1
|
Facchi SP, de Almeida DA, Abrantes KKB, Rodrigues PCDS, Tessmann DJ, Bonafé EG, da Silva MF, Gashti MP, Martins AF, Cardozo-Filho L. Ultra-Pressurized Deposition of Hydrophobic Chitosan Surface Coating on Wood for Fungal Resistance. Int J Mol Sci 2024; 25:10899. [PMID: 39456681 PMCID: PMC11507266 DOI: 10.3390/ijms252010899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Fungi (Neolentinus lepideus, Nl, and Trametes versicolor, Tv) impart wood rot, leading to economic and environmental issues. To overcome this issue, toxic chemicals are commonly employed for wood preservation, impacting the environment and human health. Surface coatings based on antimicrobial chitosan (CS) of high molar mass (145 × 105 Da) were tested as wood preservation agents using an innovative strategy involving ultra-pressurizing CS solutions to deposit organic coatings on wood samples. Before coating deposition, the antifungal activity of CS in diluted acetic acid (AcOOH) solutions was evaluated against the rot fungi models Neolentinus lepideus (Nl) and Trametes versicolor (Tv). CS effectively inhibited fungal growth, particularly in solutions with concentrations equal to or higher than 0.125 mg/mL. Wood samples (Eucalyptus sp. and Pinus sp.) were then coated with CS under ultra-pressurization at 70 bar. The polymeric coating deposition on wood was confirmed through X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) images, and water contact angle measurements. Infrared spectroscopy (FTIR) spectra of the uncoated and coated samples suggested that CS does not penetrate the bulk of the wood samples due to its high molar mass but penetrates in the surface pores, leading to its impregnation in wood samples. Coated and uncoated wood samples were exposed to fungi (Tv and Nl) for 12 weeks. In vivo testing revealed that Tv and Nl fungi did not grow on wood samples coated with CS, whereas the fungi proliferated on uncoated samples. CS of high molar mass has film-forming properties, leading to a thin hydrophobic film on the wood surface (water contact angle of 118°). This effect is mainly attributed to the high molar mass of CS and the hydrogen bonding interactions established between CS chains and cellulose. This hydrophobic film prevents water interaction, resulting in a stable coating with insignificant leaching of CS after the stability test. The CS coating can offer a sustainable strategy to prevent wood degradation, overcoming the disadvantages of toxic chemicals often used as wood preservative agents.
Collapse
Affiliation(s)
- Suelen P. Facchi
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Débora A. de Almeida
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Karen K. B. Abrantes
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Paula C. dos S. Rodrigues
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Dauri J. Tessmann
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Elton G. Bonafé
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
| | - Marcelo F. da Silva
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
| | - Mazeyar P. Gashti
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| | - Alessandro F. Martins
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| | - Lúcio Cardozo-Filho
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| |
Collapse
|
2
|
Huang J, Zaynab M, Sharif Y, Khan J, Al-Yahyai R, Sadder M, Ali M, Alarab SR, Li S. Tannins as antimicrobial agents: Understanding toxic effects on pathogens. Toxicon 2024; 247:107812. [PMID: 38908527 DOI: 10.1016/j.toxicon.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Jianzi Huang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Madiha Zaynab
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jallat Khan
- Institute of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Oman
| | - Monther Sadder
- School of Agriculture University of Jordan, Amman, 11942, Jordan
| | - Munawar Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saber R Alarab
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Antón-Domínguez BI, Díaz-Díaz M, Acedo-Antequera FA, Trapero C, Agustí-Brisach C. Use of natural-based commercial products as an alternative for providing bioprotection against verticillium wilt of olive. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6311-6321. [PMID: 38482895 DOI: 10.1002/jsfa.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND As a result of the ineffectiveness of existing control methods against Verticillium dahliae, the causal agent of verticillium wilt of olive (Olea europaea; VWO), it is necessary to search for sustainable and environmentally friendly alternatives, such as bioprotection by products based on plant extracts and other naturally synthesized compounds. Therefore, present study aimed to evaluate the effects of seven natural-based commercial products on the inhibition of mycelial growth, the germination of V. dahliae conidia and microsclerotia, and disease progression in olive plants (cv. Picual). Aluminium lignosulfonate and a copper phosphonate salt (copper phosphite) were included for comparative purposes. RESULTS The seaweed and willow extracts and copper phosphite inhibited V. dahliae mycelial growth by more than 50% at the high doses tested. Most of the products inhibited conidial germination by up to 90% compared to the control at the high doses tested. However, none of the products showed efficacy above 50% in inhibiting microsclerotia germination. The willow extract was the most effective at reducing disease severity and progression in olive plants, with no significant differences compared to the non-inoculated negative control. CONCLUSION The results of the present study suggest that the use of natural-based products (i.e. seaweed and willow extracts) is a potential sustainable alternative in an integrated VWO control strategy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Begoña I Antón-Domínguez
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Miriam Díaz-Díaz
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
- Centro de Bioactivos Químicos (CBQ), Universidad Central "Marta Abreu" de Las Villas (UCLV), Santa Clara, Villa Clara, Cuba
| | - Francisca A Acedo-Antequera
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Trapero
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Zhuo Q, Shi C, Geng Q, Wang S, Wang B, Zhang N, Yang K, Tian J. Role of mitochondrial farnesyltransferase gene in the prevention of the food spoilage fungi Aspergillus flavus by the antimicrobial natural preservative perillaldehyde. Food Microbiol 2024; 118:104422. [PMID: 38049276 DOI: 10.1016/j.fm.2023.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Aspergillus flavus, one of the most widely distributed and abundant genus of Aspergillus worldwide, poses an evident threat as a source of food contamination in grains and cereals. Perillaldehyde (PAE), a volatile essential oil extracted from the stem and leaves of Perilla frutescens L., exhibits potent antifungal activity. In our study, we investigated the role of Cox10, a key enzyme in the heme A synthesis pathway crucial for maintaining mitochondrial function. We found that cox10 is a sensitive gene of A. flavus in response to PAE by gene expression assay and GFP fluorescent localization tagging, and then we found that the deletion of this gene affects the growth and development of A. flavus, but the drug resistance is elevated. Through transcriptome sequencing and its experimental validation, the molecular mechanisms of stress triggered by the deletion of cox10 were further clarified, such as the decrease in intracellular drug content due to the increase in the expression of drug efflux proteins, and the increase in the thickness of cell wall due to the increase in the content of cell wall chitin. Clearly, cox10 plays a critical role in regulating various cellular processes of A. flavus, including growth, reproduction, development, as well as pathogenicity and drug resistance. These significant findings establish a solid theoretical foundation for the development of environmentally friendly, safe, and effective antifungal agents to combat A. flavus contamination.
