihydrocaffeic acid (DHCA, 300 μM) induced an increase in the survival rate of C. elegans under thermal stress. Both compounds also increased the mean and maximum lifespan of the nematode, compared to untreated worms. In general, treatment with these acids led to a reduction in intracellular ROS concentrations, although not always significant. Results of gene expression studies conducted by RT-qPCR showed that the favorable effects of CA and DHCA on oxidative stress and longevity involve the activation of several genes related to insulin/IGF-1 pathway, such as daf-16, daf-18, hsf-1 and sod-3, as well as a sirtuin gene (sir-2.1).
Collapse
Affiliation(s)
- Sofia M. Gutierrez-Zetina
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-500
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Unidad de Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (S.M.G.-Z.); (B.A.-D.); (C.S.-B.); (A.M.G.-P.)
- Unidad de Excelencia. Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, 37185 Salamanca, Spain
| |
Collapse
|
33
|
Moretton C, Gouttefangeas C, Dubois C, Tessier FJ, Fradin C, Prost-Camus E, Prost M, Haumont M, Nigay H. Investigation of the antioxidant capacity of caramels: Combination of laboratory assays and C. elegans model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Kittimongkolsuk P, Roxo M, Li H, Chuchawankul S, Wink M, Tencomnao T. Extracts of the Tiger Milk Mushroom ( Lignosus rhinocerus) Enhance Stress Resistance and Extend Lifespan in Caenorhabditis elegans via the DAF-16/FoxO Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:93. [PMID: 33513674 PMCID: PMC7911722 DOI: 10.3390/ph14020093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The tiger milk mushroom, Lignosus rhinocerus (LR), exhibits antioxidant properties, as shown in a few in vitro experiments. The aim of this research was to study whether three LR extracts exhibit antioxidant activities in Caenorhabditis elegans. In wild-type N2 nematodes, we determined the survival rate under oxidative stress caused by increased intracellular ROS concentrations. Transgenic strains, including TJ356, TJ375, CF1553, CL2166, and LD1, were used to detect the expression of DAF-16, HSP-16.2, SOD-3, GST-4, and SKN-1, respectively. Lifespan, lipofuscin, and pharyngeal pumping rates were assessed. Three LR extracts (ethanol, and cold and hot water) protected the worms from oxidative stress and decreased intracellular ROS. The extracts exhibited antioxidant properties through the DAF-16/FOXO pathway, leading to SOD-3 and HSP-16.2 modification. However, the expression of SKN-1 and GST-4 was not changed. All the extracts extended the lifespan. They also reduced lipofuscin (a marker for aging) and influenced the pharyngeal pumping rate (another marker for aging). The extracts did not cause dietary restriction. This novel study provides evidence of the functional antioxidant and anti-aging properties of LR. Further studies must confirm that they are suitable for use as antioxidant supplements.
Collapse
Affiliation(s)
- Parinee Kittimongkolsuk
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany; (M.R.); (H.L.)
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany; (M.R.); (H.L.)
| | - Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany; (M.R.); (H.L.)
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany; (M.R.); (H.L.)
| | - Tewin Tencomnao
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
35
|
Kittimongkolsuk P, Pattarachotanant N, Chuchawankul S, Wink M, Tencomnao T. Neuroprotective Effects of Extracts from Tiger Milk Mushroom Lignosus rhinocerus Against Glutamate-Induced Toxicity in HT22 Hippocampal Neuronal Cells and Neurodegenerative Diseases in Caenorhabditis elegans. BIOLOGY 2021; 10:biology10010030. [PMID: 33466350 PMCID: PMC7824744 DOI: 10.3390/biology10010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional medicine, little is known about the neuroprotective effects of LR extracts. This study aims to investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT), superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels and significantly increased the expression of antioxidant genes after glutamate-induced oxidative stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective properties both in vitro and in vivo.
Collapse
Affiliation(s)
- Parinee Kittimongkolsuk
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (M.W.); or (T.T.); Tel.: +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (M.W.); or (T.T.); Tel.: +66-2-218-1533 (T.T.)
| |
Collapse
|
36
|
Evaluation of Multiple Impacts of Furfural Acetone on Nematodes In Vitro and Control Efficiency against Root-Knot Nematodes in Pots and Fields. Antibiotics (Basel) 2020; 9:antibiotics9090605. [PMID: 32942652 PMCID: PMC7557934 DOI: 10.3390/antibiotics9090605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Root-knot nematodes (RKNs) seriously endanger agricultural development and cause great economic losses worldwide. Natural product furfural acetone (FAc) is a promising nematicide with strong attractant and nematicidal activities, but baseline information about the impact of FAc on the reproduction, egg hatching, feeding, and growth of nematodes and its pest control efficiency in field are lacking. Here, the inhibition effects of FAc on nematodes in vitro and its RKN control efficiency in pot and field were investigated. FAc inhibited the egg hatching of Meloidogyne incognita by 91.7% at 200 mg/L after 2 days and suppressed the reproduction, feeding, and growth of Caenorhabditis elegans in vitro. In pot experiments, FAc in various dosages reduced the disease index of plant root significantly. In field experiments, FAc exhibited control effect on RKNs equivalent to commercial nematicides avermectin and metam sodium, with a reduction in disease index by 36.9% at a dose of 50 mg/plant. FAc also reduced the population density of RKNs in soil, with a reduction rate of 75.3% at the dose of 750 mg/m2. No adverse effect was detected on plant growth after FAc application. These results provide compelling evidence for development of FAc as an appropriate alternative for current nematicides.
Collapse
|