Collapse
Affiliation(s)
- Qiuhan Zhuo
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Chenchen Shi
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Qingru Geng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Shan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Bo Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Ninghui Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
5
|
Zikeli F, Jusic J, Palocci C, Mugnozza GS, Romagnoli M. Spray Coating of Wood with Nanoparticles from Lignin and Polylactic Glycolic Acid Loaded with Thyme Essential Oils. Polymers (Basel) 2024; 16:947. [PMID: 38611206 PMCID: PMC11013818 DOI: 10.3390/polym16070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks. The entrapment of essential oils in polymeric carrier matrices provides protection against oxidation and subsequent degradation or rapid evaporation, which implies the loss of their biocidal effect. In this work, lignin as well as PLGA nanoparticles containing the essential oils from two different thyme species (Thymus capitatus and T. vulgaris) were applied on beech wood samples using spray coating. The prepared coatings were investigated using FTIR imaging, SEM, as well as LSM analysis. Release experiments were conducted to investigate the release behavior of the essential oils from their respective lignin and PLGA carrier materials. The study found that lignin nanoparticles were more effective at trapping and retaining essential oils than PLGA nanoparticles, despite having larger average particle diameters and a more uneven particle size distribution. An analysis of the lignin coatings showed that they formed a uniform layer that covered most of the surface pores. PLGA nanoparticles formed a film-like layer on the cell walls, and after leaching, larger areas of native wood were evident on the wood samples treated with PLGA NPs compared to the ones coated with lignin NPs. The loading capacity and efficiency varied with the type of essential oil, while the release behaviors were similar between the two essential oil types applied in this study.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Jasmina Jusic
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
- Fraunhofer, Via Alessandro Volta 13A, 39100 Bozen, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (F.Z.); (J.J.); (G.S.M.)
| |
Collapse
|
6
|
Changotra R, Rajput H, Liu B, Murray G, He QS. Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. CHEMOSPHERE 2024; 352:141291. [PMID: 38280646 DOI: 10.1016/j.chemosphere.2024.141291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Wood preservation has gained global prevalence in recent years, primarily owing to the renewable nature of wood and its capacity to act as a carbon sink. Wood, in its natural form, lacks intrinsic resilience and is prone to decay if left untreated; hence, wood preservatives (WPs) are used to improve wood's longevity. The fate and potential hazards of wood preservatives to human health, ecosystems, and the environment are complex and depend on various aspects, including the type of the preservative compounds, their physicochemical properties, application methods, exposure pathways, environmental conditions, and safety measures and guidelines. The occurrence and distribution of WPs in environmental matrices such as soil and water can result in hazardous pollutants seeping into surface water, groundwater, and soil, posing health hazards, and polluting the environment. Bioremediation is crucial to safeguarding the environment and effectively removing contaminants through hydrolytic and/or photochemical reactions. Phytoremediation, vermicomposting, and sustainable adsorption have demonstrated significant efficacy in the remediation of WPs in the natural environment. Adsorbents derived from biomass waste have been acknowledged for their ability to effectively remove WPs, while also offering cost-efficiency and environmental sustainability. This paper aims to identify wood preservatives' sources and fate in the environment and present a comprehensive overview of the latest advancements in environmentally friendly methods relevant to the removal of the commonly observed contaminants associated with WPs in environmental matrices.
Collapse
Affiliation(s)
- Rahil Changotra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Himadri Rajput
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Baoshu Liu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, China
| | - Gordon Murray
- Stella-Jones Inc. Truro, Nova Scotia, B2N 5C1, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
7
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
8
|
Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Biochem J 2023; 480:1791-1804. [PMID: 37975605 PMCID: PMC10657175 DOI: 10.1042/bcj20230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Anthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease. Since climate change has been shown to affect the distribution and virulence of these pathogens, it is important to understand how their plant hosts may also respond. This review assesses existing reports of positive, negative, and neutral effects of eCO2 on plant immune responses to fungal pathogen infection. The interaction between eCO2 and immunity appears specific to individual pathosystems, dependent on environmental context and driven by the interactions between plant defence mechanisms, suggesting no universal effect can be predicted for the future. This research is vital for assessing how plants may become more at risk under climate change and could help to guide biotechnological efforts to enhance resistance in vulnerable species. Despite the importance of understanding the effects of eCO2 on plant immunity for protecting global food security, biodiversity, and forests in a changing climate, many plant-pathogen interactions are yet to be investigated. In addition, further research into the effects of eCO2 in combination with other environmental factors associated with climate change is needed. In this review, we highlight the risks of eCO2 to plants and point to the research required to address current unknowns.
Collapse
Affiliation(s)
- Freya Smith
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| |
Collapse
|
9
|
Mansour MMA, Mohamed WA, El-Settawy AAA, Böhm M, Salem MZM, Farahat MGS. Long-term fungal inoculation of Ficus sycomorus and Tectona grandis woods with Aspergillus flavus and Penicillium chrysogenum. Sci Rep 2023; 13:10453. [PMID: 37380674 DOI: 10.1038/s41598-023-37479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
In the current study, two molds, Aspergillus flavus (ACC# LC325160) and Penicillium chrysogenum (ACC# LC325162) were inoculated into two types of wood to be examined using scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and computerized tomography (CT) scanning. Ficus sycomorus, a non-durable wood, and Tectona grandis, a durable wood, were the two wood blocks chosen, and they were inoculated with the two molds and incubated for 36 months at an ambient temperature of 27 ± 2 °C and 70 ± 5% relative humidity (RH). The surface and a 5-mm depth of inoculated wood blocks were histologically evaluated using SEM and CT images. The results showed that A. flavus and P. chrysogenum grew enormously on and inside of F. sycomorus wood blocks, but T. grandis wood displayed resistance to mold growth. The atomic percentages of C declined from 61.69% (control) to 59.33% in F. sycomorus wood samples inoculated with A. flavus while O increased from 37.81 to 39.59%. P. chrysogenum caused the C and O atomic percentages in F. sycomorus wood to drop to 58.43%, and 26.34%, respectively. C with atomic percentages in Teak wood's C content fell from 70.85 to 54.16%, and 40.89%, after being inoculated with A. flavus and P. chrysogenum. The O atomic percentage rose from 28.78 to 45.19% and 52.43%, when inoculated with A. flavus and P. chrysogenum, respectively. Depending on how durable each wood was, The examined fungi were able to attack the two distinct types of wood in various deterioration patterns. T. grandis wood overtaken by the two molds under study appears to be a useful material for a variety of uses.
Collapse
Affiliation(s)
- Maisa M A Mansour
- Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza, 12613, Egypt.
| | - Wafaa A Mohamed
- Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza, 12613, Egypt
| | - Ahmed A A El-Settawy
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Martin Böhm
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Marwa G S Farahat
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| |
Collapse
|
10
|
Zikeli F, Vettraino AM, Biscontri M, Bergamasco S, Palocci C, Humar M, Romagnoli M. Lignin Nanoparticles with Entrapped Thymus spp. Essential Oils for the Control of Wood-Rot Fungi. Polymers (Basel) 2023; 15:2713. [PMID: 37376359 DOI: 10.3390/polym15122713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
After decades of utilization of fossil-based and environmentally hazardous compounds for wood preservation against fungal attack, there is a strong need to substitute those compounds with bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four essential oils from thyme species (Thymus capitatus, Coridothymus capitatus, T. vulgaris, and T. vulgaris Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and two brown-rot fungi (Poria monticola and Gloeophyllum trabeum). Entrapment of essential oils provided a delayed release over a time frame of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations of the essential oils against the brown-rot fungi (0.30-0.60 mg/mL), while for the white-rot fungi, identical concentrations were determined compared with free essential oils (0.05-0.30 mg/mL). Fourier Transform infrared (FTIR) spectroscopy was used to assess the fungal cell wall changes in the presence of essential oils in the growth medium. The results regarding brown-rot fungi present a promising approach for a more effective and sustainable utilization of essential oils against this class of wood-rot fungi. In the case of white-rot fungi, lignin nanoparticles, as essential oils delivery vehicles, still need optimization in their efficacy.
Collapse
Affiliation(s)
- Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Anna Maria Vettraino
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Biscontri
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Sara Bergamasco
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Miha Humar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
11
|
Effect of Various Mentha sp. Extracts on the Growth of Trichoderma viride and Chaetomium globusom on Agar Medium and Pine Wood. DIVERSITY 2023. [DOI: 10.3390/d15020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper presents the effect of water extracts from the leaves of various Mentha spp. on the growth of selected fungi causing the gray decay of wood. The study determined which of the Mentha spp. extracts used had the best effect on inhibiting the development of fungi on various substrates including pine wood. The best results in the complete inhibition of fungi growth on an agar medium were obtained for the M. × piperita ‘Almira’ extract. Biocidal properties were not achieved on wood samples, although it was noticed that at doses of extracts of 600 g/m2 and higher, the growth of fungi in the initial stages of cultivation was clearly inhibited. Chemical substances in the obtained extracts were characterized by gas chromatography. Oxygen monoterpenes were the dominant group of substances, substances belonging to sesquiterpene hydrocarbons, monoterpene hydrocarbons containing oxygen sesquiterpenes, and one substance belonging to non-terpene hydrocarbons were also identified.
Collapse
|
12
|
Liu X, Zhu L, Tu X, Zhang C, Huang H, Varodi AM. Characteristics of Ancient Shipwreck Wood from Huaguang Jiao No. 1 after Desalination. MATERIALS (BASEL, SWITZERLAND) 2023; 16:510. [PMID: 36676247 PMCID: PMC9861276 DOI: 10.3390/ma16020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Huaguangjiao I refers to the ancient Chinese wooden shipwreck of the South Song Dynasty (1127-1279 AD) discovered in the South China Sea in 1996. From 2008 to 2017, the archaeological waterlogged wood was desalted using deionized water combined with ultrasonic treatment, and desalted using EDTA-2Na, EDTAHO, and NaH2PO4·2H2O solutions. In this paper, the degree of degradation of the modified waterlogged archaeological wood and the moisture and content of the main components were determined. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nanoindentation (NI), and scanning electron microscopy (SEM) were employed to investigate the state of wood degradation after desalination and desulfurization. The results showed that the water content of the wood was as high as 532~1149%, while the basic density was only 0.14~0.18 g/cm3, indicating that the wood had been seriously degraded. The holocellulose content was only 36-40%. Based on the XRD patterns, the degree of cellulose crystallinity in the modified wood was 14.08%. The elastic modulus and hardness of the ancient shipwreck wood after desalination and desulfurization were 1.28-4.31 and 0.10-0.28 GPa, respectively, according to nanoindentation. In addition, the FTIR spectra revealed that the biological deterioration of the modified wood caused cellulose and hemicellulose degradation, but no apparent lignin alteration occurred. The results could provide knowledge for appropriate dewatering, strengthening, and restoration strategies.
Collapse
Affiliation(s)
- Xinyou Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
- College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brașov, 500036 Brașov, Romania
- Advanced Analysis and Testing Center, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
| | - Lulu Zhu
- College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
| | - Xinwei Tu
- College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
| | - Changjun Zhang
- College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
| | - Houyi Huang
- College of Furnishing and Industrial Design, Nanjing Forestry University, Str. Longpan No. 159, Nanjing 210037, China
| | - Anca Maria Varodi
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brașov, 500036 Brașov, Romania
| |
Collapse
|
13
|
Antioxidants in Animal Nutrition: UHPLC-ESI-Q qTOF Analysis and Effects on In Vitro Rumen Fermentation of Oak Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11122366. [PMID: 36552573 PMCID: PMC9774136 DOI: 10.3390/antiox11122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The genus Quercus supplies a large amount of residual material (e.g., bark, acorns, leaves, wood), the valorization of which can favor a supply of antioxidant polyphenols to be used in the pharmaceutical, nutraceutical, or cosmeceutical sector. The recovery of specialized metabolites could also benefit livestock feeding, so much so that polyphenols have gained attention as rumen fermentation modifiers and for mitigating the oxidative imbalance to which farm animals are subject. In this context, leaves of Quercus robur L. from Northern Germany were of interest and the alcoholic extract obtained underwent an untargeted profiling by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques. As triterpenes and fatty acids occurred, the alcoholic extract fractionation pointed out the obtainment of a polyphenol fraction, broadly constituted by coumaroyl flavonol glycosides and condensed tannins. Total phenol, flavonoid and condensed tannins content assays, as well as antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) were carried out on the alcoholic extract and its fractions. When the effects on rumen liquor was evaluated in vitro in terms of changes in fermentation characteristics, it was observed that oak leaf extract and its fractions promoted an increase in total volatile fatty acids and differently modulated the relative content of each fatty acid.
Collapse
|
14
|
Woźniak M. Antifungal Agents in Wood Protection—A Review. Molecules 2022; 27:molecules27196392. [PMID: 36234929 PMCID: PMC9570806 DOI: 10.3390/molecules27196392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The biodegradation of wood and wood products caused by fungi is recognized as one of the most significant problems worldwide. To extend the service life of wood products, wood is treated with preservatives, often with inorganic compounds or synthetic pesticides that have a negative impact on the environment. Therefore, the development of new, environmentally friendly wood preservatives is being carried out in research centers around the world. The search for natural, plant, or animal derivatives as well as obtaining synthetic compounds that will be safe for humans and do not pollute the environment, while at the same time present biological activity is crucial in terms of environmental protection. The review paper presents information in the literature on the substances and chemical compounds of natural origin (plant and animal derivatives) and synthetic compounds with a low environmental impact, showing antifungal properties, used in research on the ecological protection of wood. The review includes literature reports on the potential application of various antifungal agents including plant extracts, alkaloids, essential oils and their components, propolis extract, chitosan, ionic liquids, silicon compounds, and nanoparticles as well as their combinations.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
15
|
Antifungal Activity of Datura stramonium L. Extractives against Xylophagous Fungi. FORESTS 2022. [DOI: 10.3390/f13081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some plants have great resistance against herbivores, invertebrates, insects, bacteria, and fungi. This resistance is mostly present in plants containing alkaloids, which are the substances responsible for giving them defensive properties. The genus Datura contains tropane alkaloids and all plants from this genus have defensive properties. In this work, we report the toxic effect against fungi of Datura stramonium extracts, obtained by the Petri dish method. The extraction solvents were water, ethanol, 2-propanol, n-butanol, propanone, butanone, 3-methyl-2-pentanone, dichloromethane, xylene, and toluene. The test fungi were Trametes versicolor (L. ex. Fr) Pilát and Rhodonia placenta (Fr.) Niemelä, K.H.Larss. & Schigel. It was found that water, butanone, and toluene extracts promoted mycelial growth, xylene extracts neither inhibited nor promoted mycelial growth, while the other extracts slightly inhibited the growth of these fungi.
Collapse
|
16
|
Duan X, Zhang L, Si H, Song J, Wang P, Chen S, Luo H, Rao X, Wang Z, Liao S. Synthesis, Antifungal Activity, Cytotoxicity and QSAR Study of Camphor Derivatives. J Fungi (Basel) 2022; 8:jof8080762. [PMID: 35893130 PMCID: PMC9332567 DOI: 10.3390/jof8080762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Control of fungal phytopathogens affecting crops and woodlands is an important goal in environmental management and the maintenance of food security. This work describes the synthesis of 37 camphor derivatives, of which 27 were new compounds. Their antifungal effects on six fungi were evaluated in vitro. Compounds 3a, 4a and 5k showed strong antifungal activity against Trametes versicolor, with EC50 values of 0.43, 6.80 and 4.86 mg/L, respectively, which were better than that of tricyclazole (EC50 118.20 mg/L) and close to or better than that of carbendazim (EC50 1.20 mg/L). The most potent compound, 3a, exhibited broad-spectrum antifungal activity towards six fungi with EC50 values within the range of 0.43–40.18 mg/L. Scanning electron microscopy demonstrated that compounds 3a, 4a and 5k gave irregular growth and shriveling of the mycelia. In vitro cytotoxicity evaluation revealed that the tested camphor derivatives had mild or no cytotoxicity for LO2 and HEK293T cell lines. Quantitative structure−activity relationship (QSAR) analysis revealed that the number of F atoms, relative molecular weight, the atomic orbital electronic population and total charge on the positively charged surfaces of the molecules of camphor derivatives have effects on antifungal activity. The present study may provide a theoretical basis for a high-value use of camphor and could be helpful for the development of novel potential antifungals.
Collapse
Affiliation(s)
- Xinying Duan
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Li Zhang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Hongyan Si
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, 303E Kearsley, Flint, MI 48502, USA;
| | - Peng Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Hai Luo
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
- Correspondence: (Z.W.); (S.L.); Tel.: +86-0791-83813243 (S.L.)
| | - Shengliang Liao
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (X.D.); (L.Z.); (H.S.); (P.W.); (S.C.); (H.L.)
- Correspondence: (Z.W.); (S.L.); Tel.: +86-0791-83813243 (S.L.)
| |
Collapse
|
17
|
Velasco-Rodríguez Ó, Fil M, Heggeset TMB, Degnes KF, Becerro-Recio D, Kolsaková K, Haugen T, Jønsson M, Toral-Martínez M, García-Estrada C, Sola-Landa A, Josefsen KD, Sletta H, Barreiro C. Characterization of Microbial Diversity in Decayed Wood from a Spanish Forest: An Environmental Source of Industrially Relevant Microorganisms. Microorganisms 2022; 10:1249. [PMID: 35744767 PMCID: PMC9227542 DOI: 10.3390/microorganisms10061249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a source of industrially relevant microorganisms. The analyzed forest is situated in a well-defined biogeographic area combining Mediterranean and temperate macrobioclimates. Bacterial diversity, determined by metagenome analyses, was higher than fungal heterogeneity. However, a total of 194 different cultivable bacterial isolates (mainly Bacillaceae, Streptomycetaceae, Paenibacillaceae, and Microbacteriaceae) were obtained, in contrast to 343 fungal strains (mainly Aspergillaceae, Hypocreaceae, and Coniochaetaceae). Isolates traditionally known as secondary metabolite producers, such as Actinobacteria and members of the Penicillium genus, were screened for their antimicrobial activity by the detection of antibiotic biosynthetic clusters and competitive bioassays against fungi involved in wood decay. In addition, the ability of Penicillium isolates to degrade cellulose and release ferulic acid from wood was also examined. These results present decaying wood as an ecologically rich niche and a promising source of biotechnologically interesting microorganisms.
Collapse
Affiliation(s)
- Óscar Velasco-Rodríguez
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Mariana Fil
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Tonje M. B. Heggeset
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Kristin F. Degnes
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - David Becerro-Recio
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Katarina Kolsaková
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Tone Haugen
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Malene Jønsson
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Macarena Toral-Martínez
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, s/n, 24007 León, Spain
| | - Alberto Sola-Landa
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
| | - Kjell D. Josefsen
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, P.O. Box 4760 Torgarden, N-7465 Trondheim, Norway; (T.M.B.H.); (K.F.D.); (T.H.); (M.J.); (K.D.J.); (H.S.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda Real 1, 24006 León, Spain; (Ó.V.-R.); (M.F.); (D.B.-R.); (K.K.); (M.T.-M.); (C.G.-E.); (A.S.-L.)
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071 León, Spain
| |
Collapse
|
18
|
Antifungal Sesquiterpenoids from Michelia formosana Leaf Essential Oil against Wood-Rotting Fungi. Molecules 2022; 27:molecules27072136. [PMID: 35408536 PMCID: PMC9000555 DOI: 10.3390/molecules27072136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Michelia formosana (Kanehira) Masamune is a broad-leaved species widespread in East Asia; the wood extract and its constituents possess antifungal activity against wood-decay fungi. Antifungal activities of leaf essential oil and its constituents from M. formosana were investigated in the present study. Bioassay-guided isolation was applied to isolate the phytochemicals from leaf essential oil. 1D and 2D NMR, FTIR, and MS spectroscopic analyses were applied to elucidate the chemical structures of isolated compounds. Leaf essential oil displayed antifungal activity against wood decay fungi and was further separated into 11 fractions by column chromatography. Four sesquiterpenoids were isolated and identified from the active fractions of leaf essential oil through bioassay-guided isolation. Among these sesquiterpenoids, guaiol, bulnesol, and β-elemol have higher antifungal activity against brown-rot fungus Laetiporus sulphureus and white-rot fungus Lenzites betulina. Leaf essential oil and active compounds showed better antifungal activity against L. sulphureus than against L. betulina. The molecular structure of active sesquiterpenoids all contain the hydroxyisopropyl group. Antifungal sesquiterpenoids from M. formosana leaf essential oil show potential as natural fungicides for decay control of lignocellulosic materials.
Collapse
|
19
|
Conditions Influencing Mould Growth for Effective Prevention of Wood Deterioration Indoors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Effective prevention of mould growth indoors is still an important topic considering that mould growth is frequently observed in buildings, it causes serious health hazards and can irreversibly damage infected objects. Several studies have been conducted and mould growth models developed. Despite that, some potentially important aspects such as water damage and spore contamination have received only little attention. The objective of the present study was to investigate the effect of the initial moisture content of wood and spore contamination on mould development indoors. The mould tests were performed in constant temperature (10, 20 and 30 °C) and relative humidity (91% and 97%) conditions. The results show that wetting of wood specimens prior to the test significantly accelerates mould growth at a temperature of 10 °C. For the other temperatures, the effect was insignificant. Similar results were obtained for the test involving dry (conditioned at RH 50%) and conditioned specimens (RH 91% or RH 97%). The results regarding initial spore contamination show that significantly longer periods are required for mould to develop without spore contamination at 10 °C and 20 °C, while at 30 °C the effect is relatively small.
Collapse
|
20
|
Lehr M, Miltner M, Friedl A. Removal of wood extractives as pulp (pre-)treatment: a technological review. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AbstractWood extractives usually do not exceed five percent of dry wood mass but can be a serious issue for pulping as well as for the pulp itself. They cause contamination and damages to process equipment and negatively influence pulp quality. This paper addresses not only the extractives-related problems but also different solutions for these issues. It is an extensive review of different technologies for removing wood extractives, starting with methods prior to pulping. Several wood yard operations like debarking, knot separation, and wood seasoning are known to significantly decreasing the amount of wood extractives. Biological treatment has also been proven as a feasible method for reducing the extractives content before pulping, but quite hard to handle. During pulping, the extractives reduction efficiency depends on the pulping method. Mechanical pulping removes the accessory compounds of wood just slightly, but chemical pulping, on the other hand, removes them to a large extent. Organosolv pulping even allows almost complete removal of wood extractives. The residual extractives content can be significantly reduced by pulp bleaching. Nevertheless, different extraction-based methods have been developed for removing wood extractives before pulping or bleaching. They range from organic-solvent-based extractions to novel processes like supercritical fluid extractions, ionic liquids extractions, microwave technology, and ultrasonic-assisted extraction. Although these methods deliver promising results and allow utilization of wood extractives in most cases, they suffer from many drawbacks towards an economically viable industrial-scale design, concluding that further research has to be done on these topics.
Graphical abstract
Collapse
|
21
|
Pánek M, Borůvka V, Nábělková J, Šimůnková K, Zeidler A, Novák D, Černý R, Kobetičová K. Efficacy of Caffeine Treatment for Wood Protection-Influence of Wood and Fungi Species. Polymers (Basel) 2021; 13:3758. [PMID: 34771315 PMCID: PMC8588167 DOI: 10.3390/polym13213758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
In the future, we can expect increased requirements to the health and ecological integrity of biocides used for the protection of wood against bio-attacks, and it is therefore necessary to search for and thoroughly test new active substances. Caffeine has been shown to have biocidal efficacy against wood-destroying fungi, moulds and insects. The aim of the research was to determine whether the effectiveness of caffeine, as a fungicide of natural origin, is affected by a different type of treated wood. Norway spruce mature wood (Picea abies), Scots pine sapwood (Pinus sylvestris), and European beech wood (Fagus sylvatica) were tested in this work. The samples were treated using long-term dipping technology or coating (according to EN 152:2012) and then tested against selected wood-destroying brown rot fungi according to the standard EN 839:2015, wood-staining fungi according to EN 152:2012, and against mould growth according to EN 15457:2015. The penetration of caffeine solution into wood depth was also evaluated using liquid extraction chromatography, as well as the effect of the treatment used on selected physical and mechanical properties of wood. The test results showed that the type of wood used and the specific type of wood-degrading agent had a significant effect on the effectiveness of caffeine protection. The most resistant wood was the treated spruce, whereas the most susceptible to deterioration was the treated white pine and beech wood. The results of the work showed that caffeine treatment is effective against wood-destroying fungi at a concentration of 2%, and at 1% in some of the tested cases. It can be used as an ecologically acceptable short-term protection alternative against wood-staining fungi in lumber warehouses and is also partially effective against moulds. It also does not have negative effects on changes in the physical and mechanical properties of the tested wood species.
Collapse
Affiliation(s)
- Miloš Pánek
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (V.B.); (K.Š.); (A.Z.); (D.N.)
| | - Vlastimil Borůvka
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (V.B.); (K.Š.); (A.Z.); (D.N.)
| | - Jana Nábělková
- Department of Sanitary and Ecological Engineering, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 160 00 Prague, Czech Republic;
| | - Kristýna Šimůnková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (V.B.); (K.Š.); (A.Z.); (D.N.)
| | - Aleš Zeidler
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (V.B.); (K.Š.); (A.Z.); (D.N.)
| | - David Novák
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague, Czech Republic; (V.B.); (K.Š.); (A.Z.); (D.N.)
| | - Robert Černý
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 160 00 Prague, Czech Republic; (R.Č.); (K.K.)
| | - Klára Kobetičová
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 160 00 Prague, Czech Republic; (R.Č.); (K.K.)
| |
Collapse
|
22
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
23
|
Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. FORESTS 2021. [DOI: 10.3390/f12091234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eugenol in water nanoemulsions loaded with tebuconazole appear as a very promising alternative formulations for wood protection against xylophagous fungi that are the main species responsible for different rots in wood structures. The dispersions as prepared and upon dilution (impregnation mixtures) were characterized by the apparent hydrodynamic diameter distribution of the oil droplets loaded with tebuconazole and their long-term stability. The impregnation mixtures were applied on wood of Populus canadensis I-214 clone by using a pressure-vacuum system, and the effectiveness against fungal degradation by Gloeophyllum sepiarium and Pycnoporus sanguineus fungi was determined. The retention of tebuconazole in wood was about 40% of the amount contained in the impregnation mixtures. The results showed that the impregnation process leads to a long-term antifungal protection to the wood, with the mass loss after 16 weeks being reduced more than 10 times in relation to the control (untreated poplar wood) and the reference wood (untreated beech wood).
Collapse
|
24
|
Abstract
This paper reviews the degradation, preservation and conservation of waterlogged archaeological wood. Degradation due to bacteria in anoxic and soft-rot fungi and bacteria in oxic waterlogged conditions is discussed with consideration of the effect on the chemical composition of wood, as well as the deposition of sulphur and iron within the structure. The effects on physical properties are also considered. The paper then discusses the role of consolidants in preserving waterlogged archaeological wood after it is excavated as well as issues to be considered when reburial is used as a means of preservation. The use of alum and polyethylene glycol (PEG) as consolidants is presented along with various case studies with particular emphasis on marine artefacts. The properties of consolidated wood are examined, especially with respect to the degradation of the wood post-conservation. Different consolidants are reviewed along with their use and properties. The merits and risks of reburial and in situ preservation are considered as an alternative to conservation.
Collapse
|
25
|
Abstract
Advancing climate change is affecting the health and vitality of forests in many parts of the world. Europe is currently facing spruce bark beetle outbreaks, which are most often caused by wind disturbances, hot summers, or lack of rainfall and are having a massive economic impact on the forestry sector. The aim of this research article was to summarize current scientific knowledge about the structure and physical and mechanical properties of wood from bark beetle-attacked trees. Spruce stands are attacked by a number of beetles, of which Ips typographus is the most common and widespread in Central Europe. When attacking a tree, bark beetles introduce ophiostomatoid fungi into the tree, which then have a greater effect on the properties of the wood than the beetles themselves. Fungal hyphae grow through the lumina of wood cells and spread between individual cells through pits. Both white rot and brown rot fungi are associated with enzymatic degradation of lignin or holocellulose, which is subsequently reflected in the change of the physical and mechanical properties of wood. Wood-decay fungi that colonize wood after infestation of a tree with bark beetles can cause significant changes in the structure and properties of the wood, and these changes are predominantly negative, in the form of reducing modulus of rupture, modulus of elasticity, discolouration, or, over time, weight loss. In certain specific examples, a reduction in energy consumption for the production of wood particles from beetle-attacked trees, or an increase in surface free energy due to wood infestation by staining fungi in order to achieve better adhesion of paints or glues, can be evaluated positively.
Collapse
|
26
|
Plants-derived bioactives: Novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb Pathog 2021; 158:105107. [PMID: 34303810 DOI: 10.1016/j.micpath.2021.105107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Medicinal and aromatic higher plants are sustainable resources for natural product compounds, including essential oils, phenolics, flavonoids, alkaloids, glycosides, and saponins. Extractives and essential oils as well as their bioactive compounds have many uses due to their antimicrobial, anticancer, and antioxidant properties as well as application in food preservation. These natural compounds have been reported in many works, for instance biofungicide with phenolic and flavonoid compounds being effective against mold that causes discoloration of wood. Additionally, the natural extracts from higher plants can be used to mediate the synthesis of nanoparticle materials. Therefore, in this review, we aim to promote and declare the use of natural products as environmentally eco-friendly bio-agents against certain pathogenic microbes and make recommendations to overcome the extensive uses of conventional pesticides and other preservatives.
Collapse
|
27
|
Gupta H, Sharma KR, Sharma JN. Economically Feasible Wood Biopreservation Platform in Lannea coromandelica (Houtt.) Merr. Against Wood Rotting Fungus Through Bio-Prospecting Weed Extracts. FRONTIERS IN PLANT SCIENCE 2021; 12:696747. [PMID: 34335663 PMCID: PMC8322784 DOI: 10.3389/fpls.2021.696747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
As an alternative to synthetic preservatives, the use of plant-based, environmentally sustainable preservatives for wood protection has tremendous potential. The current research analyzed the dimensional stability and longevity of Lannea coromandelica wood using weed extracts viz. Lantana camara L. and Ageratum conyzoides L., respectively. Petroleum ether (PE) and methanolic weed extracts were used to treat wood blocks (5 cm × 2.5 cm × 2.5 cm) at varying concentrations ranging from 0.25 to 2.00%. The PE extract of A. conyzoides resulted in maximum swelling (tangential plane, 6.30%) at 2.00%, volumetric swelling coefficient (13.17%) at 1.50%, and volumetric shrinkage coefficient (7.71%) at 1.00% concentration, while maximum shrinkage (tangential plane, 4.10%) in methanol (M) extract was observed. In L. camara methanolic extract (1.00%), maximum anti-shrink efficiency (37.01%) was recorded. In vitro mycelial growth of the wood-rotting fungus was completely inhibited by PE extract from both weeds. However, the methanolic extract of A. conyzoides resulted in maximal inhibition (75.93%) at a concentration of 2.00%. Also, PE extract (2.00%) of A. conyzoides reduced the fungal colonization to 50%, as compared with control. The lowest weight loss (decay test, 12 weeks) was observed at a 2.00% concentration of L. camara PE extract. The present research highlighted that both A. conyzoides and L. camara could be used as an environmentally sustainable wood preservative substitute that will encourage the utilization of L. coromandelica in wood-based industries.
Collapse
Affiliation(s)
- Heena Gupta
- Department of Forest Products, College of Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Kulwant Rai Sharma
- Department of Forest Products, College of Forestry, Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - J. N. Sharma
- Department of Plant Pathology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
28
|
Köhler R, Sauerbier P, Weber M, Wander RC, Wieneke S, Viöl W. Water-Repellent Characteristics of Beech Wood Coated with Parylene-N. Polymers (Basel) 2021; 13:polym13132076. [PMID: 34202580 PMCID: PMC8272000 DOI: 10.3390/polym13132076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood's durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 μm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25-34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers.
Collapse
Affiliation(s)
- Robert Köhler
- Laboratory of Laser and Plasma Technologies, Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, 37085 Göttingen, Germany; (M.W.); (R.-C.W.); (S.W.); (W.V.)
- Correspondence: ; Tel.: +49-55-1370-5212
| | - Philipp Sauerbier
- Wood Biology and Wood Products, Faculty of Forest Sciences, University of Goettingen, Büsgenweg 4, 37077 Göttingen, Germany;
| | - Mirco Weber
- Laboratory of Laser and Plasma Technologies, Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, 37085 Göttingen, Germany; (M.W.); (R.-C.W.); (S.W.); (W.V.)
| | - Roland-Christian Wander
- Laboratory of Laser and Plasma Technologies, Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, 37085 Göttingen, Germany; (M.W.); (R.-C.W.); (S.W.); (W.V.)
| | - Stephan Wieneke
- Laboratory of Laser and Plasma Technologies, Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, 37085 Göttingen, Germany; (M.W.); (R.-C.W.); (S.W.); (W.V.)
| | - Wolfgang Viöl
- Laboratory of Laser and Plasma Technologies, Faculty of Engineering and Health, University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, 37085 Göttingen, Germany; (M.W.); (R.-C.W.); (S.W.); (W.V.)
| |
Collapse
|
29
|
Clocchiatti A, Hannula SE, Rizaludin MS, Hundscheid MPJ, klein Gunnewiek PJA, Schilder MT, Postma J, de Boer W. Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms 2021; 9:microorganisms9061285. [PMID: 34204724 PMCID: PMC8231496 DOI: 10.3390/microorganisms9061285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Cellulose-rich amendments stimulate saprotrophic fungi in arable soils. This may increase competitive and antagonistic interactions with root-infecting pathogenic fungi, resulting in lower disease incidence. However, cellulose-rich amendments may also stimulate pathogenic fungi with saprotrophic abilities, thereby increasing plant disease severity. The current study explores these scenarios, with a focus on the pathogenic fungus Rhizoctonia solani. Saprotrophic growth of R. solani on cellulose-rich materials was tested in vitro. This confirmed paper pulp as a highly suitable substrate for R. solani, whereas its performance on wood sawdusts varied with tree species. In two pot experiments, the effects of amendment of R. solani-infected soil with cellulose-rich materials on performance of beetroot seedlings were tested. All deciduous sawdusts and paper pulp stimulated soil fungal biomass, but only oak, elder and beech sawdusts reduced damping-off of beetroot. Oak sawdust amendment gave a consistent stimulation of saprotrophic Sordariomycetes fungi and of seedling performance, independently of the time between amendment and sowing. In contrast, paper pulp caused a short-term increase in R. solani abundance, coinciding with increased disease severity for beet seedlings sown immediately after amendment. However, damping-off of beetroot was reduced if plants were sown two or four weeks after paper pulp amendment. Cellulolytic bacteria, including Cytophagaceae, responded to paper pulp during the first two weeks and may have counteracted further spread of R. solani. The results showed that fungus-stimulating, cellulose-rich amendments have potential to be used for suppression of R. solani. However, such amendments require a careful consideration of material choice and application strategy.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Correspondence: (A.C.); (W.d.B.)
| | - Silja Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands;
| | - Muhammad Syamsu Rizaludin
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Paulien J. A. klein Gunnewiek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Mirjam T. Schilder
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Joeke Postma
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: (A.C.); (W.d.B.)
| |
Collapse
|
30
|
Abstract
Wood drying stress causes various drying defects, which result from the wood microstructure and the transfer of heat and mass during the drying. It is the fundamental way to solve the problem of defects to clarify the law and mechanism of wood stress and strain development during drying. In this paper, based on the defects of wood drying, the theory and experimental testing methods of drying stress and strain were summarized. Meanwhile, artificial neural networks (ANN) and their application in the wood drying field were also investigated. The traditional prong and slicing methods were used practically in the research and industry of wood drying, but the stress changes in-process cannot be trapped. The technologies of image analysis and near-infrared spectroscopy provide a new opportunity for the detection of drying stress and strain. Hence, future interest should be attached to the combination of the theory of heat and mass transfer and their coupling during drying with the theory of microscopic cell wall mechanics and macroscopic drying. A more complete image acquisition and analysis system should be developed to realize the real-time monitoring of drying strain and cracking, practically. A more feasible and reasonable prediction model of wood drying stress and strain should be established to achieve the accuracy of the prediction.
Collapse
|
31
|
Abstract
Conservation of wooden artefacts that are exposed outdoors, mainly in open-air museums, is a very complex and difficult issue that aims to preserve both the integrity and aesthetics of valuable objects. Unceasingly subjected to several factors, such as alternating weather conditions and the activities of microorganisms, algae, and insects, they undergo continuous changes and inevitable deterioration. Their biological and physical degradation often results in the formation of gaps and cracks in the wooden tissue, which creates a need not only for wood consolidation, but also for using specialist materials to fill the holes and prevent further degradation of an object. To ensure effective protection for a wooden artefact, a filling material must both protect the wood against further degradation and adapt to changes in wood dimensions in response to humidity variations. A variety of substances, both organic and inorganic, have been used for conservation and gap filling in historic wooden objects over the years. The filling compounds typically consist of two components, of which one is a filler, and the second a binder. In the case of inorganic fillers, plaster has been traditionally used, while the most popular organic fillers were wood powder, wood shavings, and powdered cork. As with binders, mainly natural substances have been used, such as animal glues or waxes. Nowadays, however, due to the lower biodegradability and better physicochemical properties, synthetic materials are gaining popularity. This article discusses the types of filling compounds currently used for gap filling in wooden artefacts exposed outdoors, outlining their advantages and drawbacks, as well as future perspective compounds. It appears that particularly composite materials based on natural polymers deserve attention as promising filling materials due to their high elasticity, as well as similarity and good adhesion to the wooden surface. Their main shortcomings, such as susceptibility to biodegradation, could be eliminated by using some modern, bio-friendly preservatives, providing effective protection for historic wooden artefacts.
Collapse
|
32
|
Abstract
Caffeine is a verified bioactive substance suitable for wood protection against pests. Unlike studies of the biocidal effects of caffeine, caffeine-wood bonds and interactions with wood polymer structures have not been studied whatsoever thus far. For this reason, caffeine (1 g/L) interactions with the main wood components (cellulose; hemicellulose; lignin and its precursors conipheryl alcohol, sinapyl alcohol, coumaryl alcohol) were analyzed in the present study. Caffeine concentrations were analyzed using UV–VIS spectrometry at wavelength 287 nm. The results confirmed caffeine variable binding with wood components in comparison to controls (pure caffeine). Cellulose and sinapyl alcohol did not interact with caffeine. Caffeine was bonded with the rest of the wood components in an increasing rank: conipheryl alcohol = lignin < hemicellulose < coumaryl alcohol. These results have a significant role in the protection of wood depending on its chemical composition and the wood species.
Collapse
|
33
|
Viotti C, Bach C, Maillard F, Ziegler-Devin I, Mieszkin S, Buée M. Sapwood and heartwood affect differentially bacterial and fungal community structure and successional dynamics during Quercus petraea decomposition. Environ Microbiol 2021; 23:6177-6193. [PMID: 33848050 DOI: 10.1111/1462-2920.15522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
In forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e. sapwood and heartwood) remain scarce. This study aimed to understand the effect of wood type on the dynamics of microbial ecological guilds in wood decomposition. Using Illumina metabarcoding, bacterial and fungal communities were monitored every 3 months for 3 years from Quercus petraea wood discs placed on forest soil. Wood density and microbial enzymes involved in biopolymer degradation were measured. We observed rapid changes in the bacterial and fungal communities and microbial ecological guilds associated with wood decomposition throughout the experiment. Bacterial and fungal succession dynamics were very contrasted between sapwood and heartwood. The initial microbial communities were quickly replaced by new bacterial and fungal assemblages in the sapwood. Conversely, some initial functional guilds (i.e. endophytes and yeasts) persisted all along the experiment in heartwood and finally became dominant, possibly limiting the development of saprotrophic fungi. Our data also suggested a significant role of bacteria in nitrogen cycle during wood decomposition.
Collapse
Affiliation(s)
- Chloé Viotti
- Université de Lorraine, INRAE, UMR IAM, Centre INRAE-Grand Est-Nancy, 54280 Champenoux, Nancy, F-54000, France
| | - Cyrille Bach
- Université de Lorraine, INRAE, UMR IAM, Centre INRAE-Grand Est-Nancy, 54280 Champenoux, Nancy, F-54000, France
| | - François Maillard
- Department of Plant and Microbial Biology University of Minnesota St. Paul, Saint Paul, Minnesota, 55108, USA
| | | | - Sophie Mieszkin
- Université de Lorraine, INRAE, UMR IAM, Centre INRAE-Grand Est-Nancy, 54280 Champenoux, Nancy, F-54000, France
| | - Marc Buée
- Université de Lorraine, INRAE, UMR IAM, Centre INRAE-Grand Est-Nancy, 54280 Champenoux, Nancy, F-54000, France
| |
Collapse
|
34
|
Restoration of a XVII Century’s predella reliquary: From Physico-Chemical Characterization to the Conservation Process. FORESTS 2021. [DOI: 10.3390/f12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on the restoration of a XVII century’s predella reliquary, which is a part of a larger setup that includes a wall reliquary and a wooden crucified Christ, both belonging to the church of “Madre Maria SS. Assunta”, in Polizzi Generosa, Sicily, Italy. The historical/artistic and paleographic research was flanked successfully by the scientific objective characterization of the materials. The scientific approach was relevant in the definition of the steps for the restoration of the artefact. The optical microscopy was used for the identification of the wood species. Electron microscopy and elemental mapping by energy-dispersive X-ray (EDX) was successful in the identification of the layered structure for the gilded surface. The hyperspectral imaging method was successfully employed for an objective chemical mapping of the surface composition. We proved that the scientific approach is necessary for a critical and objective evaluation of the conservation state and it is a necessary step toward awareness of the historical, liturgical, spiritual and artistic value. In the second part of this work, we briefly describe the conservation protocol and the use of a weak nanocomposite glue. In particular, a sustainable approach was considered and therefore mixtures of a biopolymer from natural resources, such as funori from algae, and naturally occurring halloysite nanotubes were considered. Tensile tests provided the best composition for this green nanocomposite glue.
Collapse
|
35
|
Barbero-López A, Akkanen J, Lappalainen R, Peräniemi S, Haapala A. Bio-based wood preservatives: Their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142013. [PMID: 32890867 DOI: 10.1016/j.scitotenv.2020.142013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Companies in the wood industry are constantly developing their outdoor products. The possibility of using bio-based chemicals as an alternative to traditional wood preservatives-regulated in Europe by The Biocidal Products Regulation No 528/2012-has been considered, but chemical leaching from the wood decreases its effectiveness and may negatively affect the environment. This study aims to compare the effectiveness of bio-based chemicals with potential use in wood preservation to commercially available preservatives, to investigate their fixation to wood and their ecotoxicity and to quantify the potentially toxic elements leached from the wood. Pyrolysis distillates of tree bark, organic acids found in distillates, Colatan GT10 tannin extract and log soaking liquid as a hardwood veneer process residue were tested and compared with commercial pine oil and a copper-based wood preservative. In the wood decay test of impregnated pine sapwood specimens, Colatan GT10 extract performed as well as the commercial wood preservatives. The same decay trial with leached specimens significantly reduced the performance of the bio-based chemicals. The results of the ecotoxicity test with photoluminescent Aliivibrio fischeri bacteria showed that many bio-based chemicals with potential use in wood preservation have markedly lower ecotoxicity than commercially available wood preservatives, but the ecotoxicity of some bio-based chemicals is higher, as in the case of some of the pyrolysis distillates. The wood preservation efficiency and the ecotoxicity of the studied chemicals had a poor correlation, implying that other factors besides treatment agent toxicity play a role in deterring fungal growth on treated wood. The amount of elemental toxins in the leachates was low. These results emphasize the importance of the chemical ecotoxicity of bio-based preservative compounds, as their detrimental effect on the environment can be higher than that of the traditional preservatives unless effectively linked to wood to prevent leaching.
Collapse
Affiliation(s)
- Aitor Barbero-López
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland.
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland
| | - Reijo Lappalainen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Antti Haapala
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu 80101, Finland
| |
Collapse
|
36
|
Croitoru C, Roata IC. Ionic Liquids as Antifungal Agents for Wood Preservation. Molecules 2020; 25:E4289. [PMID: 32962068 PMCID: PMC7570619 DOI: 10.3390/molecules25184289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Ionic liquids represent a class of highly versatile organic compounds used extensively in the last decade for lignocellulose biomass fractionation and dissolution, as well as property modifiers for wood materials. This review is dedicated to the use of ionic liquids as antifungal agents for wood preservation. Wood preservation against fungal attack represents a relatively new domain of application for ionic liquids, emerging in the late 1990s. Comparing to other application domains of ionic liquids, this particular one has been relatively little researched. Ionic liquids may be promising as wood preservatives due to their ability to swell wood, which translates into better penetration ability and fixation into the bulk of the wood material than other conventional antifungal agents, avoiding leaching over time. The antifungal character of ionic liquids depends on the nature of their alkyl-substituted cation, on the size and position of their substituents, and of their anion. It pertains to a large variety of wood-colonizing fungi, both Basidiomycetes and Fungiimperfecti.
Collapse
Affiliation(s)
- Catalin Croitoru
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Blvd., 500039 Brasov, Romania
| | - Ionut Claudiu Roata
- Materials Engineering and Welding Department, Transilvania University of Brasov, Eroilor 29 Blvd., 500039 Brasov, Romania
| |
Collapse
|